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Abstract. The ability to predict the quality of a software object can be viewed
as a classification problem, where software metrics are the features and expert
quality rankings the class labels. Evolutionary computational techniques such as
genetic algorithms can be used to find a subset of metrics that provide an
optimal classification for the quality of software objects. Genetic algorithms are
also parallelizable, in that the fitness function (how well a set of metrics can
classify the software objects) can be calculated independently from other
possible solutions. A manager-worker parallel version of a genetic algorithm to
find optimal metrics has been implemented using MPI and tested on a Beowulf
cluster resulting in an efficiency of 0.94. Such a speed-up facilitated using
larger populations for longer generations. Sixty-four source code metrics from a
366 class Java-based biomedical data analysis program were used and resulted
in classification accuracy of 78.4%.

1 Introduction

Software project managers commonly use various metrics to assist in the design and
implementation of large software systems [1,2]. These metrics are used to quantify
the various developmental stages of the project; design metrics such as the number of
classes, level of inheritance, number of abstract classes and so on; implementation
metrics obtained automatically from the source code, e.g., lines of codes per method,
lines of comments, number of methods in a class, method complexity, number of
tokens, and so on; test metrics such as the number of errors reported; and usability
metrics like the number of times the user pressed the wrong button or asked for help.
One important aspect of project management is the ability to identify potential
problems in the design and development phases from the source code as the
application is implemented. Project managers and developers can use source code
metrics to model and predict the quality of the software as the application evolves.

The use of computational intelligence methods such as neuro-computing, fuzzy
computing and evolutionary computing in software engineering is being recognized
as an important tool for software engineers and project managers [3]. Due to the
attributes of the problem, software engineering is stochastic in nature were the skill
set and experience of developers and project leaders play a large factor in the final
overall quality of the software. As such, search-based techniques such as evolutionary
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computing are drawing the attention of researchers to help develop and fine-tune
software engineering tools [4].

The ability to evaluate the quality of a software object can be viewed as a
classification problem. Given a set of objects (object-oriented classes), with known
features (source code metrics) and class labels (expert quality rankings) build a
classifier that is able to predict the quality of a software object from its metrics. Not
all metrics have the same discriminatory power when it comes to predicting the
quality of a software object. For example, the number of semicolons may not be as
powerful as the number of lines of code, which may not be as powerful as a measure
of the amount of coupling, cohesion and complexity in predicting the quality of a
software object in terms of maintainability. Also, the combination of metrics may be
more important than any individual metric, a previously unforeseen combination of
metrics may capture the insight that an expert uses when attributing a quality ranking
to a software object. Determining which metrics, and combination of metrics, have
strong discriminatory powers is paramount for generating a good classifier. However,
finding an effective combination of metrics that have good discriminatory properties
is not a problem that can be solved analytically as the number of metrics increases.

Genetic algorithms have been used extensively to find feature subsets in
classification problems in the biomedical field [5,6,7]. However, computational
intelligence techniques have not been used as extensively in the software engineering
domain. [8] used a genetic algorithm to find the optimum neural network architecture
for a two-class problem and identify fault-prone modules using nine software metrics.
[9] utilized a genetic algorithm approach to find a model that best classifies fault-
prone modules based on 5 metrics. [10] exploited genetic algorithms to determine
software stability, how much a Java class changed over the course of the project,
using 11 metrics based on coupling, cohesion, inheritance and complexity.

The objective of this report is two fold. First, to illustrate how a genetic algorithm
was used as an effective feature sub-selection strategy to a classification problem in
the software engineering domain, that is, determine which subset of object-oriented
source code metrics are able to predict the quality of a software object in terms of
maintainability. Secondly, to show how a parallelized version of the canonical genetic
algorithm was implemented using the Message Passing Interface (MPI) library [11].
The speed up of the program execution enabled more combinations of GA
parameters, such as population size, mutation rate and number of generations to be
tried within a reasonable amount of time for the researcher, which facilitated finding
an optimal solution.

