
Using Interconnection Style Rules to Infer
Software Architecture Relations

Brian S. Mitchell, Spiros Mancoridis, and Martin Traverso

Department of Computer Science
Drexel University, Philadelphia PA 19104, USA,
{bmitchell, spiros, umtraver}@drexel.edu,

http://www.mcs.drexel.edu/˜{bmitchel, smancori}

Abstract. Software design techniques emphasize the use of abstractions
to help developers deal with the complexity of constructing large and
complex systems. These abstractions can also be used to guide program-
mers through a variety of maintenance, reengineering and enhancement
activities. Unfortunately, recovering design abstractions directly from a
system’s implementation is a difficult task because the source code does
not contain them. In this paper we describe an automatic process to in-
fer architectural-level abstractions from the source code. The first step
uses software clustering to aggregate the system’s modules into abstract
containers called subsystems. The second step takes the output of the
clustering process, and infers architectural-level relations based on formal
style rules that are specified visually. This two step process has been im-
plemented using a set of integrated tools that employ search techniques
to locate good solutions to both the clustering and the relationship in-
ferencing problem quickly. The paper concludes with a case study to
demonstrate the effectiveness of our process and tools.

1 Introduction

Programmers are routinely given limited time and resources to perform main-
tenance on software systems. Without a good understanding of the software
architecture maintenance tends to be performed haphazardly.

Software clustering techniques [11,13] have been used successfully to create
abstract views of a system’s structure. These views consolidate the module-level
structure into architectural-level subsystems. The subsystems can be further
clustered into more abstract subsystems, resulting in a subsystem hierarchy.
While helpful, the subsystem structure exposes the architectural-level compo-
nents (i.e., subsystems), but not the architectural-level relations.

Like subsystems, architectural-level relations are not specified in the source
code. To determine these relations we developed a technique that searches for
them guided by a formalism that specifies constraints on allowable subsystem-
level relations. This formalism, called ISF [10], is a visual language that can
be used to specify a set of rules that collectively represent an interconnection
style. The goal of an interconnection style is to define the structural and semantic

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 1375–1387, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

1376 B.S. Mitchell, S. Mancoridis, and M. Traverso

properties of architectural relations. Like our approach to software clustering [12,
13], computing the architectural relations from the subsystem hierarchy for a
given interconnection style is computationally intractable. We overcome this
problem by using search techniques.

After providing an overview of our integrated software clustering and style-
specific relation inference processes and tools, we present a case study to show
how our tools can assist with the maintenance of large systems.

2 Related Work

Researchers in the reverse engineering community have applied a variety of ap-
proaches to the software clustering problem. These techniques determine clusters
(subsystems) using source code component similarity [17,4,15], concept analy-
sis [9,7,1], or information available from the system implementation such as
module, directory, and/or package names [2]. Our approach to clustering differs
because we use metaheuristic search techniques [5] to determine the clusters [12,
13,14].

Research into Architectural Description Languages (ADLs), and their earlier
manifestations as Module Interconnection Languages (MILs), provide support
for specifying software systems in terms of their components and interconnec-
tions. Different languages define interconnections in a variety of ways. For ex-
ample, in MILs [6,16] connections are mappings from services required by one
component to services provided by another component. In ADLs [18] connec-
tions define the protocols for integrating sets of components. Our approach uses
ISF [10], which is a visual formalism for specifying interconnection styles. We also
developed a tool that can generate a Java program to check the well-formedness
of ISF rules.

3 The Style-Specific Architecture Recovery Process

This section provides an overview of the style-specific architecture recovery pro-
cess. Figure 1 outlines the process, which consists of using a series of integrated
tools. To simplify the explanation of the process, we use a common reference
system throughout this section to highlight important concepts.

JUnit is an open-source unit testing tool for Java, and can be obtained online
from http://www.junit.org. JUnit contains four main packages: the framework
itself, the user interface, a test execution engine, and various extensions for
integrating with databases and J2EE. For the purpose of this example, we limit
our focus to the framework package. This package contains 7 classes, and 9
inter-class relations.

