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ABSTRACT
This paper explores the application of the ant colony algo-
rithm for an NP-complete problem in the area of wireless
communications. The specific problem is one of detecting
users (binary vectors) in a multi-user environment in syn-
chronous MC-CDMA (multi-carrier Code Division Multiple
Access) systems, such that the total interference noise in
minimized. This approach is particularly attractive as ACO
is well suited for physically realizable, real-time use, where
fast convergence is absolutely necessary. Results suggest
that the algorithm reduces the computer time requirement
by as much as 98% over an exhaustive search method.
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General Terms
Algorithms

Keywords
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1. INTRODUCTION
Optimization problems encountered in real life are often

so complex that looking for the best solution is computa-
tionally infeasible. The best approach is to look for a good
approximate solution with limited computational resources.
Typical engineering problems also may contain multiple ob-
jectives that need to be addressed simultaneously. Many
techniques have been proposed that imitate nature’s own in-
genious ways to seek out good solutions for both single and
multi-objective optimization problems. Perhaps the earli-
est of these biologically inspired techniques are genetic and
other evolutionary algorithms that evoke Darwinian princi-
ples of evolution.
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The ant colony approach is a biologically inspired par-
adigm for optimization approach that has been proposed
relatively recently [1],[2] . It is based on the foraging strat-
egy of real ants, which, in spite of their extremely sim-
ple behavior, are capable of computing optimal paths from
their nests to food sources. Self-organization is an emer-
gent property of the cooperative behavior of ants, which
is based purely on local interactions [3],[4]. Ants operate
by depositing pheromones along their paths. The better
the paths, the stronger the pheromone deposition along its
trail. In this manner, pheromones accrue more along opti-
mal routes. Pheromones are allowed to evaporate to prevent
excess accumulation. Ant movements in turn are governed
by pheromone concentrations, so that the search is confined
to better regions of the search space. In order to speed up
the convergence other heuristics are also used. Research
has shown that ant algorithms are very effective for solv-
ing a wide range of problems in discrete optimization [3]-[5].
In all these applications, ant algorithms perform a search
through the discrete search space of solutions, reinforcing
better solutions with additional pheromones until an opti-
mal solution is found. Ant colony optimization is become
an increasingly popular alternative to other stochastic opti-
mization techniques in engineering design.

In this paper, the ant colony optimization algorithm (ACO)
has been applied to a new NP-hard problem in the area of
wireless communication, the problem of constructing an op-
timal multi-user detection (MUD). This problem is one of
the most important problems in the area of wireless com-
munications.

Code division multiple access (CDMA) [6] is one of the
most popular multiple access techniques and is the tech-
nology driving the third generation cellular as well as the
wireless local area network (WLAN) market. Considering a
CDMA based cellular network as an example, multiple users
are allowed to transmit their information (digitized voice or
data) signals simultaneously over the same frequency. How-
ever, each user is assigned a specific spreading code which
serves as the ID for that user. Each user’s data can be
multiplied by the spreading code in time and then trans-
mitted across the channel. When time-domain spreading is
employed, the resulting system is referred to as direct se-
quence CDMA (DS-CDMA). Alternatively, the spreading
code can be applied in the frequency domain resulting in
a multi-carrier CDMA (MC-CDMA) [7] system. In MC-
CDMA, each user’s data symbol is transmitted simultane-
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ously over N narrowband subcarriers, with each subcarrier
encoded with one chip of a pre-assigned spreading code.
Multiple users are assigned unique, orthogonal (or pseudo-
orthogonal) code. That is, while DS-CDMA spreads in the
time domain, MC-CDMA applies the same spreading se-
quences in the frequency domain. While the performance of
MC and DS-CDMA is identical in an additive white gaussian
noise (AWGN) channel, MC-CDMA has been shown to out-
perform DS-CDMA in multipath channels [7], [8].

