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ABSTRACT
Several ways of using singular value decomposition (SVD),
a linear algebra technique typically used for information re-
trieval, to decompose problems into subproblems are inves-
tigated in the genetic algorithm setting. Empirical evidence,
concerning document comparison, indicates that using SVD
results both in a savings in storage space and an improve-
ment in information retrieval. Combining theoretical re-
sults and algorithms discovered by others, several problems
are identified that the SVD can be used with to determine
a substructure. Subproblems are discovered by projecting
vectors representing the genes of highly fit individuals into a
new low-dimensional space, obtained by truncating the SVD
of a strategically chosen gene × individual matrix. Tech-
niques are proposed and evaluated that use the subproblems
identified by SVD to influence the evolution of the genetic
algorithm. By restricting the locus of optimization to the
substructure of highly fit individuals, the performance of the
genetic algorithm was improved. Performance was also im-
proved by using SVD to genetically engineer individuals out
of the subproblems.

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition-
Clustering[algorithms, similarity measures]

General Terms
Theory, Algorithms, Experimentation

Keywords
Genetic algorithm, singular value decomposition, graph bi-
section, graph partitioning, gene decomposition, spectral
clustering, linkage learning, probabilistic model building,
genetic engineering, graph clustering, reduced rank approxi-
mation
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1. INTRODUCTION
The technique of singular value decomposition (SVD) has

proven itself valuable in several different problem domains:
data compression [13], image recognition and classification
[16], chemical reaction analysis [31], document comparison
[10, 6], cryptanalysis [30], and genetic algorithms [27]. Al-
though these domains are quite different in some aspects,
each can be reduced to the problem of ascertaining or rank-
ing relevance in data. Intuitively, the concept of relevance
depends critically on the nature of the problem at hand.
SVD provides a method for mathematically discovering cor-
relations within data.

The focus of this work is to investigate several possible
methods of using SVD to guide the search process of a Ge-
netic Algorithm (GA). SVD helps expose the most striking
similarities between genes in the most highly fit individuals
of the optimization history. The GA’s optimization oper-
ators are then restricted to the locus of the genes corre-
sponding to these striking similarities. Individuals are also
engineered out of the discovered similarities between genes
across highly fit individuals.

Patterns identified in the theoretical results are used as
a basis for creating an artificial problem that serves as a
benchmark for the types of problems that will benefit from
this research. The genetic algorithm’s subproblem deter-
mination performance on several formulations of the NP-
Complete Minimum Graph Bisection problem are also pre-
sented, giving insight into the structural discovery abilities
of SVD. Results from the application of this process to sev-
eral problems indicate a significant improvement in the GA’s
performance. In addition, the subproblems were usually de-
termined early in the optimization process. Furthermore,
using the discovered subproblems to genetically engineer in-
dividuals yielded additional performance improvements.

Linear algebra background is provided in Section 2, fol-
lowed by a description of the integration of SVD into a ge-
netic algorithm in Section 3. Section 4 describes the results
achieved by using the proposed methods in several different
problem domains. Finally, Section 5 provides some promis-
ing opportunities for future research.
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2. BACKGROUND

2.1 Singular Value Decomposition

2.1.1 Theorem Statement

Theorem 1. Let A be an m× n real matrix with rank r.
Then there exists an m× n diagonal matrix

Σ =

»
D 0
0 0

–
(1)

where the diagonal entries of D are the first r singular values
of A, σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and there exist an m × m
orthogonal matrix U and an n×n orthogonal matrix V such
that

A = UΣV T (2)

The existence and theory of singular value decomposition
was established by several mathematicians [35]: Beltrami
[4], Jordan [24], Sylvester [36], Schmidt [34], and Weyl [38].
Horn and Johnson provide a succinct proof of its existence
[23].