3.1 Preparing the Software System

The first step in our process, shown on the left side of Figure 1, involves pars-
ing the source code, transforming the source-level entities and relations into a

http://www.junit.org

Using Interconnection Style Rules to Infer Software Architecture Relations 1377

Source Code Analysis

Phase

Source Code

System.out.println(…);

Source Code

Analysis Tools

Software Structure

Graph Generation

(e.g., MDG)

Software Structure Graph

(MDG)

M1 M2 M3

M4 M5

B
u
n
c
h
 S
o
ftw
a
re
 C
lu
s
te
rin
g
 T
o
o
l

Architecture Repair

Preparation Phase

Partitioned Software

Structure Graph (MDG)

M1 M2 M3

M4 M5

Interconnection Style

Library

Tube Export Custom

Custom Interconnection

Style Editor Tool

E
d
g
e
 R
e
p
a
ir U
tility

Well-Formed Design

M1

M2

M3

M4

M5

S1

S2

R

Visualization Tool

(e.g., Dotty)

Fig. 1. The Style-Specific Architecture Recovery Environment

directed graph called the Module Dependency Graph (MDG). Readily available
source code analysis tools – supporting a variety of programming languages –
can be used for this step [3,8]. The MDG for JUnit, which was generated auto-
matically, is illustrated on the left side of Figure 2.

3.2 Clustering the Software System

The software clustering process accepts the MDG as input, and produces a parti-
tioned MDG as output. The Bunch tool can perform this activity automatically.
Bunch uses search techniques to propose solutions based on maximizing an ob-
jective function [11,12,13,14]. The partitioned MDG is used as input into the
architecture repair process, which is depicted in the top-center of Figure 1.

TestResultSS TestCaseSS AssertSS

Assertion

Failed

Error

Test

Case

Test

Suite

Assert
Comparison

Failure
Test

Result

Test

Failure

Assertion

Failed

Error

Test

Case

Test

Suite

Assert Comparison

Failure

Test

Result

Test

Failure

JUnit Module Dependency Graph (MDG) JUnit MDG Partitioned by Bunch

Fig. 2. The JUnit System Before and After Clustering

The right side of Figure 2 illustrates the JUnit system clustered into sub-
systems by Bunch. Even though this system is very small, there are still 877
unique ways to partition the MDG. Bunch produced the result shown in Fig-
ure 2 (which is the optimal solution) in 0.08 seconds, examining 47 partitions.
The heuristic used to guide the search is based on an objective function that
maximizes cohesion and minimizes inter-cluster coupling.

1378 B.S. Mitchell, S. Mancoridis, and M. Traverso

3.3 Inferring the Style-Specific Architectural Relations

The next step in the process (bottom-center of Figure 1) is to select an intercon-
nection style to specify the allowable subsystem-level relations. For the purpose
of this example, let’s examine a useful interconnection style that we call the Ex-
port Style. The goal of the export style is to identify the subsystem interfaces.
We define the subsystem interface to be the subset of the modules within a sub-
system that provide services to modules in other subsystems. This information
is helpful for determining the impact of a change to a subsystem.

Fig. 3. Example Showing the Export Style Edges for JUnit

Figure 3 illustrates the result produced by our tool when the Export style
is applied to the subsystem hierarchy shown in Figure 2. The leaf nodes in
this figure are the modules in JUnit, and the dotted lines represent module-
level dependencies (i.e., the use relation). The intermediate elliptical nodes,
connected by solid lines (i.e., the contain relation) show the subsystem hierarchy.
The results of recovering the inferred style-specific relations are denoted by the
bold lines (i.e., the export relation). Since the relation is of type Export, the
bold lines are to be interpreted as: The TestResult.ss subsystem exports the
TestResult module, and the Assert.ss subsystem exports the Assert module.
We examine the usefulness of identifying the style-specific relations in further
detail in Section 5.