2 Software Metrics

All 366 software objects in an in-house Java-based biomedical image data analysis
system, were subjectively labeled by an experienced software architect in terms of
maintainability. The architect (8 years of programming experience, 7 years with
object-oriented systems and 5 years with Java) was asked to rank each software
object. That is, based on personal experience, assign a value from 1 to 5 that tries to
rank the overall design and implementation of a particular software object. Software
objects with low rankings are determined to be difficult to modify, and should be
reviewed by the development team in efforts to improve the class, either by
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improving the design (which may mean refactoring classes) or improving the
implementation of the methods. A class ranked 1 should definitely be subject to a
review as soon as possible. A ranking of 2 meant the class indicated that the class
should be reviewed but it is not critical that it be done immediately. A ranking of 3
indicates, in the opinion of the expert, an average design and implementation, neither
exemplary or detrimental to product quality and maintenance. A class ranked 4 is
better than average but could use some improvements (for example, better
documentation). A class ranked 5 is considered very easy to understand and modify.
The software architect was not instructed to focus on any particular aspects of code
quality (in reference to metrics that can be measured) but to use his experience and
intuition to rank the software classes.  Table 1 shows the distribution of the labeled
software objects by the expert familiar with the project in terms of design and
implementation.

Table 1. Distribution of software object labels assigned by an expert

Rank 1 Rank 2 Rank 3 Rank 4 Rank5
2 56 75 94 139

The project has been in development for over 24 months and low ranking classes
have been identified and corrected so few „must review“ software objects are present
in the current dataset. This will bias the classifier towards properly identifying high
ranking classes. The majority of the software classes ranked at level 5 are simple data-
model classes with simple get/set methods, they basically encapsulate classes are not
highly coupled to other classes and their method complexity are low.

A set of 64 metrics was obtained from an evaluation version of Borland’s
TogetherSoft package [12] and an in-house metrics parser. Due to the nature of the
application, it was noted that data model objects were relatively simple when
compared to graphical user interface (GUI) classes, so an additional metric value was
used to aid the classifier, a distinction was made between GUI, data model, algorithm,
and all other objects. In general, data model classes had many get/set methods and
low coupling, while GUI classes had higher coupling among themselves and the data
that was to be displayed. The software metrics that were used to classify the Java
software objects are shown in Table 2.

Table 2. The 64 object-oriented source code metrics used as features for the classifier

DescriptionMetrics
TYPE Type: GUI (=1), Data Model (=2),  Algorithm (=3),  Other (=4).
METH # methods.
LOC # lines of code.
ALOC Mean LOC per method.
MLOC Median LOC per method.
RCC1 Ratio of comment lines of code to total lines of code including white

space and comments.
RCC2 TCR from Borland's TogetherSoft
TOK # tokens.
ATOK Mean TOK per method.
MTOK Median TOK per method.
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DEC # decisions: for, while, if, switch, etc.
ADEC Mean DEC per method.
MDEC Median DEC per method.
WDC Weighted # decisions based on nesting level i: Sum[i*ni]
AWDC Mean WDC per method.
MWDC Median WDC per method.
INCL # inner classes.
DINH Depth of inheritance.
CHLD # children.
SIBL # siblings.
FACE # implemented interfaces.
RCR Code reuse: ratio of overloaded inherited methods to those that are not.
CBO Coupling between objects.
LCOM Lack of cohesion of methods.
RFO Response for an object. Response set contains the methods that can be

