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ABSTRACT
In this paper, we present the application of evolutionary
optimization methods to a demanding, industrially relevant
engineering domain, the three-dimensional optimization of
gas turbine stator blades. This optimization problem is
high-dimensional search and computationally very expen-
sive. We show that, despite of its difficulty, the problem is
feasible. Our approach not only successfully optimizes the
aerodynamic design but also yields interesting results from
an engineering point of view.

Categories and Subject Descriptors
J.2 [Physical sciences and engineering]: Aerospace; I.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search—Heuristic methods

General Terms
Design, Algorithms

Keywords
Design optimization, evolutionary strategies, covariance ma-
trix adaptation, real world application

1. INTRODUCTION
The availability of relatively inexpensive, massive com-

puting power in form of PC clusters made it possible to
treat complex, computationally intensive application prob-
lems and to verify the everyday or real world suitability of
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Figure 1: Schematic sketch of a gas turbine. The
turbine consists of a fan (a.) that pulls air into the
engine. Part of this air is compressed in the com-
pressor (b.) and then forced into the combustion
chamber (c.) where it is mixed with fuel and ig-
nited. The resulting hot, high energy gases go into
the turbine (d.) causing the turbine blades to rotate.
The task of the turbine is to convert gas energy into
mechanical work to drive the compressor (b.). The
nozzle (e.) is the exhaust duct of the engine.

algorithms that hitherto were only tested on toy problems
or in simplified application domains.
One of the problems on the verge of tractability even today
is the three-dimensional optimization of aerodynamic de-
signs. The difficulty of this optimization task stems on the
one hand from the difficulty and high computational costs
of 3D computational flow analysis and on the other hand
from the fact that 3D flows are not fully understood yet.
In this paper, we present an approach to 3D aerodynamic
design optimization using evolutionary strategies. We show
that this approach is indeed feasible and not only success-
fully optimizes the aerodynamic design but also yields inter-
esting results from an engineering point of view.
The aerodynamic design that we optimize is part of a gas

turbine that is used in small business jets. The main parts
of a gas turbine are depicted schematically in Fig. 1. In
the current research we focus on the turbine which is com-
posed of several rows of airfoil cascades. Some of these rows,
the rotors, are connected to the central shaft of the engine
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Figure 2: Ultra low aspect ratio turbine stator
blades and their flow fields. The blade count is
NB = 8.

and rotate at high speed thus driving the engine’s fan and
compressor and converting gas energy to mechanical energy.
The other rows, the stators, are fixed and serve to keep the
flow from spiralling around the axis. Our goal is to opti-
mize the design of the turbine stator blades which are of
a special type in our case. The stator is a so-called ultra-
low-aspect-ratio (ULAR) stator. This means that a stator
row is made up of only 8 stator blades. This is a very small
number compared to 20 - 60 blades that are used in more
conventional turbine designs. Fig. 2 depicts part of a ULAR
stator row. The ULAR blades offer considerable benefits as
compared to more conventional blades. For example, the
blade resonance in the following rotor cascade is reduced.
In general, however, ULAR stator blades are only rarely
used in gas turbines because of their relatively poor stage
efficiency that is much lower than the efficiency of the more
conventional high aspect ratio turbines. The flow field of the
ULAR stator that is depicted by arrows in Fig. 2 shows the
reasons for the poorer performance. There is a very strong
inward-radial cross flow on the blade suction side. Also the
flow field near the hub-end-wall is very complicated due to
the interaction of the secondary flow with the transonic main
flow.
As a result, the aerodynamic loss near the hub region is con-
siderably increased as compared to the conventional high-
aspect-ratio blade. It is this higher loss near the hub region
that prevents a further improvement of the stage efficiency.
The ULAR blade flow characteristics make it unlikely that
the advanced design principles developed for high aspect ra-
tio blades will help to improve the efficiency of ULAR stator
blades: The flow phenomena that can be observed are too
different to enable exploitation of design principles for high
aspect ratio blades directly.
Therefore, ULAR stator blades are excellent candidates for
numerical optimization. The goal of optimization from the
engineering point of view is not only to increase blade effi-
ciency, i.e., ultimately to reduce the engine’s fuel consump-
tion, but also to find new design concepts for suppressing
the secondary flow loss near the hub-end-wall region and
hence to enable control of the three-dimensional nature of
the flow.
From the optimization point of view 3D aerodynamic design
optimization constitutes an interesting problem for several
reasons. We have to deal with a high-dimensional search