In an uplink of a CDMA based system, different users’ sig-
nals experience independent random amplitude and phase
distortions, resulting in a loss of orthogonality among users
at the base station. This in turn results in multi-user in-
terference (MUI) which limits the capacity as well as per-
formance of the CDMA system. There are two types of
receivers that may be employed to detect different users’
signals at the base station. These are (1) single-user detec-
tor, and (2) multi-user detector. A single-user detector, as
the name suggests, is a detector that is primarily interested
in one user’s data and performs the detection by assuming
all other users’ signals as additive noise. While this detector
is easy to implement, it is not optimal in terms of bit-error-
rate performance in a multi-user environment. Multiuser
detectors (MUD) jointly demodulate all users’ symbols and
have been proved to be the optimal reception technique for
DS-CDMA systems in fading channels [9].

Optimal and sub-optimal MUDs have also been proposed
for MC-CDMA systems and have been a focus of research in
recent years [10],[11]. The maximum likelihood (ML) MUD
offers the best bit error rate (BER) performance among all
multi-user detectors (and is called the optimal MUD re-
ceiver). The ML-MUD maximizes the joint probability by
evaluating a maximum-likelihood function over the set of all
possible users’ symbol sequences forming an NP-hard opti-
mization problem. Thus, the optimal MUD has a compu-
tational complexity that increases exponentially with the
number of users and, hence, is impractical to implement.
To overcome this limitation, several suboptimal techniques
have been considered [11].

Since optimal MUD design can be modelled as an NP-
hard optimization problem, many techniques used to solve
NP-hard problems can be applied to optimal receiver de-
sign. One such approach involves the use of nature-inspired
optimization techniques. Over the past few decades, there
have been numerous stochastic optimization algorithms de-
veloped based on theories of evolution and swarm intelli-
gence. These include, evolutionary algorithms such as the
genetic algorithm [12], evolutionary programming [13], and
ant-colony optimization (ACO).

In addition to the novelty of exploring a relatively new
stochastic search technique, this research has been also moti-
vated by other practical considerations. Unlike population-
based approaches, an ACO algorithm does not require the
use of a population of ants, and pheromone table updates
can be performed at the end of each run. This significantly
diminishes the memory requirement in any practical imple-
mentation of the algorithm. Ant colony optimization makes
better use of problem-specific heuristics than do most other
algorithms, such as genetic algorithms. For instance, the
nearest neighbor heuristic has been used effectively within
the ACO approach proposed in [1] for the traveling sales-
person problem, greatly reducing the computational time
requirement. In a similar manner, the proposed algorithm

Figure 1: kth user transmitter and receiver block
diagram

uses a pre-computed sub-optimal solution vector to bias the
search around more promising regions of the search space.
Furthermore, ACO algorithms are particularly well suited
for real-time applications [14]. Our simulation results clearly
suggest that the proposed ACO approach is an effective ap-
proach for the MUD problem. It is able to achieve optimal
BER bounds with a 98% lower reduction in computer time
over an exhaustive search method.

This paper is organized as follows. In Section 2, we pro-
vide the MC-CDMA system model and set-up the optimal
MUD optimization problem in a synchronous up-link. In
Section 4, we introduce ACO and present our novel ACO
based MUD algorithm. In Section 5, we present our simu-
lation parameters, results, and an evaluation of the new al-
gorithm. Finally, in Section 6, conclusions and future work
are presented.

2. MC-CDMA SYSTEM MODEL
In this paper, we consider a synchronous uplink MC-CDMA

system with N carriers and K users where each user is as-
signed a unique spreading code βk = [βk

1 , βk
2 , . . . , βk

N ]T . Fig-

ure 1 illustrates the kth transmitter and receiver model. The
input to the IFFT block in Figure 1(a) corresponds to

sk = βk · bk. (1)

Here, sk is a N × 1 vector whose elements are the kth user’s
transmitted components on each carrier, and bk is the data
symbol (±1 for BPSK ) of the kth user.