executed in response to a message being received by the object.
RFC Response for class.
MNL1 Maximum method name length.
MNL2 Minimum method name length.
MNL3 Mean method name length.
MNL4 Median method name length.
ATCO Attribute Complexity.
CYCO Cyclomatic Complexity.
DAC Data Abstraction Coupling.
FNOT Fan Out.
HLDF Halstead Difficulty.
HLEF Halstead Effort.
HLPL Halstead Program Length.
HLVC Halstead Program Vocabulary.
HLVL Halstead Program Volume.
HLON Halstead # operands.
HLOR Halstead # operators.
HLUN Halstead # unique operands.
HLUR Halstead # unique operators.
MIC Method Invocation Coupling.
MAXL Maximum # levels.
MAXP Maximum # parameters.
MAXO Maximum size operations.
ATTR # attributes.
ADDM # added methods.
CLAS # classes.
CHCL # child classes.
CONS # constructors.
IMST # import statements.
MEMB # Members.
OPER # operations.
OVRM # overridden methods.
REMM # remote methods.
PKGM % package members.
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PRVM % private members.
PROM % protected members.
PUBM % public members.
DEMV Violations of Demeters Law.
WMC1 Weighted Methods per class.
WMC2 Weighted methods per class.

3 Parallel Genetic Algorithm

Evolutionary computation algorithms such as genetic algorithms (GA) attempt to
discover an optimal solution to a problem by simulating evolution [13]. In GA, a
solution (set of software metrics) is encoded in a gene and a collection of genes
(solutions) constitutes a population. GA uses natural selection and genetics as a basis
to search for the optimal gene, a set of software metrics that give the best
classification rate. A population of solutions is modified using directed random
variations and a parent selection criteria in order to optimize the solution to a
problem. They are based on the process of Darwinian evolution; over many
generations, the „fittest“ individuals tend to dominate the population.

The simplest way to represent a gene is to use a string of bits, where 0 means the
bit is off and 1 means the bit is on. For this problem domain, the 64 metrics were
encoded in a 64-bit string. A zero bit meant the metric was not to be used with the
classifier. All the metrics with a corresponding bit set to one constituted the metrics
sub-set to evaluate with the fitness function, the classifier. The genes of the initial
population were randomly initialized.

To evaluate a gene’s fitness a linear discriminant analysis (LDA) classifier was
utilized using the leave-one-out method of training and testing. LDA is a conventional
classifier strategy used to determine linear decision boundaries between groups while
taking into account between-group and within-group variances [14]. If the error
distributions for each group are the same (each group has identical covariance
matrices and sampled from a normal population), it can be shown that linear
discriminant analysis constructs the optimal linear decision boundary between groups.
Figure 1 shows a three-class 2-dimensional classification problem and the decision
hyper-planes produced by LDA. For the leave-one-out validation method, 365 classes
were used to train the LDA, and then the software object left out was tested with
classifier. This was repeated for all 366 software objects. The classification rate was
the number of times the software object left out to be tested was correctly classified
by the LDA. The final classification rate for a feature subset is a value between 0 and
100%.

The genes with higher fitness values are more likely to be chosen for reproduction
and evolve into the next generation. For the implemented GA, a random probability
was generated, and a random gene with an equal or larger fitness value was chosen as
a parent. All the genes in the population were candidate parents. A child gene is
created by picking a crossover point and exchanging the corresponding bits from the
two parent genes. A single crossover point was randomly chosen for the creation of
the child gene.  Mutation was performed by flipping the value of each bit in the child
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Fig. 1. Possible linear discriminant analysis decision boundaries for three groups

gene if the random probability value is greater than 1.0 - P, P being the user specified
mutation probability parameter. The number of genes in the population is also a user
set parameter and did not change during successive generations.

A new population is created by merging the children with the elite genes of the
previous population. The number of elite genes is a parameter set by the user. The
new population is sorted based on fitness values and some of the children may now be
in the elite pool. The elite pool is only used for merging the next generation, as the
entire population is eligible for reproduction.

The canonical genetic algorithm is an ideal candidate for coarse grain domain
partition parallelization in an effort to improve the computational speed for finding a
solution to a non-deterministic problem [15]. The fitness function for a solution gene
can be executed independently of the other genes in the population. That means one
process can calculate the fitness function for one gene, while another process does the
same for another gene in parallel. After the current children population is evaluated,
the previous generation and current generation are merged. The most computationally
intensive function for the canonical GA is usually the calculation of a gene's fitness
value. Figure 2 illustrates the basic modification of the sequential GA to make it
parallelizable using a manager/worker approach.