space while evaluation of the objective function is so costly
that an appropriate acquisition of data from the search space
is hardly feasible. This means that we have to use techniques
that reduce the dimensionality of the search space as much
as possible and we have to use algorithms that are able to
cope with extremely sparse data.
Also the formulation of the optimization objective is not
as obvious as it may seem. Traditionally, the minimization
of the aerodynamic loss, i.e., the average pressure loss, is
chosen as optimization target. However, we must not forget
that this is an extreme simplification of the problem. In fact,
the pressure loss is only one among many quantities that an
engineer takes into account when assessing the blade perfor-
mance. To compound matters, three-dimensional aerody-
namic flow is not fully understood yet, so that it is difficult
to foresee the effects that may result from the choice of a
particular combination of optimization objectives.
In this paper, we consider two formulations of the objective
function. As a first guess we use the single objective of min-
imization of the mass-averaged total pressure loss. While
this yields satisfactory results, we found that it is desirable
to include a second objective, the minimization of the varia-
tion of the circumferential static pressure distribution. This
renders the problem multi-objective. As a first approach
we address the multi-objective optimization problem in the
simplest way, namely by linear aggregation of the two ob-
jectives.
Three-dimensional design optimization is not only an inter-
esting problem from the engineering and optimization point
of view but also from a technical point of view the design of
a stable and fault tolerant computing environment that in-
cludes a whole bunch of computers and a variety of software
components is a challenge.
In this paper, we will discuss 3D aerodynamic design opti-
mization from all three above mentioned perspectives. In
Sec. 2 we present the ultra-low-aspect-ratio transonic sta-
tor blades that will be optimized. In Sec. 3, we discuss the
components of the optimization problem, i.e., the choice of
blade model, the formulation of the fitness function, and the
architecture of the simulation environment. The optimiza-
tion results are presented and discussed in Sec. 4. Finally,
our conclusions are given in Sec. 5.

2. ULTRA-LOW-AR TRANSONIC STATOR
BLADES

Low aspect ratio turbine stator blades have rarely been
adopted as components of conventional turbines because of
their relatively poor performance which is caused primarily
by increases of secondary flow losses due to the low aspect
ratio. However, there are considerable benefits when adopt-
ing low aspect ratio blades. For example, for a low number
of stator blades, rotor blade resonance, and hence material
fatigue, is considerably reduced.
The stator that we optimize consists of only eight blades
and the aspect ratio AR, i.e., the ratio of span height to
axial chord-length, is AR = 0.3. The stator blades are cir-
cumferentially leaned by 14 degrees in order to suppress the
development of secondary flow near the hub-end-wall. Fig. 2
shows a three dimensional outline of the stator blades and
their flow fields. For details on the design specifications of
the ULAR stator refer to [9].
Due to manufacturing reasons, the blade geometry is defined

2174



by two sections, the hub section and the tip section. The
remaining blade geometry is defined by linear interpolation
between these two sections.
In the following, we will refer to this blade as the baseline
blade.

3. DESIGN OPTIMIZATION WITH
EVOLUTIONARY ALGORITHMS

Evolutionary algorithms [2] are a class of stochastic opti-
mization algorithms whose use in design optimization prob-
lems is well established by now [12].
In our approach to 3D turbine blade optimization we use a
special variant of evolutionary algorithms namely an evolu-
tion strategy (ES) with covariance matrix adaptation (CMA)
[8]. The basic idea of CMA-ES is to make maximum use
of the information contained in the search history for self-
adaptation of the search direction that is defined in terms of
the covariance matrix of a normal distribution from which
individuals are drawn. Thereby the population size is de-
coupled from the dimension of the search space.
Especially the latter feature is indispensable in 3D blade op-
timization which is characterized by a fundamental conflict:
on the one hand the design space is very high-dimensional.
As a consequence a large number of different designs has to
be evaluated during optimization. On the other hand each
evaluation of the blade performance is a computationally
extremely demanding task so that only a limited number of
evaluations can be afforded.