2.1 Channel Model
In this work, we assume a slowly varying multipath chan-

nel for all users in the system. Multipath propagation in
time translates into frequency selectivity in the frequency
domain. While there is frequency selectivity over the entire
bandwidth, each subcarrier experiences a flat fade. This is
because ∆f << (∆f)c < BW (where (∆f) is the spacing
between carriers, (∆f)c is the coherence bandwidth of the
channel and BW represents the total transmission band-
width). Since we assume an uplink, each user has an inde-
pendent set of fading parameters – the ith subcarrier for each
user experiences a Rayleigh-distributed attenuation, αk

i , and
a phase offset, φk

i . The Rayleigh fades for each user are
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correlated across subcarriers with the correlation between
channel fades αk

i and αk
j corresponding to [15] [16]

ρi,j =
1

1 + (
∆fi,j

(∆fc)
)2

(2)

where ∆fi,j is the frequency separation between subcarriers
i and j. Also, we assume that we have L fold frequency
diversity where L is defined as the ratio between the total
bandwidth and the coherence bandwidth.

The net effect of the frequency selective channel on kth

user’s signal can be modelled as

hk = [αk
1ejφk

1 , αk
2ejφk

2 , · · · , αk
Nejφk

N ]. (3)

2.2 MC-CDMA Receiver
Assuming the MC-CDMA signal is transmitted through

a slowly varying frequency selective fading channel, the kth

user received signal vector at the output of the FFT (in
Figure 1(b)) block can be represented as

rk = hk ¯ sk + nk (4)

= hk ¯ βkbk + nk (5)

where, rk is a vector of dimension N × 1; the operator (¯)
represents an element wise multiplication of two vectors, and
nk is a N×1 vector of additive white gaussian noise samples.
Assuming perfect phase synchronization (i.e., the channel
phases are traced and removed perfectly at the receiver),
the received vector can be redefined as

rk = Ck
chbk + nk· (6)

Here, Ck
ch = [αk

1βk
1 , · · · , αk

Nβk
N ]T . Consider all users re-

ceived signal simultaneously, the output of the FFT block
at the base station can be represented as

r =

KX

k=1

rk = CCHb + n (7)

where b is the vector of users’ data defined as [b1, b2, . . . , bK ]T ;
n is a vector of independent AWGN samples on each carrier,
and

CCH =
h
C1

ch · · ·CK
ch

i
.

3. OPTIMAL MC-CDMA MUD
The optimal MUD simultaneously detects all users’ data

to jointly minimize the effects of MUI. The optimal MUD
is the maximum likelihood receiver that yields the optimal
estimate of the transmitted data, b̂.

b̂ = argmax
b̂

{P (b̂ = b|r)} (8)

= argmax
b̂

{P (r = CCHb̂ + n|b)} (9)

= argmax
b̂

{P (n = r −CCHb̂|b)} (10)

The joint pdf of the noise corresponds to

p(n) =
1

(2π)N/2σ
e
− 1

2σ2 nH |I|−1n
(11)

where σ2 is the variance of the noise and N is the number
of carriers. Combining Eqns. (10) and (11)

b̂ = argmin
b̂

{nH |I|−1n} (12)

= argmin
b̂

{nHn}

= argmin
b̂

{(r −CCHb̂)H(r −CCHb̂)})

= argmin
b̂

{rHr − b̂
H
CCH

Hr − rHCCHb̂

+b̂
H
CCH

HCCHb̂}
Ignoring all terms that are independent of b̂, the optimal
MUD for MC-CDMA systems corresponds to

b̂ = argmax
b̂

{Q(b̂) = 2<e{b̂H
CCH

Hr}

−b̂
H
CCH

HCCHb̂} (13)

Inspecting Eqn. (13), we observe that the optimal MUD
consists of a difference of two terms. Only the first term
depends on the received signal vector. However, it has been
premultiplied by CCH

H and the product is nothing but the
output of the maximum ratio combining receiver (MRC).
Hence, MRC outputs represent sufficient statistics to per-
form maximum likelihood detection. Furthermore, it can
be seen that MRC output provides the optimal estimation
of the transmitted data symbol if a single user is consid-
ered. Because MRC receivers are simple to implement and
provide optimal performance for one user, they are often im-
plemented in systems with multiple users. Since the MRC
receiver does not jointly minimize the affects of MUI from
other users, it is suboptimal and considered a single user
receiver.