2.1.2 Summary
As Theorem 1 states, singular value decomposition ex-

presses an m×n matrix A as the product of three matrices,
U , Σ, and V T . The matrix U is an m x m matrix whose
first r columns, ui (1 ≤ i ≤ r), are the orthonormal eigen-
vectors that span the space corresponding to the row auto-
correlation matrix AAT . The last m− r columns of U form
an orthonormal basis for the left nullspace of A. Likewise,
V is an n x n matrix whose first r columns, vi (1 ≤ i ≤ r),
are the orthonormal eigenvectors that span the space corre-
sponding to the column auto-correlation matrix AT A. The
last n − r columns of V form an orthonormal basis for the
nullspace of A. The middle matrix, Σ, is an m x n diagonal
matrix with Σij = 0 for i 6= j and Σii = σi ≥ 0 for ∀i .
The σi’s are called the singular values and are arranged in
descending order with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The singu-
lar values are defined as the square roots of the eigenvalues
of AAT and AT A. The singular value decomposition can
equivalently be expressed as a sum of rank one matrices

A = σ1u1v
T
1 + · · ·+ σrurv

T
r =

r=rank(A)X
i=1

σiuiv
T
i (3)

The ui’s and vi’s are the columns of U and V respectively.
Using the Golub-Reinsch algorithm [21, 18], U , Σ, and V
can be calculated for an m by n matrix in time O(m2n +
mn2 + n3).

2.1.3 Reduced Rank Approximations
The magnitudes of the singular values indicate the weight,

or importance, of a dimension. To obtain an approximation
of A, all but the k < r largest singular values in the decom-
position are set to zero. This results in the formation of a
new low-dimensional matrix Ak, of rank k, corresponding to
the k most influential dimensions.

Ak = UkΣkV T
k (4)

Here, Uk and Vk are the matrices formed by keeping only
the eigenvectors in U and V corresponding to the k largest

singular values. Equivalently,

Ak = σ1u1v
T
1 + · · ·+ σkukvT

k =

kX
i=1

σiuiv
T
i (5)

The reduced rank matrix Ak amplifies the most important
similarities and suppresses the insignificant correlations be-
tween the vectors represented in the matrix A. Exactly how
much of the original space is preserved is directly related to
the amount of reduction performed. A theorem by Eckart
and Young states, informally, that the new low-dimensional
matrix obtained is the closest matrix, among all matrices of
its rank or less, to the original matrix [14, 18]. Formally, it
states that among all m x n matrices C with rank at most
k, Ak is the one that minimizes

‖A− C‖2
F =

X
i,j

(Aij − Cij)
2 (6)

Eckart and Young’s paper was a rediscovery of this property,
first proved by Schmidt [34]. Although the theorem may
explain why the reduction does not deteriorate too much in
performance over conventional vector-space methods, it fails
to justify the observed improvement in precision and recall
[32]. However, several papers have made positive steps to-
wards a rigorous proof that, given an appropriate structure
for the matrix A, the benefit is achieved with high probabil-
ity [32, 11].

2.2 Clustering

2.2.1 Spectral Guarantees
Previous work has shown that when a block diagonal ma-

trix with k blocks is slightly perturbed, the k largest of
all of the eigenvalues of the nearly block diagonal matrix
AT A are the maximum eigenvalues of each block BT

i Bi, for
i = 1, · · · , k, with high probability [32]. Therefore, when
projecting onto the k largest eigenvectors of V , an individ-
ual query vector created mainly from a block Bi ∈ A will
likely be projected only in the direction of the maximum
eigenvector of the i’th block of the individual-individual au-
tocorrelation matrix BT

i Bi. Likewise, a gene query vector
from a block Bi ∈ A will only be projected in the direction of
the maximum eigenvector of the i’th block of the gene-gene
autocorrelation matrix BiB

T
i . These results are based on

several papers that prove bounds between the conductance
and the spectrum of a graph [3, 1, 2].

2.2.2 Block Diagonal Forms
Analyses in this paper are restricted to problems whose

ideal solutions can be arranged to form a block diagonal or
near block diagonal matrix. By the definition of block diag-
onal, two solution vectors with ones in different blocks will
never have the same component equal to one. Thus, the
dot product of any two rows of two solutions from separate
blocks will be zero. Furthermore, the dot product between
two columns from different blocks will be zero and the vec-
tors will be perpendicular. If the two columns or rows are in
the same block, the dot product will always be one. Due to
the spectral clustering guarantees presented in the previous
section, these relations will also hold true for reductions of
solution matrices A down to Ak with k equal to the number
of blocks.

If some sequence of row and column interchanges can
make a matrix be close to block diagonal, then SVD will
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find the sub-blocks of similarly used rows and columns. Se-
quences of row and column interchanges do not affect the
bases produced when computing the SVD because a ma-
trix’s row and column space remain the same after any se-
quence of interchanges. Therefore, if the matrix is not in
a block diagonal order but some sequence of row and col-
umn interchanges can make it block diagonal, then SVD will
still recover the blocks. Notice that swapping the columns
of individuals into block diagonal order does not affect the
rows of genes that are used similarly across individuals.2664

1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1

3775 (swap columns 2 and 3)−−−−−−−−−−−−−−−→

2664
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

3775
This idea is important in the context of genetic algorithms
because solutions are typically not ordered in a block form.