3.1 Blade Model
A crucial point in design optimization is the parametric

model of the geometry that will be optimized since this de-
termines the design space.
There are a number of requirements on the design of a proper
blade model. Among these are

1. flexibility: the model must be flexible enough to allow
for a wide variety of different designs,

2. compactness: the number of parameters describing the
model must be low enough to allow for reasonable con-
vergence times of the optimization algorithm, and

3. locality: variations of a single model parameter should
result in only local variations of the model and should
not affect the global model shape.

A good choice to fulfill these requirements is to use non-
uniform rational B-spline (NURBS) surfaces [5] to represent
the blade. A B-spline surface is a tensor product of two B-
spline curves and hence is defined by two parameters, a set of
control points and two knot vectors, one for each parameter.
Usually not all of these parameters are subject to optimiza-
tion. Often the variables in the design optimization problem
are given by the coordinates of the control points. However,
the suitable number of control points must be chosen with
care: the use of too few control points may unnecessarily
restrict the design space and exclude potentially interesting
designs while the use of too many control points compli-
cates the optimization problem and additionally may have
unwanted side-effects like the creation of cusps or even self-
intersections of the resulting surfaces.

As mentioned in Sec. 2, the geometry of the baseline blade
is defined by two cross sections, the tip section and the hub

control net
hub section

tip section

Figure 3: The blade model is created from the hub
section (dark gray) and the tip section (light gray)
of the baseline blade. These sections are defined
by 25 control points each. The control net of the
baseline surface model, that connects neighboring
control points is depicted by a black line.

section. Our blade model consists of a B-spline surface de-
fined by a periodically closed cubic B-spline in one parame-
ter direction and a second order open B-spline in the other
direction. The hub section and the tip section of the blade
are each modeled using 25 control points so that all in all 50
control points are used. The control net of the blade model
and the section geometries are shown in Fig. 3.

Using the coordinates of the 50 three-dimensional control
points directly as design variables would result in a 150-
dimensional search space. Fortunately, we can exploit two
facts to reduce the search space dimension to only 88:

1. We note that we use closed periodic splines in the
first parameter direction of the blade surface model
to achieve a closed and seamless shape that has no be-
ginning or end points. This implies that the first d and
the last d control points of each blade section coincide.
Here d denotes the degree of the splines which is d = 3
in our case of cubic splines. This means that each of
the two blade sections is defined by only 25−3 = 22 in-
dependent control points. The periodic control points
need not be taken into account as design variables so
that in total we only have to consider 44 control points.

2. The hub section as well as the tip section of the blade
are defined to lie on cylindrical surfaces. This means
the z-coordinates of the control points are implicitly
fixed by the blade geometry. Hence we only need to
consider the x- and y-coordinates of the non-periodic
control points as design variables and so we are left
with only 2 × 44 = 88 design parameters.

The knot vectors are not subject to optimization.

3.2 Fitness Functions
The performance measure of a specific blade design was

given by a weighted sum of the two objectives of the total
mass averaged pressure loss ω and the maximum variation of
the pitch-wise static outlet pressure PSTVAR. Minimization
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of these aggregated objectives was subject to a number of
constraints as detailed below:

f = w1 t1 + w2 t2 +

6∑
i=3

wi t2i → min (1)

with
t1 pressure loss ω
t2 variation of the static outlet pressure PSTVAR

t3 max(0, |β2,design − β2| − δβ2)
t4 max(0, Θmin,design − Θmin)
t5 max(0, ΘTE,min,design − ΘTE,min)
t6 max(0, smax − smax,design).

That means, the outflow angle β2, which is determined
as a result of the flow analysis was constrained to lie in a
range of δβ2 around the design value β2,design. The other
constraints concern the blade geometry and basically can
be considered as manufacturing constraints. These are the
minimum blade thickness Θmin that was constrained to be
bigger than the design value Θmin,design, the minimum trail-
ing edge thickness Θmin that had to be at least ΘTE,min, and
the blade solidity smax that was constrained from above by
smax,design.
We considered two variants of the fitness function Eq. 1:
w2 = 0, i.e., only the pressure loss ω was minimized, and
w1t1 ≈ w2t2, i.e., the pressure loss ω and and an addi-
tional criterion, the pitch-wise variation of the static outlet
pressure PSTVAR were jointly minimized where PSTVAR is
defined as

PSTVAR = max
i=1...K

(∣∣∣∣ max
j=1...L

{PST(i, j)} − min
j=1...L

{PST(i, j)}
∣∣∣∣
)

.