Similar to optimal DS-CDMA MUD [9], the solution for
the optimal MC-CDMA MUD requires an exhaustive search
over a set of MK possible solution vectors where M is the
number of points in the signal constellation (e.g., M = 2
for BPSK) and K is the number of users. The complexity
of this receiver increases exponentially with the number of
users. Therefore, it is impractical to implement.

By noting the similarities between the optimal DS-CDMA
MUD and the optimal MC-CDMA MUD, it can be easily
shown that the optimal MC-CDMA MUD problem belongs
to a large class of combinatorial problems known as NP-
hard optimization problems. NP-hard problems are opti-
mization problems (e.g., the traveling salesman and integer
programming problems) that cannot be solved in polyno-
mial time and the best solution technique is to implement
an exhaustive search over all possible solutions. Therefore,
in order to solve an NP-hard problem for any non-trivial
problem size, one of the following approaches is used: (1)
Approximation: An algorithm which quickly finds a subop-
timal solution which is within a certain range of the optimal
one; (2) Probabilistic: An algorithm which probably yields
good average runtime behavior for a given distribution of the
problem instances; and (3) Heuristic: An algorithm which
works “reasonably well” on many cases, but for which there
is no proof that it is always quickly yields a good solution
(e.g., evolutionary techniques).

In recent years, particle swarm intelligence has inspired
optimization algorithms that have been proposed for NP-
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Figure 2: A flowchart depicting the structure of
ACO algorithm

hard optimization problems. Ant colony optimization (ACO)
is one such technique that is discussed in the following sec-
tion. In [1], Dorigo showed that ACO is well suited in solving
NP-hard problems (specifically, the traveling salesman prob-
lem). In this paper, we introduce ACO to the optimal MUD
to design a realizable MC-CDMA optimal MUD receiver.

4. ANT COLONY OPTIMIZATION FOR MC-
CDMA SYSTEMS

ACO is an attractive technique that is very effective in
solving optimization problems that have discrete and finite
search space. Since the optimal MUD design problem in-
volves a search process across finite number of possible so-
lutions, ACO is an ideal candidate to solve this problem.

4.1 Ant Colony Optimization (ACO)
ACO is based on the behavior of a colony of ants searching

for food. In the ACO approach, several artificial ants per-
form a sequence of operations iteratively as shown in Figure
2.

To find a solution employing ACO, several iterations of ar-
tificial ants follows the flowchart shown in Figure 2. Within
each iteration, several ants search in parallel for good so-
lutions in the solution space. In each iteration of the al-
gorithm, one or more ants are allowed to execute a move,
leaving behind a pheromone trail for others to follow. An ant
traces out a single path, probabilistically selecting only one
element at a time, until an entire solution vector is obtained.
In the following iterations, the traversal of ants is guided by
the pheromone trails, i.e., the stronger the pheromone con-
centration along any path, the more likely an ant is to in-
clude that path in defining a solution. In each iteration, the
quality of produced solution is estimated via a cost function.
This estimate of solution quality is essential in determining
whether or not to deposit pheromones on the traversal path.
In addition to the pheromone values, the ants are also guided

by a problem-specific greedy heuristic (desirability function)
to aid in its search for good solutions.

It is easy to see that, as the search progresses, deposited
pheromone dominates ants’ selectivity, reducing the ran-
domness of the algorithm. Therefore, ACO is an exploitive
algorithm. It seeks solutions using information gathered pre-
viously, and performs its search in the vicinity of good so-
lutions. However, since the ant’s movements are stochastic,
ACO is also an exploratory algorithm that samples a wide
range of solutions in the solution space. This exploratory-
exploitive approach is characteristic of heuristic based op-
timization approaches. We can easily extend this general
optimization technique to our MC-CDMA MUD problem
as detailed in the next subsection.