It should be noted that more general forms of matrices
have been shown to benefit from clustering with reduced
rank SVD [11]. Therefore, it is extremely likely that the
SVD operators to be described will prove beneficial for many
different problems and representations.

3. GENETIC ALGORITHM

3.1 Background and Terminology
Genetic Algorithms (GAs) are search and optimization

methods that mimic natural selection and biological evolu-
tion to solve optimization and decision problems. The books
by Goldberg [19] and Michalewicz [28] provide a thorough
introduction to Genetic Algorithms. A chromosome is a se-
quence of gene values. In this paper, each gene has a value
of zero or one. A potential solution to a problem is repre-
sented by a chromosome. For graph problems, the number
of vertices is the size of the chromosome. A schema is a
pattern of genes consisting of a subset of genes at certain
gene positions. If n is the size of a chromosome, a schema
is an n-tuple {s1, s2, · · · , sn} where ∀i, si ∈ {0, 1, ?}. Po-
sitions in the schema that have a ? symbol correspond to
don’t-care positions. The non-? symbols are called specific
symbols, and represent the defining values of a schema. The
number of specific symbols in a schema is called the order,
and the length between the first and last specific symbols in
a schema is called the defining length of the schema.

Although genetic algorithms do not specifically work with
schemas themselves, schemas are a fundamental concept
when analyzing the exploratory process of a genetic algo-
rithm. According to the building block hypothesis [19, 22],
GAs implicitly favor low-order, high-quality, schemas. Fur-
thermore, as evolution progresses, the GA creates higher
order, high-quality schemas out of low-order schemas. This
is partially due to the nature of the crossover operator.

3.2 SVD Incorporation
The goal is to discover the genes that are used similarly

across the best individuals. Determining genes that are used
similarly with SVD yields accurate identification of subprob-
lems in optimization problems whose solutions have a block
representation. The SVD of a matrix containing the best
few individuals in the entire optimization history was com-
puted. Instead of aiming for the sole fittest individual, the
GA used SVD to decompose the few fittest individuals and

therefore directed the search towards a combination of the
best individuals. Tests using large sets of individuals were
not as beneficial. Perhaps this was because the SVD could
not discover a single pattern for which to aim during oper-
ator restriction.

The computational complexity of computing the SVD may
outweigh the complexity of the problem being solved. How-
ever, problems with a computationally expensive fitness func-
tion may benefit from the methods to be described. In par-
ticular, if complex problems can be decomposed into smaller
and simpler subproblems, then the benefit will outweigh the
cost of computing the SVD. Several time optimizations can
also be made to decrease the amount of time used comput-
ing the SVD. For example, existing SVDs can be updated
using special algorithms for adding or removing rows and
columns [5]. Also, random projections are a fast alternative
to singular value decomposition [32].

3.3 Subproblem Genetic Operators

3.3.1 Restricted Mutation and Crossover
At every other generation, the mutation operator was re-

stricted to a specific subset of the genes. This isolated the
search process to the blocks in highly fit solutions, facili-
tating the determination of the local optimum. Similarly,
the crossover operator was restricted to a specific group of
genes. After crossover was applied to the reduced gene set,
the unrestricted genes were replaced in their corresponding
positions in the generated children. In both techniques, the
restriction only happened every other generation. This en-
abled the mutation and crossover operators to fully explore
the entire space of possible chromosomes.

3.3.2 Genetic Engineering
A simple genetic engineering approach was tested at ev-

ery generation. First, the rank 2 SVD of the top 50 best
individuals was computed. Then, using a process to be de-
scribed in Section 3.4, a set of subproblems was generated.
Next, a random subproblem with the correct size (the pa-
rameters of the problem were known) was selected and a new
individual constructed by placing ones in the corresponding
positions of the genes in the subproblem, and zeros every-
where else. For example, given the subproblem {1, 3} the
individual constructed would be [1010 · · · 0]. If no subprob-
lem had the correct size, then no individual was engineered
during that generation. Future research could easily develop
problem dependent heuristics to engineer good individuals
out of subproblems with an arbitrary size.