4 Style-Specific Software Architecture Relations

This section describes a search process that is designed to compute architectural
relations between the subsystems. To achieve this goal we developed a tool that
enables software developers to specify interconnection styles formally. Intercon-
nection styles allow designers to control the interactions between components
by the use of rules and subsystem-level relations. Since the relations are not
present in the recovered subsystem decomposition, our tool automatically infers

Using Interconnection Style Rules to Infer Software Architecture Relations 1379

the subsystem-level relations that are missing in order to satisfy the constraints
imposed by the interconnection style. The syntax for style specifications is based
on the Interconnection Style Formalism (ISF) [10]. ISF allows for the definition
of two kinds of rules:

1. Permission rules, which define the set of well-formed configurations of sub-
systems, modules, usage and architectural relations that adhere to a specific
style.

2. Definition rules, which are used to define new relations based on patterns of
components and relations.

4.1 Defining Styles

ISF enables designers to specify constraints on configurations of components and
relations, and the semantics of such configurations. In the ISF notation, circles
(nodes) represent system components (e.g., modules, subsystems) and arrows
(edges) represent relations between components (e.g., import, export, use). The
directed edges either depict a direct relation, or a transitive relation (represented
using a double-headed arrow). Figure 4 shows the set of rules for the Export style
using the ISF notation.

c
o
n
t
a
in

c
o
n
t
a
in

e
x
p
o
r
t
*

PERMIT (1)

see

use

PERMIT (2)

co
n
ta
in

not equal

see

c
o
n
t
a
in
*

c
o
n
t
a
in
*

DEFINE(1)

e
x
p
o
rt*

c
o
n
ta
in

Fig. 4. Specification of the Export Style

In the Export style, use relations are extracted from the source code di-
rectly, as they represent the module-level dependencies. The clustering activity
encapsulates modules into subsystems which is used to define the contain re-
lations. The inferred export relations represent the subsystem interfaces. With
this particular style a module may be used by other modules outside of its par-
ent subsystem (container) if and only if the module is exported by its parent
subsystem. Each module decorated with an inferred export relation is part of its
parent subsystem’s interface.

The Export style belongs to a family of styles that only allows relations be-
tween ancestors and decedents in the containment hierarchy. Another important
family of styles are those that define relations between different subtrees in the
subsystem containment hierarchy. An example of the latter family of styles is
the Tube style, which is illustrated in Figure 5.

1380 B.S. Mitchell, S. Mancoridis, and M. Traverso

tube

see

DEFINE (1)

tube

PERMIT (3)

c
o
n
t
a
in

tu
b
e

tube

tu
b
e

c
o
n
t
a
in

PERMIT (2)

tube

tube

c
o
n
t
a
in

c
o
n
t
a
in

PERMIT (1)

tube

contain
co
n
ta
in

PERMIT (4)

not equal

Fig. 5. Specification of the Tube Style

The Tube style definition specifies the tube relation, which enables a partic-
ular subsystem to “see” another subsystem. Specifically, two subsystems can be
connected by a Tube if they are proper siblings, or if their parents are connected
by a tubes according to the rules specified in Figure 5.

The ISF visual rules can be translated into formal specifications in a straight-
forward way. Given this capability we developed a tool that allows architectural
styles to be defined using the ISF visual syntax, and then generates a Java pro-
gram on the fly that is integrated dynamically into the search strategy to infer
the desired style-specific relations. Figure 6 shows the GUI for the style edi-
tor, which depicts the ISF rules for the Import relation. The style editor can be
used to create a reusable library of useful styles. More details on ISF Styles are
available in an IJSEKE paper [10].

Fig. 6. The Custom Style Editor GUI

4.2 Style-Specific Edge Recovery

The goal of the style-specific edge recovery process is to take the subsystem
containment hierarchy produced by the clustering process, along with a set of
style rules specified in ISF, and locate the set of style relations that satisfies the
ISF constraints. An exhaustive approach to recovering the style relations is to
try all possible configurations permitted by the style and keep track of the one
that has the fewest inferred relations (minimum visibility) that also satisfies all
of the constraints of the style.

