Evaluating Evolutionary Testability with Software-
Measurements

Frank Lammermann, André Baresel, and Joachim Wegener

DaimlerChrysler AG, Alt-Moabit 96a, 10559 Berlin, Germany
{Frank.Lammermann, Andre.Baresel,
Joachim.Wegener}@DaimlerChrysler.com

Abstract. Test case design is the most important test activity with respect to
test quality. For this reason, a large number of testing methods have been de-
veloped to assist the tester with the definition of appropriate, error-sensitive test
data. Besides black-box tests, white-box tests are the most prevalent. In both
cases, complete automation of test case design is difficult. Automation of
black-box test is only meaningfully possible if a formal specification exists,
and, due to the limits of symbolic execution, tools supporting white-box tests
are limited to program code instrumentation and coverage measurement. Evo-
lutionary testing is a promising approach for automating structure-oriented test
case design completely. In many experiments, high coverage degrees were
reached using evolutionary testing. In this paper we shall investigate the suit-
ability of structure-based complexity measures to assess whether or not evolu-
tionary testing is appropriate for the structure-oriented test of given test objects.

1 Introduction

A large number of today’s products are based on the deployment of embedded sys-
tems. Examples can be found in nearly all industrial areas, such as in aerospace tech-
nology, railway and motor vehicle technology, process and automation technology,
communication technology, process and power engineering, as well as in defense
electronics. Nearly 90 % of all electronic components produced today are used in
embedded systems.

In software development for embedded systems, analytical quality assurance tech-
niques must also be employed intensively besides constructive methods for the speci-
fication, design and implementation of the systems. In practice, the most important
analytical quality assurance measure is dynamic testing. Testing is the only procedure
which allows for the examination of dynamical system behavior in the real applica-
tion environment. Test case design is the most important test activity, since the type,
scope, and quality of the test are determined by selecting feasible test cases. Evolu-
tionary testing is a promising approach for the automation of structure oriented test
case design [1, 2, 3, 4, 5]. As evolutionary tests are based on the use of heuristic
search methods, it is difficult to assess whether the use of evolutionary tests for a
concrete test object is promising or not — that is, whether or not the evolutionary test
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is able to determine test cases which achieve a high code coverage. We term a test
object’s suitability for evolutionary testing its evolutionary testability.

In this paper we investigate the suitability of structure-based software measures for
predicting the evolutionary testability of a test object. If it is possible to establish a
relationship between software measures and evolutionary testability, then the evolu-
tionary test could be tailored to the needs of the individual test objects in order to
achieve the highest degree of efficiency possible.

This paper is arranged as follows: In the second section, the basics for the automa-
tion of test case design for structure-oriented test procedures with evolutionary tests
are provided. In the third section, the software measures investigated are briefly pre-
sented. Section 4 provides an overview of the results. The causes of the results and
the weaknesses of the analyzed software measures are examined in more detail. Section 5
provides an evaluation of these results. The paper closes with a short summary in the sixth
section.

2 Test Case Design

In the context of test case design, those test cases are defined with which the testing
of the system is to be executed. Existing test case design methods can essentially be
differentiated into black-box tests and white-box tests. In the case of black-box tests,
test cases are determined from the specification of the program under test, whereas, in
the case of white-box tests, they are derived from the internal structure. In both cases,
complete automation of the test case design is difficult. Automation of the black-box
test is only meaningfully possible if a formal specification exists, and, due to the
limits of symbolic execution, tools supporting structure-oriented tests are limited to
program code instrumentation and coverage measurement. The aim of applying evo-
lutionary testing to structure-oriented test case design is the generation of a quantity
of test data, leading to the best possible coverage of the structural test criterion under
consideration. In the case of this test case generation method, it is only possible to
determine the input values. Corresponding expected values must be defined by the
tester him or herself.