3.4 Subproblem Determination
After the formation of a matrix of good individuals, the

following steps were taken to group genes into subproblems.
For every gene, the cosines of the angles between it and every
other eigenvector of AAT were put into a matrix. In order
for gene i and gene j to belong to the same subproblem,
the cosines of the angle between the ith and jth eigenvectors
of the gene-gene autocorrelation matrix had to be greater
than 0.92. That is, the vectors had to be close to parallel.
The cosine of an angle is an appropriate function to use be-
cause its value approaches one as two vectors become more
parallel. Likewise, as two vectors become more perpendicu-
lar, the cosine of the angle between them approaches zero.
The bound of 0.92 was chosen apriori by testing values be-
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tween zero and one. However, strategies could be produced
to vary this amount in a heuristic manner. For example,
if the problem’s solutions are required to have subproblems
of genes with a particular size, then the parameter could be
adjusted to favor retrieving subsets of genes with the correct
size.

If ωij is the angle between the ith and jth gene vector
then,

cos ωij =
(eT

i UΣV T )(V ΣUT ej)

‖ eT
i UΣV T ‖2‖ V ΣUT ej ‖2

(7)

For gene i and gene j to be clustered into the same subprob-
lem, the following relation had to hold

cos ωij > 0.92 (8)

Here, ei denotes the ith standard vector, which contains all
zeroes except for a one in the ith position. ‖ · ‖2 denotes the
Euclidean vector norm. The U , Σ, and V are the matrices
found by the SVD.

In the document comparison domain, reduction of rank
actually improves the quality of the information retrieved [5,
32]. Using reduced rank versions on problems with a block
diagonal representation gives an approximation of what it
means for two genes to be used similarly across a group of
individuals. Therefore, various rank reductions were also
tested. To calculate the cosines between genes in a reduced
rank model, Ak is substituted for A in all of the above cal-
culations.

cos ωij =
(eT

i UkΣkV T
k )(VkΣkUT

k ej)

‖ eT
i UkΣkV T

k ‖2‖ V ΣkUT
k ej ‖2

(9)

Berry, Drmač and Jessup provide an in depth explanation
of how to efficiently compute the rank-k cosines between a
query vector and the vectors contained in a reduced rank-k
model [5].

3.5 Subproblem Selection Strategies
Two methods were tested for determining the subprob-

lems the GA should work on. In the first method, Maximum
Subproblem, the largest sized subproblem was selected. In
the second method, Subproblem Rotation, a subproblem was
chosen at random.

3.6 Low Rank Approximations
Two forms of the SVD were tested. The first was the full

rank version of the SVD. The second was based on the re-
duced rank version, where all but the first k largest singular
values are set to zero, giving Ak. As expected, the reduced
rank strategies generally discovered the subproblems more
efficiently than the full rank versions. This is due in part to
the theoretical results mentioned in Section 2.2. The perfor-
mance may also have improved because, in the application
domains tested, the GA was only seeking one block in the
solution space. Reduction to a lower rank correctly directs
the search towards the correct block because a lower value of
k in Ak increases the cosines of the angles between vectors
of similar types [7]. Another reason may be that in com-
parison with higher rank reductions, lower rank reductions
are less restrictive and will identify larger subsets of related
genes as the rank is reduced. Therefore, lower rank reduc-
tions allow the restrictive mutation and crossover operators
to have more freedom during exploration. However, lowering
the rank too far may not always increase the performance
because all genes will be seen as similar to all other genes.

4. EXPERIMENTAL RESULTS
As mentioned previously, SVD should perform well when

analyzing problems that have a solution space that can be
made block diagonal. The first problem tested was the Block
Sum Partitioning problem. This problem was created and
tested to provide a benchmark for the types of problems that
will benefit from this research. The solution vectors of this
problem can be arranged to form a block diagonal matrix.
When two genes are used similarly across the solution indi-
viduals, they often contain the same value across their rows.
When the SVD subproblem clustering process is applied to
a matrix of correct solutions for this problem, the clusters
returned are exactly the subproblems that define where a
solution should have the value one.