(2)
Here i is the span-wise and j the pitch-wise index in the com-
putational grid that was used in the flow analysis. Initially
both objectives received the same weight. This constitutes
a simple, näive approach to multi-objective optimization.
The baseline blade model lies within the feasible region of
the design space. According to Eq. 1 only violated con-
straints contribute to the objective function. The weights
on the constraints were chosen such that the contribution
of a violated constraint by far outweighs the contribution of
the objectives in order to quickly drive the search back into
the feasible region.

3.3 Grid Generation and Flow Solver
For the simulation of the fluid dynamic properties of the

blade designs we used the parallelized 3D Navier-Stokes flow
solver HSTAR3D [1] with Wilcox’s k-ω two equations model
[14]. The computational grid for the solution of the Navier
Stokes equation consisted of 175 × 52 × 64 = 582, 400 cells.
For each evaluated blade design a new grid was generated.
This is a relatively inexpensive operation that takes on av-
erage about 40 seconds on an AMD Opteron 2 GHz double
processor.
The flow analysis, however, is an extremely time consum-
ing task that takes between 2 hours and 3.5 hours on an
AMD Opteron 2 GHz double processor depending on the
number of flow solver iterations needed for convergence. So
the calculation of the results presented here, i.e., about 300
generations of the evolutionary optimization, took about 6
weeks time.

Slave1

flow solver

flow solver

flow solver

flow solver

MPI

Slave2

SlaveN
...

no

yes

receive blade representation

generate grid

run flow solver

calculate fitness value

send fitness value

exit

read EA configuration

general PVM set−up

group definition ...

create initial population

for Evolutionary Algorithm

load initial blade model

evolutionary operators

...

send blade representation

to slave using PVM

send blade representation

to slave using PVM

receive fitness value

...

receive fitness value

selection

terminate?

Master

exit

PVM

PVM

PVM

PVM

Figure 4: Simulation environment architecture. The
program is parallelized at 2 levels: the first level
of parallelization is a master-slave model that uses
PVM to organize the distribution of single individ-
uals to slave processes while the second level that is
started by the slave processes is a node-only model
for parallelizing the flow solver calculations using
MPI.

3.4 Optimization Environment
To conduct the blade optimization, we designed and im-

plemented a simulation environment that is highly config-
urable and at the same time hides much of the complexity
of running a large scale simulation from the user.
Using evolutionary optimization is ideally suited to paral-
lelization. In our case the fitness evaluation is the most time
consuming task we have to solve. Thus we decided to eval-
uate the individuals’ fitness in parallel using a master-slave
model where the master is responsible for the organization
and execution of the evolutionary cycle except for the eval-
uation of the fitness function. For each offspring individual,
the master spawns a slave process to take care of this. The
slave processes generate the computational grids, run the
flow solvers, calculate the fitness values from the CFD re-
sults and return them to the master.
Note that there is a second level of parallelization in the
slave processes: the flow solver itself is also parallelized into
4 processes. This means the evaluation of λ offspring indi-
viduals requires to manage 4λ processes! The architecture
of the simulation environment is shown in Fig. 4. The flow
solver is parallelized using MPI [10], while the master-slave
model of the optimization loop was implemented using the
Parallel Virtual Machine (PVM) library [6].
Large scale applications that involve extremely long run
times like the one discussed here raise interesting questions
concerning hard- and software stability and fault tolerance.
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Ideally the failure of one or more of the involved hosts should
be intercepted either by migrating the jobs from the affected
machine to another machine or by rescheduling and/or restart-
ing the jobs on the next available machine. Another option
which is especially applicable in population based methods
like evolutionary algorithms would be to tacitly ignore the
host failure and simply proceed with a smaller population
in the affected generation.
In any case some kind of check-pointing is highly advisable
that regularly saves the internal state of the simulation and
in this way allows for a restart of the calculation after a crash
without noticeable loss of results or the need for heavy re-
calculations.