Evolutionary testing is characterized by the use of meta-heuristic search techniques
for test case generation. The test aim considered is transformed into an optimization
problem. The input domain of the test object forms the search space in which one
searches for test data that fulfil the respective test aim. Due to the non-linearity of
software (if-statements, loops etc.) the conversion of test problems into optimization
tasks mostly results in complex, discontinuous, and non-linear search spaces. In our
work, evolutionary algorithms are used to generate test data because their robustness
and suitability for the solution of different test tasks has already been proven in previ-
ous work, e.g. [1, 3, 5,6, 7].
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2.1 Application of Evolutionary Testing to White-Box Testing

In order to automate test case design for white-box testing with the aid of evolution-
ary algorithms, the test is divided into test aims. Each test aim represents a program
structure that requires execution to achieve full coverage, e.g. for simple condition
testing each program condition represents two test aims: evaluating the condition as
True and as False. The fitness function is minimized during optimization. If an indi-
vidual obtains a fitness value of 0, a test datum is found which fulfils all branching
conditions in the way required to reach the current test aim. The evolutionary test
proceeds to the next test aim. For a more detailed description of the fitness functions
refer to [5]. Further definitions of fitness functions for evolutionary structure tests are
contained in [1, 3].

3 Structure-Based Software Measures

In the case of the structure-oriented tests considered here, a program has a high level
of evolutionary testability if and only if two requirements are met during the evolu-
tionary test for the chosen test criterion. In the first instance, a high level of coverage
must be achieved and in the second, a low number of test data necessary. These are
exactly the requirements in which we are interested for the possible application of
evolutionary tests. If it were possible to reliably predict the evolutionary testability of
a program or that of its individual test aims, one would be able to decide, before the
test, which test termination criteria should be chosen for the individual test aims and
whether or not an evolutionary structure test would be of any use for the program.
Furthermore, the scope of the search and the selection of the evolutionary operators
used in dependence on the qualities of the test object could be changed. Therefore, we
shall look at the complexity measures Number of Test Aims, Executable Lines of
Code, Halstead’s Vocabulary, Halstead’s Length [8], Cyclomatic Complexity [9],
Mpyers Interval [10], and Nesting Level Complexity [11], all of which allow statements
as to the structural properties of programs to be made.

Executable Lines of Code. When determining the Executable Lines of Code (ELOC)
the data-flow and control-flow properties of the software examined are not taken into
consideration. It only contains lines that contain executable statements.

Halstead’s Length and Vocabulary. The software measure Halstead’s Length (HALL)
is based on counting the number of operands and operators as well as their number of
uses in the examined software. When calculating Halstead’s Vocabulary (HALV), in
contrast, the number of different operators and operands is also taken into account.

Cyclomatic Complexity. Cyclomatic Complexity (CYC) is defined as the number of
edges of the programs control-flow graph minus the number of its nodes plus two
times the number of its linked components.
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Mpyers Interval. Myers Interval (MI) is an extension of Cyclomatic Complexity, which
takes the complexity of the branching conditions more accurate into account. The
value of this metric is the sum of the number of logical operators AND and OR in the
conditional expressions of the program investigated.

Nesting Level Complexity. Nesting Level Complexity (NLC) assesses the complexity
of a software with regard to the nesting level of its conditions and statements.

Number of Test Aims. The aim of the evolutionary structure test is to find a set of test
data with which every test aim of the test object is reached at least once. The software
measure Number of Test Aims (NTA) can thus be used as a means of estimating the
test effort, which would be expected to increase with the number of test aims.

4 Experiments

Source text and structure-based software measures do not seem to be able to suffi-
ciently express the evolutionary testability of a test object. In [12] Buhr showed, us-
ing 40 test objects, that the seven above-mentioned software measures were not ade-
quately suited to this purpose. Buhr was unable to establish a sufficient connection
between these software measures and the level of coverage achieved, to justify the
use of software measures to reach conclusions regarding evolutionary test behavior.
The cause is stated as being the insignificant connection between the structural prop-
erties evaluated by the software measures and the properties which it is necessary to
describe in order to judge evolutionary testability. To investigate the difficulties
which conventional software measures have in evaluating evolutionary testability we
would like to take a closer look at the experiments.

4.1 Test Preparation

A large number of different test objects was chosen, which spanned a broad spectrum
of different program complexities and originated from different application areas:
mathematical calculations (both control-related tasks and the execution of string and
character operations) and components from automotive and motor electronics. They
possessed an appropriate value spectrum for each software measure selected: ELOC
varied from 7 to 320, HALYV reached values between 25 and 949, HALL between 93
and 9138. CYC in one area differed from between 3 to 50, MI reached 0 to 47, NLC
varied from 1 to 17 and NTA from 4 to 132.