A problem’s individual type will be referred to as symmet-
ric if whenever the vector obtained by applying the Boolean
NOT to every gene in an individual represents the same so-
lution to the problem. For example, the Minimum Graph
Bisection problem’s individual type is symmetric because
{1, 0} represents the same bipartition as {0, 1}. SVD is not
confused by solutions that are symmetric. In other words,
SVD is not affected by the possible namings of a partition.
This is because in problems with a symmetric individual
type, similar genes are still used similarly across individu-
als drawn from the same block. Furthermore, subproblems
will be correctly discovered regardless of the order the rows
or columns of the matrix are in. The Minimum Graph Bi-
section problem’s solution vectors are symmetric and can
be arranged to form a block diagonal matrix. When two
genes are used similarly across the solution individuals in
this problem, it means that the vertices that the genes rep-
resent are frequently placed in the same partition. SVD
helps obtain an approximate consensus from the best in-
viduals as to which vertices should be placed in the same
partition.

4.1 Implementation Details
Tests were performed using a custom GA, implemented

entirely in JavaTM . The source code and documentation
for the GA may be obtained by e-mailing the author. The
SVD was computed using Visual Numerics’ Java Numerical
Library. An approach similar to the (µ+λ) evolution strat-
egy was used with populations of size 100 generating 100
candidate individuals. Reinsertion was achieved by picking
the best 100 individuals out of the 200 total parents and
children. The results are based on the average of the best
individual at each generation, over 100 different random ini-
tial populations. Let f(x) be the value of the function that
is being optimized when applied to an individual x. The
fitness of an individual is defined as

fitness(x) = ln
1

1 + |f(x)− target| ≤ 0 (10)

In this fitness function, the function value f(x) approaches
its target (for example the minimum) as the fitness function
approaches zero. Individuals with higher fitness represent
better solutions than those with lower fitness. An individual
with a fitness equal to zero is an exact solution because only
then will f(x) = target.
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4.2 Block Sum Partitioning

4.2.1 Problem Statement
Let (x)ik denote the ith block of size k in a binary string.

Furthermore, let (x)m
ik denote the numeric value of the mth

position in the ith block. The (n, k)-block partition problem
is defined on binary strings of length n as follows:

max
i=1,2,..., n

k

0@ X
m=1,2,...,k

(x)m
ik −

X
l6=i,m=1,2,...,k

(x)m
lk

1A (11)

In words, the (n, k)-block partition problem is the maxi-
mum, over all the 1, 2, · · · , n

k
blocks of k genes, of the sum

of the elements in the block minus the sum of the elements
not in the block. This problem will be called the Block Sum
Partitioning problem (BSP). An individual is considered a
solution when its function value is equal to k, the length of
every block. By the problem’s construction, this can only
happen when an individual contains all ones in one block
and all zeroes in every other block. Therefore, the set of
individuals that are solutions form a block diagonal matrix.
From the analysis presented in Section 2.2, the SVD should
perform well on this type of problem because it will be able
to accurately categorize the similar genes of highly fit in-
dividuals. The highly correlated genes of good individuals
will correspond to the genes that should belong to the same
block.

4.2.2 Implementation Details
Tests were performed on the binary valued version of the

(100, 10)-Block Sum Partitioning problem. That is, the prob-
lem of structuring 100 genes into a form with one of the
10 blocks containing 10 ones, and the rest of the 9 blocks
containing all zeroes. The genetic operators do not know
the value of k. Hence, the full representation space is used
and not restricted to individuals with k ones during opti-
mization. The mutation rate was set at 12%. Restricted
mutation was performed by flipping a gene in a subproblem
to its opposite value of either one or zero. Restricted one
point crossover was used in both of the genetic subproblem
strategies. The plain GA used both one point crossover and
mutation without restrictions. Genetic engineering was not
tested with this problem.

4.2.3 Results
Figure 1 is a plot of the average best individual at ev-

ery generation for this problem using various ranks. The
maximum subproblem’s performance was very similar to the
corresponding variations of the subproblem rotation’s per-
formance. Both of the subproblem methods outperformed
the plain GA. The subproblem rotation strategy using a
rank equal to 2 performed best. Furthermore, rank reduc-
tion increased the performance of the genetic algorithm in
all cases.

Call a set of genes involved in a solution if setting each
gene in the set to one and each gene out of the set to zero
yields a correct solution to the problem. The following tables
compare the first generation the GA discovered a solution
and the first generation that each subproblem determination
method correctly identified at least 2

3
of a set of genes that

is involved in a correct solution. In addition, the subprob-
lems were only counted as being found when their size was
at least 2

3
of the size of a correct subproblem. They were
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Generations

"Plain"
"Subproblem Rotation (full rank)"
"Subproblem Rotation (rank=1)"
"Subproblem Rotation (rank=2)"

Figure 1: The average best individual per gener-
ation for the BSP problem using the Subproblem
Rotation Strategy.

not counted when their size was greater than the correct
subproblem’s size. The results in the following tables were
obtained by collecting the average over 100 runs, using full
rank, restricted crossover, and restricted mutation. Notice
that the subproblems were discovered much earlier than the
first solution.