Using Interconnection Style Rules to Infer Software Architecture Relations 1381

Unfortunately, exhaustive analysis is not possible. To understand why, let us
consider a subsystem containment graph with N nodes. The maximum number
of edges that can exist in the graph for each permitted relation type (e.g., export,
import) is E = N2 (i.e., one edge coming out of each node and into every other
node, as well as the source node itself). If the style permits R different relation
types, the graph can contain a total of M = RE = RN2 style relations. What we
need to know, however, is how many possible configurations exist for a specific
style (based on the number of relations that the style defines).

Given that a style can contain a maximum of M total style relations, a
particular configuration will introduce e style relations where 0 ≤ e ≤ M . To
determine how many total configurations exist for each style, we must consider
how many configurations exist for when e = 1, 2, . . . M . It turns out that the
number of configurations is quite large:

M∑

e=0

(
M
e

)
= 2M = 2RN2

Because considering all possible configurations is not possible, we use search
techniques to find good (if not optimal) solutions to the style-specific relation
recovery problem. The remainder of this section will focus on an approach1 that
uses a hill-climbing algorithm.

The hill-climbing approach for recovering the style-specific relations is
straightforward. The first step generates a random configuration. Incremental
improvement is achieved by evaluating the quality of neighboring configurations
using an objective function. The set of neighboring configurations for a given
configuration are determined by adding or removing a single style edge. The
search iterates until no new neighboring configurations can be found with a
higher objective function value. Figure 7 illustrates how neighboring configura-
tions can be generated for a given configuration (left), by adding and removing
export style relations.

R

S1

use

export
S2

c

c c

c

c c

M1 M2 M3 M4

exportexport

R

S1

use

export
S2

c

c c

c

c c

M1 M2 M3 M4

export

R

S1

use

export
S2

c

c c

c

c c

M1 M2 M3 M4

R

S1

use

e
x
p
o
r
t

S2

c

c
c

c

c
c

M1 M2 M3 M4

export

e
x
p
o
r
t

Original Configuration Neighbor 1 Neighbor 2 Neighbor 3

Fig. 7. Example Showing the Generation of Neighboring Configurations

Before the objective function is introduced, we need to provide several impor-
tant definitions. Every configuration considered during the search will have a set
1 We have investigated other techniques that are more efficient than hill-climbing,

however they only work on certain styles.

1382 B.S. Mitchell, S. Mancoridis, and M. Traverso

of use and style relations. The use relations are extracted from the source-level
dependencies and the style relations are defined by the ISF specification. We
define MaxS as the maximum number of style relations that can exist for a par-
ticular configuration. Each style relation can either be well-formed, or ill-formed.
We define wfs as the total number of style relations that respect the rules of the
provided ISF specification, and ifs as the total number of style relations that
violate the rules of the ISF specification. As for the use relations, wfu is defined
as the number of relations that are correctly modeled by the provided ISF style,
and ifu is the number of use relations that violate the ISF style.

Given the above definitions the objective function is engineered to maximize
wfu, minimize ifs, and minimize visibility. Minimizing visibility by keeping the
set of inferred style edges as small as possible is important since not all wfs edges
are necessary to cover the set of use edges for a particular system. It should also
be noted that the objective function maximizes wfu by minimizing ifu since a
given use edge must be classified as either well- or ill-formed. The objective
function to measure the quality of a particular configuration is shown below:

quality(C) =

wfs
ifs+ifu ifs �= 0 or ifu �= 0
MaxS + 1

wfs ifs = 0, ifu = 0, wfs �= 0
MaxS + 2 ifs = 0, ifu = 0, wfs = 0

5 Case Study

In this section we describe how we used our tools to gain insight into the design
of Bunch, a clustering tool created by our research group.

Bunch is a research tool, and as such, is prone to frequent restructuring and
extension due to changes in requirements. The original version implemented the
core clustering algorithms and had no graphical user interface (GUI). Later, it
was redesigned to make it extensible, and several features, including a GUI were
added. Adding new clustering algorithms was easier in this version. Following
that, an attempt was made to improve the performance of the algorithms by
implementing a distributed version of the tool. Finally, the core algorithms were
replaced with much faster incremental algorithms. An important fact about the
development process is that each stage was carried out by different developers.