The minimal multiple-condition coverage test was chosen as a structure test crite-
rion in the experiments because in this test the coverage level reflects the percentage
of non-accomplishable test cases exactly. The branch coverage test can lead to the
problem that the number of test goals not achieved does not comply with the number
of non-executable commands and thus some conditions may be optimized several
times. As the parameter settings of the evolutionary algorithms influence the coverage
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level achieved to a large extent, the evolutionary parameters were kept constant dur-
ing all the experiments. This ensures that the results can be compared. For all the
experiments, the population size was set at 300 individuals: 6 subpopulations, each
made up of 50 individuals. Each subpopulation deployed different evolutionary algo-
rithms, which, in turn, pursued different search strategies and competed with each
other. Fitness assignment took place proportionally, selection was carried out by
means of Stochastic Universal Sampling [13] and the type of recombination used was
Miihlenbein und Schlierkamp-Voosen’s discrete recombination [14]. On average, for
each individual, a variable was mutated and executed with the aid of the mutation of
real variables. During reinsertion the generation gap was 90%, i.e. the next generation
consisted of 10% parent individuals and 90% offspring. Five test runs per test object were
carried out for a total of 13 selected test objects using these settings.

When choosing coverage level and the generations, only those test goals from the
control flow graph were taken into account which were executable and which the
evolutionary structure test, due to the definition of its fitness function, could reach
with a sufficiently long execution time.

Table 1. Minimal multiple-condition coverage test of the 13 test objects investigated. The
number of evolutionarily possible test goals, the average coverage level reached during this
process and the average number of generations required are provided as results

Test Test object | evol. possible | Coverage |No. of average
object No. name test goals  [reached in % | generations

1 blockerkennung 27 85,9 533

2 bnldev 24 98,3 248

3 einklemmschutz 10 90,0 308

4 firstJan 4 100,0 28

5 function_hhs 56 100,0 322

6 gedl 5 100,0 79

7 ged2 12 100,0 18

8 hail 16 100,0 70

9 kindersicherung 52 88,9 3.175

10 leap 4 100,0 47

11 mzuef 126 100,0 23

12 powi 22 100,0 35

13 tuermodul 97 80,0 8.612

In order to be able to evaluate the quality of software measures with regard to their
ability to judge evolutionary testability, one can compare them with real measure-
ments of evolutionary testability (table 1). It is possible to do this by sorting test ob-
jects according to their evolutionary testability measured. The further in front a test
object is in the sorting, the higher its evolutionary testability will be. For this reason,
weighting is carried out firstly according to the coverage reached and then according
to the number of generations required (see sect. 3). This kind of sorting will be called
evolutionary sorting in the following. Thus it becomes possible to evaluate various
other measures with regard to their suitability to measuring evolutionary testability,
depending on how far their sorting differs from the evolutionary sorting.
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4.2 Average Divergence in the Case of Sortings

So as to be able to assess the prediction quality of a software measure regarding evo-
lutionary testability we need to have a look at the divergence of the test objects sorted
according to the measure from test objects sorted in an evolutionary way. The diver-
gence describes the sum of distances of all positions of the same test objects in two
different sortings. The less the test objects which are sorted on the basis of a certain
software measure diverge from the evolutionary sorting method, the better the influ-
ence on the quality of the predicted evolutionary testability will be.

The average divergence of a random sorting from an evolutionary sorting or any
other sorting could help us in evaluating the quality of the software measures. If a
sorting of a specific software measure diverges from the evolutionary sorting in such
a way that it is close to the average divergence to be expected, this means that it does
not contain any suitable prediction quality. In order to determine the average diver-
gence divg(n) we will now have a closer look at two sortings of »n elements:

Let S, = {x,, X,, ... ., X,} and S” = {x’, X,, ... , X, } be any two sortings of an or-
dered set A, whose n elements are clearly distinguishable with regard to one variable
relation. Now, the average overall divergence of S, from S’ is calculated from the
sum of the average divergences of all the elements.

n=1
i
divg(x,) = = (D
n
applies to the first element x, of the sorting S, since each of the positions receives the

same probability i . The same goes for the last element x , i.e. divg( X,) = divg( X,).