BSP (full rank) Solution Subproblem found
Maximum 103.87 63.64
Rotation 86.92 75.76

Although the overall first solution performance was better
with the rank 1 reduction for this problem, the subproblems
were not typically discovered until after the first solution
was found. A possible explanation for this is that the size
of the subproblem found when the rank was reduced was
much larger than the size of the subproblem when using full
rank. This is because under a reduced rank model, genes are
more likely to be similar to other genes. While the correct
subproblem is likely still represented in the set, the size of
the set is usually much larger than the size of a correct
subproblem. In these cases the subproblem was not counted
as being found because it was too big.

BSP (rank 1) Solution Subproblem found
Maximum 87.27 263.74
Rotation 75.59 231.5

As the following table indicates, the rank 2 reductions re-
sulted in the best overall performance.

BSP (rank 2) Solution Subproblem found
Maximum 77.79 45.02
Rotation 73.4 78.06
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4.3 Minimum Graph Bisectioning

4.3.1 Problem Statement
A bisection of a graph G = (V, E) with an even number of

vertices is a pair of disjoint subsets V1, V2 ⊂ V of equal size.
The cost of a bisection is the number of edges (a, b) ∈ E
such that a ∈ V1 and b ∈ V2. The Minimum Graph Bisec-
tion problem takes as input a graph G with an even number
of vertices, and returns a bisection of minimum cost. The
Minimum Graph Bisection problem has been shown to be
NP-Complete [17]. Many heuristics have been developed for
this problem. Perhaps the best known is the Kernighan-Lin
heuristic [25, 8]. Graph partitioning with genetic algorithms
has been studied extensively [26, 9]. Singular value decom-
position has also proved to be a useful tool when clustering
graphs [12, 37]. However, this paper is the first to combine
these results, providing strategies for using singular value de-
composition in a genetic algorithm for the Minimum Graph
Bisection problem.

4.3.2 Implementation Details
Individuals were represented in binary. If the ith compo-

nent of an individual was one, then the ith vertex was put in
the set V1. Otherwise, if the ith component of an individual
was zero, then the ith vertex was placed in the set V2. No-
tice that individuals are symmetric in this representation.
The mutation rate was set at 12%. A modified mutation
method of switching two random genes was implemented to
keep the number of ones and zeroes in an individual equal.
In the case of subproblem evolution, a gene from the sub-
problem area was flipped and an opposite gene from the
non-subproblem area was also flipped. In plain GAs, the
mutation operator simply exchanged the values of two op-
posite genes. The crossover operator was adapted from an
earlier paper on graph bisection with GAs [9]. It is a mod-
ified five point crossover that attempts to account for the
symmetric nature of graph bisection solutions. No restric-
tion on the locus of crossover was used in this problem. The
highly correlated genes correspond to vertices that the cur-
rent population believes should be clustered into the same
partition.

4.3.3 Random Graphs
Figure 2 contains the average fitness of the best individual

at each generation over 100 different random graphs. An
edge between two vertices was created with a 5% chance.
In this problem, the subproblem methods outperformed the
plain GA, but only by a slight margin. Graphs with higher
chances of an edge occurring between vertices produced very
similar results. The decrease in performance in the engineer-
ing results after the first 100 generations indicate that the
populations may have become genetically stale.

4.3.4 Highly Clustered Random Graphs
The random graphs for this problem were created by first

randomly dividing all of the vertices into two disjoint and
equal sized sets. Next, edges within a set were created with
a 98% probability. Then, edges between vertices in different
sets were created with probability equal to 5%. This prob-
lem will be called the Minimum Graph Bisection Cluster
problem. Presumably, SVD will perform remarkably bet-
ter in the cases where the random graph contains two main
clusters. Accordingly, tests performed on random graphs
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Figure 2: The average best individual per genera-
tion for the Minimum Graph Bisection problem on
random graphs with 100 vertices and 5% edge prob-
ability.
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Figure 3: The average best individual per genera-
tion for the Minimum Graph Bisection Cluster prob-
lem on random graphs with 100 vertices and two
main clusters.
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that were explicitly constructed to contain most of their
weight in two clusters, indicated an increase in the perfor-
mance of the SVD subproblem and engineering methods.
Figure 3 is a plot of the results from these highly clus-
tered random graphs. Once again, all SVD methods out-
performed the plain GA. Furthermore, the combination of
restricted operators with genetic engineering yielded bet-
ter results than using either restricted operators or genetic
engineering alone. Engineering consistently gave a signif-
icant performance boost during the first fifty generations
of optimization. Additionally, engineering was improved by
reducing the rank to 2.