Without the help of reverse engineering tools, understanding the structure
of the current version of Bunch and how its components relate to each other
would be quite difficult. It is important that future maintainers be able to un-
derstand the system well enough to be able to make changes without breaking
the application.

The first thing that we did in this case study was to obtain Bunch’s MDG,
and then use Bunch to cluster the MDG. We then based our analysis on a
modified version of the Export style, which is depicted in Figure 8. This style
permits two types of export relations: local export and broad export. Local export
relations enable a module to be seen by subsystems in the immediate neighbor-
hood (the parent subsystem’s siblings). Broad export relations export modules

Using Interconnection Style Rules to Infer Software Architecture Relations 1383

to more distant branches of the tree. Local export allows a subsystem to export
only child nodes, whereas broad export dependencies allow subsystems to export
only modules deeper than the grandchildren level, thereby allowing modules in
entirely different branches of the tree to “see”, and hence access, them.

co
n
ta
in

not equal

see

c
o
n
t
a
in
*

c
o
n
t
a
in
*

DEFINE(1)

lo
c
a
l-
e
x
p
o
r
t
*

c
o
n
ta
in

co
n
ta
in

not equal

see

c
o
n
t
a
in
*

c
o
n
t
a
in
*

DEFINE(2)

b
r
o
a
d
-
e
x
p
o
r
t
*

c
o
n
ta
in

contain
co
n
ta
in

see

DEFINE (3)

PERMIT (1)

contain

local-export

contain

c
o
n
ta
in

contain
b
ro
a
d
-e
x
p
o
rt

PERMIT (2)

contain*

Fig. 8. Specification of the Modified Export Style

The results produced by our tool allow us to make several observations about
the structure of the Bunch application. Subsystems that export a high percentage
of their modules are particularly noteworthy, since they might reflect poor design
choices. Sometimes, these subsystems might contain groups of modules that
are used throughout the application and are considered to be libraries. Such
situations are not bad, but raise the question whether those modules can be
split into smaller modules that perform more specific functions and can be placed
alongside modules that use them. Other times, those situations occur because
modules have been classified into the wrong subsystems. For example, the Graph
subsystem shown on the left side of Figure 9 contains the modules TurboMQ and
TurboMQIncr, which are fitness function evaluation classes, unlike the Graph and
Cluster classes which are important global data structures. This means that
both of the TurboMQ classes have probably been misplaced in the Graph cluster,
and would be better suited in the ObjectiveFunctionCalculator subsystem2

instead.

Graph.ssL0

Cluster Graph TurboMQ TurboMQIncr

BunchAPI.ssL0

BunchAPI BunchProperties BunchAPITest

The Graph Subsystem The BunchAPI Subsystem

Fig. 9. Two of Bunch’s Subsystems Decorated with Export Relations. The Light Edges
are the Containment Relations and the Dark Edges are the Export Relations.

2 This subsystem is not shown but it is present in the subsystem hierarchy generated
by Bunch.

1384 B.S. Mitchell, S. Mancoridis, and M. Traverso

SynchronizedEventQueue

BunchEvent

WorkFinishedEvent

Callback

CallbackImpl

ServerStats

Manager

WorkRequestEvent

DistributedClusteringMethod

DistributedClusteringMethod.ssL0

Manager.ssL0

CallbackImpl.ssL0

BunchEvent.ssL0

DistributedClusteringMethod.ssL1

Fig. 10. The Bunch Subsystem that Supports Distributed Clustering

Since the clustering was automatically produced by Bunch, this error is prob-
ably related to the fact that the clustering algorithm does not take into account
style-related properties. This is an example of how by considering the style rela-
tionships one can complement clustering tools. Regardless of whether the clus-
tering was produced manually or by a clustering tool, a configuration where a
subsystem exports a high percentage of its classes warrants further investigation.