To the second and the next to last element of the sorting S, the following line applies:

n=2

1+”§i Z]:j+2i
j=0 i=0

divg( x,) =divg(x,,)=__ = =] , (2)
n n
and for the third and third to last element:
n-3 2 n-3
1+2+ ) i J+ )i
divg( x,) =divg( x,,) = Z(; = ; i . (3)

n n
This continues up to the middle elements, to which the following lines apply:
o]

PIWEDN )

divg( X, ) =divg( X, )= =0 =0 where n is even.
2 2 n
2] Lz
) Jt )i ] (5)
divg( XM) = j=0 =0 where nis odd.
2 n
After adding up all the average divergences of the individual elements x,, X, ... , X,

we get for n even the following overall divergence
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n_) n
n—1 1 n=2 n=3 2 2

diVQﬁ(n):Zn:dev@(xi): 2 ZHZ;I ZH,Z’ Yityil=
ot

P 2. i+
n n n n
-1 n-l Jj nl j
SYaSyi 233 ©®
P L e
n n

and for n odd
X n n-1 1 n=2 EJ—' m
dive(n) =3 divy (x,) = | 2i X/*2i ZJ+Zl DA,
i=1 2. =2

i=0 i=0 j=0 i=0
+Z 4o

n n n n

S Loma ) bl
PWEDY. zzl+;§ NI ZZZ | o

] =
j=0 i=0

j=0
n
n n

Consequently, the following applies in general to the average divergence of an n-
element sorting:
n-1 j
. 2 ZZI (8)

divg(n) = __j=0i=0 |
n
From this, it follows that for the 13 remaining test objects divg(13) = 56. This means
that 56 is the value which we get as an average for the divergence from the evolution-
ary sort sequence, if we arbitrarily sort the test objects without any particular order.

4.3 First Results

If we apply the seven software measures mentioned above to the 13 test objects they
are not able to provide us with reliable predictions concerning evolutionary testability
— as already noticed in [12]. In table 2 and figure 1 the evolutionary sorting is de-
picted, while in table 3 and figure 2 the most successful sorting according to NLC is
shown. Also, for the evaluation of evolutionary testability the average degree of cov-
erage of the minimal multiple condition coverage and the number of generations
needed on average to achieve the evolutionary possible test aims was stated for every
test object. The best possible sorting on the basis of the software measure NLC pos-
sesses a test object (no. 11), whose position within a sorting of only 13 test objects
nonetheless diverges from the evolutionary sorting by six positions. Furthermore,
there are two test objects (no. 5 and no. 6), which each diverge by five positions.
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Table 2. Evolutionary sorting of the test Table 3. Sorting of test objects on the basis
objects of NLC
Test Test object | Cover- | Number Test Test object | Cover- [ Number | NLC
ob- name agein | of gen- ob- name agein | of gen-
ject % erations ject % erations
no. no.
7 ged2 100,0 18 7 gcd2 100,0 18 23
11 mzuef 100,0 23 6 gedl 100,0 79 23
4 firstJan 100,0 28 4 firstJan 100,0 28 46
12 powi 100,0 35 10 leap 100,0 47 46
10 leap 100,0 47 12 powi 100,0 35 70
8 hail 100,0 70 8 hail 100,0 70 70
6 gedl 100,0 79 3 |einklemmschutz| 90,0 308 70
5 function_hhs | 100,0 322 11 mzuef 100,0 23 93
2 bnldev 98,3 248 2 bnldev 98,3 248 93
3 |einklemmschutz| 90,0 308 9 |kindersicherung| 88,9 3.175 93
9 |kindersicherung| 88,9 3.175 1 |blockerkennung| 85,9 533 139
1 |blockerkennung| 85,9 533 13 tuermodul 80,0 8.612 139
13 tuermodul 80,0 8.612 5 function_hhs 100,0 322 395
1000 — 10,000 1000 — 10,000
50,0 4 —— 9000 90,0 — — 2,000
£0.0 4 1A} 5000 80,0 1 M £.000
= 700 700 8 . 7001 7o 2
3 00 6.000 E £ 8001 B.000 'g
§ 50,01 5000 2 2 A0 5o E
E 100 1 2,000 E g 400 4 1.000 E
200 4 3000 = S p 3000 £
200 4 2.000 200 4 2.000
100 1.000 10,0 1.000
o A=t t== m B, 0o | lal|BBIBe
7114121086 523 9 113 764101283112 01135
Fig. 1. Evolutionary sorting of the test Fig. 2. Sorting of test objects on the basis
objects of NLC

Table 4 shows us a closer quantification of the individual sortings sorted on the ba-
sis of software measures. Here we can find the divergences of the test objects which
were sorted according to the seven chosen software measures from the evolutionary
sorting sequence. It is clear that the best possible sorting of the test objects, based on
the complexity measure NLC and provides us with a value of 24, is not very success-
ful when compared with an average divergence value of 56. Additionally, the worst
possible sortings which were sorted according to the software measures HALF and
HALL show a value of 50 which is almost the result of random sorting.