The following table lists the average first generation the
GA subproblem determination methods identified at least
2
3

of the genes involved in a solution. The results in the
following table were obtained by collecting the average over
100 runs. The subproblems were discovered much earlier
than the first solution was obtained.

GBC (full rank) Solution Subproblem found
Plain 206.58 NA

Maximum 176.22 99.92
Rotation 154.64 97.38

For this problem, rank one reduction did not improve the
GA’s overall solution performance for either subproblem strat-
egy. This indicates that the reduction to rank one may have
deteriorated the solution space too much. On the other
hand, the subproblems were typically found earlier than the
full rank version found them.

GBC (rank 1) Solution Subproblem found
Maximum 181.29 74.46
Rotation 204.45 86.7

5. FUTURE DIRECTIONS

5.1 Additional Problem Domains
Different graph types, such as geometric and clustered

graphs, should also be investigated. In addition, both the
(n,k)-graph partitioning problem and the problem of clus-
tering vertices into differently sized parts should be studied
using the engineering and restricted genetic operators de-
scribed. This research will be important to help further
unify and generalize the types of problems to which SVD
can be successfully applied in a GA.

5.2 Schema Reordering
Due to the nature of the problems addressed, good schema

are apt to be destroyed during crossover if the locations
forming the schema are scattered apart on the chromosome.
To combat the disruptive nature of crossover, chromosomes
could be reordered to group the similar genes closer together
on a chromosome. This would help to create higher-quality
schemas with shorter defining lengths. SVD could be used
to define the reordering during optimization. The reorder-
ing would group similar genes together, allowing the GA
to benefit from the building block hypothesis. This is in
contrast to a strategy that only performs an initial schema
preprocessing once before the GA for the Minimum Graph
Bisection problem starts [9]. As the building block hypothe-
sis suggests, the computational power of genetic algorithms
largely comes from manipulating the solutions of subprob-
lems, i.e., building blocks. Hence, identifying subproblems

has been a center of many subfields within genetic and evo-
lutionary computation. Three examples of related fields
that should be studied to better connect the use of SVD to
current GA research are Linkage Learning [20], Probabilis-
tic Model Building Genetic Algorithms [33], and Learnable
Evolution Models [29].

5.3 Further Work
Future work should concentrate on several issues. First,

more aggressive SVD subproblem heuristics could be per-
formed in the graph bisection problems by using the Kernighan-
Lin algorithm [25] in a manner investigated by Bui and
Moon [9]. Second, there have been several papers that gen-
eralize the categorization powers of reduced rank SVD to
situations that are not specifically transformable to block di-
agonal form [15]. Problem types with structures other than
a block diagonal matrix need to be considered to determine
additional representations that the SVD can be used with to
benefit a genetic algorithm. Third, heuristics for rank choice
should be identified to improve the overall subproblem de-
termination performance. Finally, it would be interesting to
create heuristics for choosing different subsets of individu-
als that determine the subproblems at each generation. For
example, the worst, the best, or even the most diverse solu-
tions in the optimization history could each be valid choices
for the subsets of individuals that direct the optimization
process.

6. CONCLUSION
In conclusion, singular value decomposition is useful in

genetic algorithms if the solution space can be made nearly,
or entirely, out of blocks. SVD was shown to discover sub-
problems for problems with block diagonal representations
by approximating the gene × gene autocorrelation matrix
of highly fit individuals. The SVD operators are useful in
GAs when knowing which genes are used similarly across
good individuals helps to solve the problem. The GA’s per-
formance on the NP-Complete Minimum Graph Bisection
problem was improved. Also, the SVD methods were shown
to perform better on random graphs with highly clustered
parts than general random graphs. Therefore, SVD is ben-
eficial in GAs. In particular, engineering and restrictive ge-
netic operators using SVD will discover gene similarity well
if the solution space is either blocked or nearly blocked.
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