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ABSTRACT 
In this paper the potential of GP-generated symbolic regression 
for alleviating multicollinearity problems in multiple regression is 
presented with a case study in an industrial setting. The main 
advantage of this approach is the potential to produce a simple 
and stable polynomial model in terms of the original variables. 

Categories and Subject Descriptors 
G.3. [Mathematics of Computing]: Probability and statistics– 
Correlation and regression analysis.  

General Terms:  
Experimentation. 

Keywords 
Multicollinearity, multiple regression, undesigned data 

1. INTRODUCTION 
In many industrial applications, observational data is collected 
and stored, to later become the focus of a modeling exercise. The 
main objective of this is usually process control. Suitable 
statistical techniques such as multiple regression are available to 
assist in this process [4]. However, statistically modeling of this 
type of data provides many challenges because data 
multicollinearity or strong relationships between inputs is usually 
present. Techniques such as Principal Component Regression, and 
Partial Least Squares [6] are often used. However the major 
limitation of these techniques especially from the point of view of 
plant personnel is that variable interpretation of the resulting 
principal components is often difficult.  
GP- generated symbolic regression offers a unique opportunity 
because it produces several possible models of the response as a 
function of the input variables [3]. This set of possible models not 
only suggest additional candidate models but also indicate 
possible relationships among variables that, when applied to 
multiple regression modeling, have the potential to alleviate the 
problem of multicollinearity. This provides a stable regression 
model in terms of the original variables which is easier to 
implement and understand especially by plant personnel. This 
paper shows an application of Genetic Programming for data 
exploration to alleviate the problem of multicollinearity in a small 
data set. 

2. THE CASE STUDY 
The data set consisted of three inputs variables (x1-x3) and one 
response (y) from a chemical process. A total of 39 observations 
were obtained from the plant. Table 1 shows the data set in which 
the input variables have been codified from -1 to 1.  
 

Table 1 Undesigned Data Set 

x1 x2 x3 y
0.41 0.48 0.45 0.23
-0.09 0.72 0.81 0.24
1.00 1.00 0.94 0.24
0.59 0.69 0.71 0.25
0.16 -0.06 -0.01 0.71
0.28 -0.20 -0.14 0.68
0.47 -0.12 -0.03 0.68
0.19 -0.60 -0.57 1.80
-0.16 -0.68 -0.44 2.02
-0.16 -0.68 -0.56 1.82
0.06 -0.70 -0.61 1.92
0.38 -0.62 -0.66 1.90
-0.16 -0.58 -0.50 1.92
-0.06 -0.65 -0.49 1.89
-0.09 -0.61 -0.38 1.90
-0.25 -0.89 -0.74 2.98
-0.09 -0.85 -0.69 2.97
-0.19 -0.87 -0.69 3.09
0.63 0.74 0.80 0.52
0.44 0.69 0.75 0.54
0.78 0.66 0.75 0.49
0.75 0.71 0.80 0.50
0.38 0.60 0.74 0.49
0.50 0.67 0.84 0.53
0.66 0.65 0.83 0.58
0.69 0.79 1.00 0.53
0.38 0.53 0.75 0.55
-1.00 -0.58 -0.36 1.98
-0.81 -0.54 -0.10 1.80
-0.81 -0.95 -0.56 6.21
-0.84 -1.00 -0.60 6.69
-0.72 -0.93 -0.50 6.88
-1.00 -0.97 -0.59 6.36
0.50 -0.80 -0.97 1.94
-0.03 -0.86 -0.99 2.03
0.16 -0.83 -0.99 1.87
0.03 -0.82 -0.93 2.14
0.16 -0.86 -1.00 1.87
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The following first order polynomial model was initially 
considered: 

3223311321123322110 xxxxxxxxxy βββββββ ++++++=    (1) 

The βi coefficients are the model parameters estimated by the 
method of least squares. 
The corresponding parameter estimates showing only significant 
terms at the 95% confidence level is presented in Table 2. 

Table 2. Parameter estimates for  first order model 
Term Estimate t Ratio Prob>|t|

1 
VIF 

Intercept -0.879 -7.145 <.0001 . 

 x1 0.265 1.526 0.137 5.46 
x2 -4.246 -8.679 <.0001 77.58 
x1*x2 0.537 2.701 0.011 3.00 
x3 2.549 5.518 <.0001 68.20 
x2*x3 0.891 4.318 <.0001 1.69 

 
The model shown in Table 2 had a R2 of 0.97 which shows that 
this model accounts for 97% of the variability in the data set. 
Multicollinearity (correlation structure among the inputs) was 
examined using Variance Inflation Factors (VIF) [4] which are 
listed in the last column of Table 2.  In general, high VIF’s (some 
authors suggest VIF’s greater than 10 [5]) suggest that severe 
multicollinearity exists and the model is suspected. From the 
VIF’s listed in Table 2, it was obvious that severe 
multicollinearity issues existed within the data.  This happens 
frequently with undesigned data from industrial situations.  Many 
of the process variables will often vary together resulting in 
severely unbalanced data. One alternative often suggested is to 
remove any redundant inputs that may be included in the model.  
In our example, it was not possible to reduce any apparently 
redundant input because physically they have different meaning. 
Another alternative is planning a design of experiments (DOE) to 
collect additional data. However, in many industrial situations, 
collecting more data to help with the modeling is not a viable 
economic solution. Other option was to consider PCR (Principal 
Component Regression) or PLS (Partial Least Squares). However, 
this was not a practical solution because plant personnel in 
general prefer models in terms of the original variables. Under 
theses circumstances Symbolic regression was considered 

2.1 Symbolic Regression Results 
Several models of the response as a function of the input variables 
x1, x2, x3 were obtained through GP-generated symbolic 
regression. The following model from the set of selected models 
presented the highest R2 of 0.97  

                                                                 
1 The column “prob>|t|” in Table 2 indicates the significance of 
the terms. At the 95% confidence, terms with prob>|t| values less 
than or equal to 0.05 are considered to be statistically significant. 
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The relationships revealed by the model are shown in Table 3.  
Table 3. Transformation uncovered by GP 

Original Variable Transformed Variable 
x1 Z1 
x2 Z2 = 1/x2 

14 
x3 Z3 = x3

5 

The linear regression model presented previously in equation (1) 
was re-fitted taking into account the transformed variables 
presented in Table 3. The resulting model is shown in Table 4. 
This model had and R2 of 0.93 with appropriate error structure 
required by least squares and no evidence of severe 
multicollinearity as indicated by VIF. 

Table 4 Parameter estimates for STM  
Term Estimate t Ratio Prob>|t| VIF 
Intercept 1.370 12.89 <.0001 . 

x1 -0.476 -4.92 <.0001 3.60 

1/x2^14 0.493 4.52 <.0001 5.35 

x1*(1/x2^14) -0.332 -2.49 0.0180 3.66 

x3^5 -0.241 -3.00 0.0051 4.37 

 

The use of GP in this particular problem provided a simple 
polynomial form with no significant multicollinearity, which is 
easily understood by engineers and process people and offers a 
simple alternative form for monitoring and control. This 
polynomial model has the additional advantage that statistical 
analysis such us outlier detection on the input space [2], 
influential observations [1] and confidence band of the parameters 
can be applied offering additional assurance on the capabilities of 
the obtained model. 
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