4. RESULTS AND DISCUSSION
For optimization of the baseline stator blade, we used the

blade model as described in Sec. 3.1. We used two variants
of the fitness function Eq. 1 as explained in Sec. 3.2. As op-
timization algorithm we used a (1,10)-CMA-ES according
to [7] with the standard parameter settings. The popula-
tion size was determined partly by experience gained with
similar problems and partly out of practical considerations:
the population size was limited by the available hardware,
cf. Sec. 3.4. The strategy parameters were initialized with
σinit = 0.1. This value gave good results in preliminary tests
with a wider range of possible initialization values. We did
not use recombination. The simulations were run on a clus-
ter of AMD Opteron 2GHz double processors.
In the discussion of the results, we will first give an account
of the optimized blade from an engineering point of view
and then discuss the results from the point of view of opti-
mization.
The blade geometry resulting from minimizing only the pres-
sure loss, i.e., using Eq. 1 with w2 = 0, is shown in Fig. 5.
The hub and tip sections of the optimized blade are shown
in Fig. 5 (a) and (b) together with the baseline sections. In
the hub section of the optimized blade, the curvature of the
frontal part on the suction surface is considerably reduced
and the trailing edge part is bent in the upstream direction,
see Fig. 6 for a zoom into the trailing edge region of the
blade.
A closer analysis of the flow shows that the loading pattern

at the hub is significantly shifted toward downstream. This
tendency is also observed for the tip section. Also there is
a large difference between the baseline blade and the opti-
mized blade in the boundary layer development on the blade
suction side. It seems that due to a pitch-wise weaker driv-
ing force the strong inward radial cross flow on the suction
surface observed in the baseline blade is weakened and/or
shifted more downstream in the optimized blade.
Fig. 7 shows the development of the fitness function in this
simulation setting. The fitness had to be minimized and we
obtain a decrease in fitness of roughly 10% which is quite
reasonable for this problem and for the restricted number
of generations that the algorithm could run. Note that the
optimization has not converged yet but that this is rather a
snapshot taken after a relatively short time in terms of the
optimization if we consider the problem size. However, the
absolute calculation time for these results was quite long –
about 6 weeks on 40 processors.

Fig. 9 gives the evolution of the strategy parameters of
the CMA-ES, i.e., the global strategy parameter in Fig. 9
(a) and the condition number of the covariance matrix in
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Figure 5: Comparison of blade geometries for (a)
the hub section and (b) the tip section of baseline
blade (gray) and optimized blade (black), resp.
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Figure 6: Comparison of the TE parts of the blade
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Figure 7: Fitness as a function of the number of gen-
erations. The dotted black line gives the fitness of
the baseline blade. The fitness values of the single
individuals are marked by open circles where the
best individuals of each generation (black circles)
are connected by a black line. The vertical lines in
the plot denote cases in which even the best indi-
vidual of the population does not comply with the
constraints and hence receives a high penalty.

Fig. 9 (b). The results indicate that the self-adaptation of
the parameters works properly and that the process indeed
detects a search direction.
Finally, we show the optimization objective and the con-
straints for this simulation in Fig. 8. The pressure loss in
Fig. 8 (a) is essentially equivalent to the fitness in Fig. 7.
The vertical lines in Fig. 7 indicate that in some cases even
the fitness of the best individual of the population lies out-
side of the range of the plot. This means that the complete
population moved out of the feasible region of the optimiza-
tion problem. A comparison with Fig. 8 (e)-(f) shows that
these outliers coincide with the violation of some constraint.
In principle, this is critical because the population may be
lead astray and not be driven back into the feasible region
thus causing a failure of the optimization process. But here
these outliers are smoothly absorbed by the optimizer and
do not disturb the process. This demonstrates the stability
of the optimization method which is especially important in
such a real world application that is susceptible to numer-
ous sources of disturbance. For example, it may also happen
that the computational grid needed by the flow solver cannot
be generated for all individuals or that the flow solver fails
for some reason so that not all individuals can be attributed
with a fitness value.