The sequential and parallel versions of the canonical genetic algorithm were
implemented using the C++ language. The MPI library which facilitates the message
passing of data between processes in a parallel computer or a cluster of computers
using C-style function calls. It is a well-established protocol and widely implemented
on various operating systems. The parallel GA program was tested on a 20 node
heterogeneous Beowulf cluster running the Linux operating system. For the sequential
GA program the population was set to 100, the percent elite to 25%, mutation rate at
5% and the number of generations capped to 150. For the parallel version, which
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Fig. 2. Manager/worker parallel version of the canonical sequential genetic algorithm

executed in a significantly shorter amount of time, a range of population sizes were
tested for various generations, with the same mutation rate and percent elite as the
sequential GA.

Using a manager/worker paradigm, the parallel section of the algorithm is executed
by a different worker process while the main tasks of merging the parent and children
population, creating new genes and testing for the termination condition is done by
the manager process. In the method where the population fitness is calculated, the
manager process repeatedly receives a fitness value from a worker process, and if
there are genes still to be evaluated, sends one to the idle worker process. Below is the
pseudo code for method in the manager that calculates the fitness for all the genes in a
population.

void calculate_population_fitness( population ) {
  num_workers = number of processes in MPI network
  //initialize workers, give each one a gene to process
  num_genes_evaluated = 0
  for (worker_id=0;worker_id<num_workers;worker_id++){
     // send a gene, and matching gene_id, to a worker
     MPI_Send( gene_bits, gene_id, worker_id )
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     num_genes_evaluated += 1
  }
  // while there is work left, get fitness value from a
  // worker, give the worker another gene to evaluate
  while ( num_genes_evaluated < population_size ) {
    // get fitness from a worker
    MPI_Receive( fitness, gene_id, worker_id )
    set fitness in population using gene_id
    // send another gene to the worker
    MPI_Send( gene_bits, gene_id, worker_id )
    num_genes_evaluated += 1
  }
  // no more genes to evaluate, collect remaining
  // results from workers
  for (worker_id=0;worker_id<=num_workers;worker_id++){
    MPI_Receive( fitness, gene_id, worker_id )
    set fitness in population using gene_id
  }
} // end of method

 The worker process decodes the gene and generates a new metrics dataset. For all
the software objects, only the metrics with a corresponding bit set to one are used
with the classifier. Using LDA with the leave-one-out train/test technique the
classification rate using the metrics subset encoded in the gene is returned as the
fitness value. Once all the genes in a population are evaluated, the manager process
continues with the canonical GA in a sequential manner. The algorithm is repeated
until the specified number of generations is executed.

4 Results and Observations

The parallel GA program runs substantially faster than the sequential version. It took
14.5 hours to run a 100 gene population for 150 generations with the sequential
program, running on a 1.6 Ghz CPU with 2 Gigs of RAM. Using the same GA
parameters with the parallel version on the Beowulf cluster took 1.3 hours. With such
a speed up more variations of GA parameters could be tried. Figure 3 shows the
classification rate when all the available metrics were used with the classifier, the best
classification from a set of 100 random metrics subsets, and the best classification
when different generations were used with 100 genes, 5% mutation rate and 25% elite
genes. Modifying the percent elite and mutation rates did not result in noticeable
better classification rates, though increasing the size of the population did. An
improved classification rate was obtained when the number of generations was
increased.
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Classifier Results
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Fig. 3. Classification rates when all metrics are used, random subsets, and GA feature selection

Table 3 shows the metrics encoded by the top 3 genes, they provided the best
classification for the software classes with a percent correct of 78.4%, 78.1% and
77.9%. Different genes encode slightly different metrics yet result in comparable
classifier performance. It is interesting to note the metrics that were common to all 3
genes. ALOC, the mean number of lines would seem to indicate that the size of a
method affects maintenance, which intuitively makes sense, along with other
complexity metrics such as HLDF. One of the software objects that was ranked as
must review had over 6,000 lines of code. It was commented that this class seemed
like an application onto itself. It was the main data visualization GUI class for the
application from which the user could select further processing options.