4.2 ACO based MUD
The first stage in designing our ACO-based MUD involves

the selection of ACO parameters that fit the optimization
problem in Eqn.(13). In the MC-CDMA MUD problem, the
solution corresponds to bopt which is a vector of length K.
Each element of the solution vector takes one out of M pos-
sible values, where M is the constellation size. In this paper,
we assume BPSK modulation, i.e., M = 2. Therefore, MK

possible solutions exist (2K for BPSK). In our ACO algo-
rithm, every ant builds a solution vector in each iteration.
This building process is accomplished via K jumps inside a
2×K table. The first row in this table represents an initial
solution. The second row is merely the complement of the
first row. Thus, any solution (out of the 2K possible solu-
tions) can be formed by selecting K elements from this table,
one element from each column. Hence, in each jump, the ant
selects (based on a desirability function and pheromone con-
centration) either the initial solution element or its comple-
ment. When employing higher order modulation schemes,
the dimensions of solution table becomes M × K with the
first row containing the initial solution and each column con-
taining one of the remaining M − 1 possible data symbols.
Similar to the presented case which employs BPSK, the so-
lution is formed by selecting a set of K elements, one from
each column.

In single-user receivers, a suboptimal solution vector (bsu)
is created by performing hard decisions based on single user
receiver outputs. In this paper, we employ the output of the
MRC based single user receiver as the initial solution vec-
tor (i.e.,bsu = argmax

bsu∈{±1}
{CCHr}) . In the ACO algorithm,

all ants begin their search at a specific position along the
(bsu) vector. The ants cyclically move down the bsu vector,
selecting the best element at each stage. The value of the
element chosen by an ant is derived from the corresponding

element values in either bsu or bsu (bsu = [b
1
sub

2
su · · · bK

su]T

where b
l
su = +1 if bl

su = −1 and vice-versa ∀ l). The desir-
ability function is used to help the ant decide if a particular
element value of the solution vector should come from bsu

instead of bsu. Since the magnitude of the conventional sin-
gle user receiver outputs provide a rough estimate of the
quality of users’ hard decisions, it is used in evaluating the
desirability function of the ants. The desirability function
for an ant starting at jth element in the bsu vector is defined
as:

D(j) =
1

2 + |R(j)| (14)
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where R(j) = C
(j)
ch r is the soft decision value of the jth re-

ceived data symbol. Eqn.(14) reflects the fact that when

R(j) = 0, b
(j)
su and b

(j)
su are equally likely to be chosen. As

the ant moves along the elements of the solution vector, the
desirability function at the (j + i)th stage can be redefined
as follows:

D(j + i) =
1

2 + |R(j+i)|+Pl∈C |R(l)| . (15)

where C is a set of positions where the ant had previously
selected bsu element values. The desirability function de-
fined in Eqns.(14) and (15) ensure that an ant does not
significantly deviate from the initial solution. For example,
if an ant chooses the element value from bsu at the jth po-
sition, its desirability to select another element value from
bsu decreases. Therefore, ants’ starting positions in a single
iteration should be as far as possible from one another along
the solution vector. It is also important to note that while
restricting ants’ movements to the vicinity of the initial so-
lution is not a necessary operation, but it is useful when the
reliability of initial data estimates is high.

The second challenge in designing ACO based MUD al-
gorithm, is to develop a meaningful pheromone deposition
mechanism. In our algorithm, pheromones are deposited
in a 2 × K table where the first row corresponds to the
elements of bsu, and the second row corresponds to the el-

ements of bsu. At the beginning of the search process, the
pheromone table has equal amounts (unity) of pheromones
in all of its entries. As the search progresses , pheromones
are deposited and evaporated based on the path traversed
by the ants. The deposition rate (DR) and evaporation
rate (ER) are parameters of the ACO. In our algorithm,
the DR and ER are inversely related to the number of it-
erations, V . At any stage during the search, the higher
the pheromone value in an entry (in the pheromone table),
the probability of selecting the corresponding element value
from bsu or bsu is greater. Since Q(b) determines the quality
of a solution, it is used to control the amount of pheromone
deposition. Furthermore, we use the elitism philosophy in
our pheromone deposition mechanism, i.e., only the ants
that find good paths (“elite ant”) are allowed to deposit
pheromones. Furthermore, if ants find excessively poor so-
lutions (“weak ant”), pheromones are removed from those
paths.

Our complete ACO based MUD algorithm is summarized
below:

• Create a 2×K pheromone table, τ ∈ <2×K ; τ(m, n) =
1 ∀ m, n [pheromone values are initialized]

• Set belite = bsu where belite is the best solution found.