The existence of export relations, or lack of them, gives us information on
how a change to a module might affect the rest of the system. In particular, if a
module is local to a subsystem (i.e., it is not exported), it is clear that making
modifications to it should not affect modules that are outside of the subsystem
where it belongs. Maintenance efforts can be concentrated on a small subset of
the system. The existence of an export dependency indicates that changes to the
module may affect a wide range of modules in the system, and, thus, care must
be taken when modifying the module. Even with a subsystem decomposition
produced by a clustering algorithm, it is not obvious for all but the most trivial–
sized systems, which modules encapsulated in a subsystem are only dependant
on other modules within the subsystem. As an example, on the right side of
Figure 9, we have confidence that an update to the BunchProperties class can
at most affect the BunchAPI and the BunchAPITest classes.

Figure 10 shows the subsystem responsible for distributed clustering. Let us
imagine that we want to add a new function to Bunch that depends on this sub-
system. The first thing that we need to know is the interface to this subsystem.
Since the documentation is often outdated or missing altogether, the most reli-
able way to find the information is by browsing the source code; a really tedious
task, especially if the subsystem is complex. Export relations might ease the bur-
den of such a task, since these modules are essentially the access points to the
subsystem. In the case of the DistributedClusteringSS subsystem, we notice
that the exported modules are CallbackImpl and DistributedClustering-
Method. Thus, we only need to concentrate on those modules when trying to

Using Interconnection Style Rules to Infer Software Architecture Relations 1385

learn how to use this subsystem, and may ignore the rest of the modules since
they are not visible outside of the subsystem.

SATechnique

SATechnique.ssL0

SASimple

Technique

SASimple

TechniqueDialog

SATechnique

Dialog

SATechniqueDialog.ssL0

SATechnique.ssL1

SATechnique

SATechnique.ssL0

SASimple

Technique

SASimple

TechniqueDialog

SATechnique

Dialog

SATechniqueDialog.ssL0

SATechnique.ssL1

Modified Export Style Export Style

Fig. 11. The Simulated Annealing Subsystem with Local/Standard Export (bold ar-
row) and Broad Export (dashed arrow) Relations. The Left Side was Generated Using
the Modified Export Style, and the Right Side was Generated Using the Standard
Export Style.

The containment hierarchy of Bunch has a depth of four levels. This means
that the application is composed of several major subsystems, which in turn,
are composed of smaller subsystems. Some modules in these smaller subsystems
are intended for local use, whereas, other modules are intended for use outside
of the major subsystems (i.e., they are part of the subsystem interface). The
modified export style defined in Figure 8 can help us understand which modules
play each of these roles. The SATechniqueSS subsystem depicted on the left
side of Figure 11 implements a simulated annealing algorithm and was added
quickly to try this idea. It exports module SATechnique which comprises the
subsystem’s interface. On the other hand, modules SASimpleTechnique and
SASimpleTechniqueDialog, which are exported outside the smaller subsystems
but not out of the SATechnique subsystem are intended for use only within
SATechnique. Note that if we had analyzed this subsystem with the original
Export style, we would have seen that SASimpleTechnique would have also
been exported out of SATechnique, as shown in the right side of Figure 11. This
outcome increases the visibility of the SASimpleTechnique module, giving the
maintainer no choice but to assume that this module may be used from any of
Bunch’s subsystems.

The Bunch system contains 48K LOC packaged in 220 classes, with 764
inter-class relations. Our tools clustered Bunch in 0.57 seconds, and recovered
the style-specific relations for the modified export style in 2.86 seconds. Although
space prohibits a more detailed analysis, the few patterns that we examined in
the clustered decomposition with the recovered style-specific relations gave us
significant information on how Bunch is structured and how its modules relate
to each other.

1386 B.S. Mitchell, S. Mancoridis, and M. Traverso

6 Conclusion

This paper highlighted techniques and tools that can be used to assist software
maintainers tasked to fix, enhance or reengineer large and complex existing sys-
tems. These techniques focus on extracting abstract architectural-level artifacts
directly from the detailed system implementation. This is a hard problem since
these abstractions are not specified in the source code.