The MNL1 metric, method name length, would suggest that using longer names for
methods (and variables, though that is not a metric used in this study) facilitates the
understanding of the source code by other programmers, and thus affects the
maintainability of the code, since longer labels names tend to indicate more
meaningful names which express the purpose of the method and the variable. The
other method name length metrics, such as MNL2, MNL3 and MNL4 are variations
of the same information captured by the MNL1 metric. The other classes ranked 1 had
900 lines of code but was very poorly documented and highly coupled to other classes
making the purpose of the interdependencies not clear to the reviewer.

Coupling measures were also encoded in the top genes. Indirect measures such as
package members, PKGM, indicate potentially shared data members among classes.
Inheritance measures CHCL (number of children) and FNOT (fan out) are also
present in the metrics subset. Only the top gene explicitly used the coupling CBO
metric from the CK metrics suite [16]. The only comments based metric, RCC1, was
not included in the top three genes though it was included in other genes that
performed well (77.6%). It is generally accepted that comments aid in the
maintenance of software, and if more comment based metrics would have been
generated the chances of top performing genes including that metric would have
increased.
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Table 3. Metrics encoded by top 3 genes and corresponding classification rates

Description 78.4% 78.1% 77.9%
TYPE YES
LOC YES YES

ALOC YES YES YES
TOK YES

ATOK YES YES
MTOK YES YES
DEC YES

ADEC YES YES
MDEC YES YES
WDC YES

AWDC YES YES
DINH YES YES
CHLD YES
FACE YES YES
RCR YES
CBO YES

LCOM YES YES
MNL1 YES YES YES
MNL3 YES
CYCO YES YES
FNOT YES
HLDF YES YES YES
HLEF YES
HLPL YES YES YES
HLVL YES YES YES
HLON YES
HLUN YES YES
MIC YES

MAXL YES
MAXP YES YES
MAXO YES YES YES
ATTR YES YES YES
ADDM YES YES
CLAS YES
CHCL YES
MEMB YES
OPER YES YES
OVRM YES YES
PKGM YES YES YES
PRVM YES YES
PROM YES YES YES
PUBM YES YES
DEMV YES
WMC1 YES YES
WMC2 YES YES
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Figure 3 shows that using a subset of the metrics helps the classifier achieve better
performance, as using a random subset results in improved performance over using all
the available metrics, some of which capture redundant information about the source
code. Using a directed search like a genetic algorithm enhances the classifier
performance even further, and the longer the search the better the classification rate.
Using a parallel genetic algorithm significantly reduces the computational time of the
algorithm and facilitates longer searches. The resulting metrics subset that capture the
intuitive knowledge of the expert can be further inspected and analyzed from a
theoretical aspect to understand what aspects of design and implementation lead
towards high quality software objects.

The initial class labels were subjectively assigned by the expert, hence the metrics
of the genes that generate the best classifier will tend to reflect the aspects of the
source code that the expert may intuitively deem important for distinguishing a class
that is well designed and coded. On a production version of this approach, various
experts knowledgeable with the problem domain and organization would label the
software objects, priming the classifier to use the metrics that a particular organization
deems critical in identifying problem software classes. Another area of future research
would be to reduce the number of classes. Though a pass/fail labeling may not work
so well, as there will tend to be many more pass software objects. A three class
labeling scheme may be more appropriate. Using an in-house project does not lead to
reproducibility of the method, or the comparison of using alternate methods  by other
researchers as in-house code is not usually available for distribution. Choosing an
open-source project as a dataset would be a workable alternative and may lead to
more collaborative research efforts.
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