• for iteration = 1 : V , {
1. Decide the starting positions for A ants

(st(1), st(2), · · · st(A)).

for move = 1 : K, {
(a) The ith ant selects bsu element values with

probability

p(i)(move) = τ(2, (st(i) + move)modK)

×D((st(i) + move)modK)

∀i = 1, 2, · · ·A
This probability is evaluated for for all ants.

(b) Store the selected elements in b(i) ∀ i = 1 · · ·N .

(c) The 2-dimensional indices of chosen locations
in τ constitute the trail for each ant. Store
the trail for the ith ant in Tr(i) ∈ I2×K∀ i =
1 · · ·N .

– The 1st row & 2nd row of Tr(i) represents
row and column indexes of selected τ lo-
cations, respectively.

}
2. if Q(b(i)) ≥ SE · Q(belite) [Check for “elite” ants

(note: SE is a scale parameter denoting the thresh-
old value for elite ants)]

– Deposit pheromones:

τ(Tri(1, k), T r(2, k)) =

τ(Tr(1, k), T r(2, k)) +4τ ,

where 4τ = DR× f(b(i))
K

3. if Q(b(i)) ≤ SW ·Q(belite) [Check for “weak” ants
(note: SW is a scale parameter denoting the thresh-
old value for weak ants)]

– Evaporate pheromones:

τTri(1, k), T r(2, k)) =

τ(Tr(1, k), T r(2, k))−4τ

4. Evaporate pheromones:

τ(m, n) = τ(m, n)× (1− ER)∀m, n

5. if Q(b(i)) > Q(belite) [Check if new solution is the
elitist solution]

belite = b(i)

}
• The final solution vector
bbACO = argmax{Q(belite), Q(bph)} where bph is the
trail with the highest pheromone concentration.

In order to compare complexity of the ACO based MUD
with the optimal MUD, we define the product Υ = A×V as
the order of the computational complexity of our algorithm
(e.g., an ACO with 8 ants and 100 iterations result in a
Υ = 800).

5. PERFORMANCE RESULTS
We evaluate the ACO based MUD performance for a syn-

chronous uplink MC-CDMA system uplink with: (1) N = 16
carriers; (2) K = 16 users; (3) Hadamard Walsh spreading
codes; (4) BPSK modulation, and (5) four-fold frequency
diversity. The following ACO parameters were employed:
number of ants, A = 8; V = 25 (Υ = 200) and V = 100
(Υ = 800). Since the order of the complexity of this op-
timal MUD (employing BPSK modulation) is 216 = 65636,
the savings in complexity for V = 25 and V = 100 are 99.7%
and 98.7%, respectively.

Figure 3 presents four signal to noise ratio (SNR) vs. BER
curves. The top most curve represents the maximum ratio
combining (MRC) receiver BER performance. The remain-
ing three curves show the performance of the optimal MUD
and the performance of the ACO based MUD with V = 25
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Figure 3: Performance of Single User Receiver, Op-
timal MUD, and ACO-based MUD

and V = 100. From Figure 3, it is evident that the MRC-
based single user receiver has the worst performance. Fur-
thermore, the ACO based MUDs approach the performance
of the optimal MUD. Specifically, the ACO based MUD with
V = 100 matches the performance of the optimal MUD.
Moreover, it is possible to decrease the ACO complexity to
V = 25 (by a factor of four versus the V = 100 case) and
only suffer a 1 dB loss in performance at a BER of 4 · 10−3.
While the ACO approach significantly outperforms an ex-
haustive search technique, it is important to remember that
the ACO based MUD requires additional memory to store
pheromone table.

6. CONCLUSIONS
This paper presents a novel low complexity algorithm that

employs ACO to implement an optimal MUD for MC-CDMA
synchronous up-links. To the best of authors’ knowledge,
this is the first attempt to apply swarm intelligence to MUD
design. Our ACO-based MUD matches the BER perfor-
mance of the optimal MUD with more than 98% savings in
terms of computational complexity. Moreover, we demon-
strate that we can decrease the number of iterations in the
ACO by a factor of four and only suffer a 1 dB performance
loss relative to the optimal MUD.
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