Condensing the blade performance index into one sin-
gle objective value of average pressure loss is a practical
approach to render the problem feasible for optimization.
However, it turns out that this is not sufficient from an en-
gineering point of view.
A closer analysis of the fluid dynamic properties of the opti-
mized blade shows that the pitch-wise variation of the static
pressure of the optimized blade is considerably increased as
compared to the baseline blade, cf. Fig. 8(b). However,
strong pitch-wise variations of the static outlet pressure are
not desirable even for non-resonance rotor blade designs as
in our case. They might lead to unsteady losses induced
by the interaction between stator and rotor. Therefore, we
started a second optimization where we combined the min-
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Figure 8: Objectives and constraints during opti-
mization: (a) the pressure loss that was subject
to minimization, (b) PST variation that was not
used as an objective in this simulation, and the con-
straints (c) the outflow angle, (d) the solidity, (e) the
trailing edge thickness, (f) the minimum blade thick-
ness. The single individuals are marked by open cir-
cles, the fitness-best individuals of each generation
are connected. For the constraints the design range
is indicated by a dotted line.
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Figure 10: Fitness as a function of the number of
generations. As fitness function we used an aggre-
gation of the two criteria of pressure loss minimiza-
tion and PST variation minimization. The fitness
values of the single individuals are marked by open
circles where the best individuals of each generation
are connected by a line.

imization of the pressure loss with the minimization of the
static pressure variation. Here we used Eq. 1 with w2 �= 0.
Fig. 10 shows the evolution of the fitness in this case. We

achieved a fitness reduction of about 30%. A closer look at
the two constituents of the fitness function in Fig. 11 re-
veals that this reduction is mainly due to a reduction of the
variation in the static outlet pressure, cf. Fig. 11(b). The
pressure loss, however, is slightly increased, cf. Fig. 11(a).
This is not a poor result from the engineering point of view.
Nevertheless, a simultaneous minimization of both the pres-
sure loss and the static outlet pressure still remains to be
achieved.
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Figure 11: Quantities contribution to the fitness: (a)
the pressure loss, and (b) the PST variation. Both
were subject to minimization. The single individuals
of the offspring population are marked by open cir-
cles, the fitness-best individuals of each generation
(filled circles) are connected by a line.
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5. CONCLUSION
In this paper, we applied an evolutionary algorithm, namely

CMA-ES, to the solution of a large scale, complex, real world
optimization problem.
We described the simulation environment that we developed
to solve aerodynamic optimization problems and demon-
strated the feasibility of our approach.
From an aerodynamic point of view one goal of using design
optimization instead of resorting to traditional engineering
knowledge for aerodynamic blade design is to identify new
design concepts from the optimization results. This goal
was achieved in this study and we can draw the following
conclusions:

(i) The optimization resulted in a blade with a noticeable
bent part near the trailing edge. This extremely aft-
loaded blade is effective for the reduction of secondary
losses.

(ii) The flow mechanism for reducing the secondary flow
loss seems to be the reduction of the pitch-wise driving
force resulting in a reduced migration of low momen-
tum fluid near the tip and/or hub casing around the
mid-axial chord position.

(iii) This leads to a considerably delayed development of
the boundary layer on the suction surface.

From the optimization point of view the combination of the
different criteria and constraints constitute an interesting
problem. In particular the relation between the pressure
loss and the variation of the static outlet pressure deserves
further attention.
The trade-off relation between both objectives has been pre-
viously pointed out in the literature [13]. In this paper, we
employed the simplest way to combine the two objectives,
namely linear aggregation. Its advantage is that the problem
remains single objective and more efficient algorithms can
be used than are available for multi-objective optimization.
The drawback is – besides the linearity of the combination
– the ad-hoc choice of the relative weights. Indeed as our
results show, the static pressure variation has received too
much attention during the optimization. In other words,
the selection pressure toward smaller pressure loss values
was not sufficient. There are two principle ways to proceed.
First, we can avoid the combination of both objectives and
use multi-objective optimization methods [4, 3] to determine
the Pareto front. Second, we can render the second crite-
rion a constraint. Thus, we set the variation of the static
outlet pressure of the baseline blade as a soft constraint, so
that slight overshooting is penalized only slightly, and solve
the remaining single objective optimization problem of min-
imizing only the pressure loss. We intend to follow both
pathways in future optimizations.
Another topic for future research is the representation of
the blade model. In this study, we used a B-spline surface
representation. However, the number of control points nec-
essary to achieve sufficient flexibility with this kind of model
may become unfeasibly large since this number directly de-
termines the dimension of the search space and hence the
convergence time of the optimization algorithm. This trade-
off between the flexibility of the model and the search space
dimension cannot be resolved easily if the representation is
static. Instead, a dynamic and adaptive representation is
required as proposed in [11].
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