Ongoing research in software clustering has shown promising results for recov-
ering useful architectural-entities directly from the source code. However, while
software clustering techniques simplify understanding the relationships between
modules grouped into the same subsystems, these techniques provide little help
for understanding the complex inter-subsystem relationships. To address this
need, this paper presented an integrated process that builds on existing soft-
ware clustering technology by using formal style rules to infer architectural-level
relations between subsystems.

References

1. N. Anquetil. A comparison of graphis of concept for reverse engineering. In Proc.
Intl. Workshop on Program Comprehension, June 2000.

2. N. Anquetil and T. Lethbridge. Recovering software architecture from the names
of source files. In Proc. Working Conf. on Reverse Engineering, October 1999.

3. Y. Chen. Reverse engineering. In B. Krishnamurthy, editor, Practical Reusable
UNIX Software, chapter 6, pages 177–208. John Wiley & Sons, New York, 1995.

4. S. Choi and W. Scacchi. Extracting and restructuring the design of large systems.
In IEEE Software, pages 66–71, 1999.

5. J. Clark, J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. S. Mitchell,
S. Mancoridis, K. Rees, M. Roper, and M. Shepperd. Reformulating Software En-
gineering as a Search Problem. Journal of IEE Proceedings - Software, 150(3):161–
175, 2003.

6. F. DeRemer and H. H. Kron. Programming in the Large Versus Programming in
the Small. IEEE Transactions on Software Engineering, 2(2):80–86, June 1976.

7. A. van Deursen and T. Kuipers. Identifying objects using cluster and concept
analysis. In International Conference on Software Engineering, ICSM’99, pages
246–255. IEEE Computer Society, May 1999.

8. J. Korn, Y. Chen, and E. Koutsofios. Chava: Reverse engineering and tracking of
java applets. In Proc. Working Conference on Reverse Engineering, October 1999.

9. C. Lindig and G. Snelting. Assessing modular structure of legacy code based on
mathematical concept analysis. In Proc. International Conference on Software
Engineering, May 1997.

10. S. Mancoridis. ISF: A Visual Formalism for Specifying Interconnection Styles for
Software Design. International Journal of Software Engineering and Knowledge
Engineering, 8(4):517–540, 1998.

11. S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen, and E.R. Gansner. Using au-
tomatic clustering to produce high-level system organizations of source code. In
Proc. 6th Intl. Workshop on Program Comprehension, June 1998.

12. B. Mitchell. A Heuristic Search Approach to Solving the Software Clustering Prob-
lem. PhD thesis, Drexel University, Philadelphia, PA, USA, 2002.

Using Interconnection Style Rules to Infer Software Architecture Relations 1387

13. B. S. Mitchell and S. Mancoridis. Using heuristic search techniques to extract
design abstractions from source code. In Proceedings of Genetic and Evolutionary
Computation Conference, 2002.

14. B. S. Mitchell and S. Mancoridis. Modeling the search landscape of metaheuris-
tic software clustering algorithms. In Proceedings of Genetic and Evolutionary
Computation Conference, 2003.

15. H. Müller, M. Orgun, S. Tilley, and J. Uhl. A reverse engineering approach to
subsystem structure identification. Journal of Software Maintenance: Research
and Practice, 5:181–204, 1993.

16. R. Prieto-Diaz and J. M. Neighbors. Module Interconnection Languages. The
Journal of Systems and Software, 6:307–334, 1986.

17. R. Schwanke and S. Hanson. Using Neural Networks to Modularize Software.
Machine Learning, 15:137–168, 1998.

18. M. Shaw, R. DeLine, D. V. Klien, T. L. Ross, D. M. Young, and G. Zalesnik.
Abstractions for Software Architectures and Tools to Support Them. IEEE Trans-
actions on Software Engineering, 21, April 1995.

	Introduction
	Related Work
	The Style-Specific Architecture Recovery Process
	Preparing the Software System
	Clustering the Software System
	Inferring the Style-Specific Architectural Relations

	Style-Specific Software Architecture Relations
	Defining Styles
	Style-Specific Edge Recovery

	Case Study
	Conclusion