Table 4. Divergences of software measures compared to evolutionary sorting

Software measure | ELOC | HALF | HALL | CYC MI NLC | NTA
Divergence 46 50 50 44 32 24 48
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4.4 Software Measure Combinations

A further approach consists of combining different software measures in order to
obtain reliable statements as to their evolutionary testability. It is possible that the
weaknesses of individual software measures may be compensated for by the combi-
nation of several software measures.

The software measures are normalized, thus allowing us to compare their different
values. It then has to be investigated which combination and weighting of the indi-
vidual software measures represents the best possible measure for describing evolu-
tionary testability. During this investigation the seven software measures together
with the divergence resulting from the evolutionary sorting span an eight-dimensional
search space, whose minimum has to be optimized.

The evolutionary algorithm lends itself to this because it is particularly well suited
to optimizing a multi-dimensional search space using a corresponding fitness function
[15]. Fitness assignment occurs in proportion to the divergence of the sorting se-
quence, resulting from the weightings of the software measure combinations, to the
evolutionary sorting. In this way, the evolutionary algorithm will favor those software
measure combinations which best describe evolutionary testability.

Table 5. Best divergences and weightings of the software measure combinations

Test no. | Divergence ELOC HALV HALL CYC MI NLC NTA
1 30 0.0010 | 0.0033 | 0.0480 | 0.0011 | 0.9944 | 0.4167 | 0.0730
2 30 0.0505 | 0.0001 0.0123 | 0.0000 | 0.9092 | 0.3624 | 0.0295
3 30 0.0017 | 0.0768 | 0.0036 | 0.0075 | 0.8927 | 0.4312 | 0.0094
4 30 0.0000 | 0.0371 0.0000 | 0.0305 | 0.9372 | 0.4646 | 0.0350
5 30 0.0702 | 0.0121 0.0206 | 0.0012 | 0.9881 0.4167 | 0.0156
6 30 0.0449 | 0.0004 | 0.0274 | 0.0000 | 0.9092 | 0.3624 | 0.0295
7 30 0.0020 | 0.0507 | 0.0036 | 0.0108 | 0.9690 | 0.4164 | 0.0453
8 30 0.0000 | 0.0191 0.0082 | 0.0000 | 0.9632 | 0.4646 | 0.0350
9 30 0.0064 | 0.0120 | 0.0416 | 0.0011 | 0.9872 | 0.5204 | 0.0307
10 30 0.0016 | 0.0000 | 0.0036 | 0.0075 | 0.8873 0.4157 | 0.0355

During the optimization, values in the interval [0, 1] were used for the weighting
of the individual software measures. The sum of the respective software measure
weightings produced a new measure, from which a new sorting sequence also re-
sulted. It turned out that, with the exception of MI and NLC all the values of the
software measures always lay between 0 and 0.08 (table 5). In contrast, the values for
MI ranged between 0.88 and 1 and those for NLC between 0.36 and 0.53. This leads
us to surmise that NLC and MI primarily contribute to optimal sorting. However, if
one considered these two software measures exclusively for an optimization run, it
would not be possible to attain below 30 unless the proportion of MI became vanish-
ingly low in comparison to NLC (< approx. 0,2%), which alone managed to achieve a
divergence of 24. In no run was it possible to achieve a lower value than this.

If we compare table 4 and table 5, the result is astonishing: The best value of the
software measure combinations obtains a divergence of 30 and is presented in table 5
with the respective weightings of the software measures. In not one of the ten test
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runs was any of the combinations able to achieve a divergence as low as the best
software measure NLC alone, which obtained a divergence of 24. Combinations of
software measures obviously do not lead to improvements compared to individual
software measures. It seems that combinations, however they are weighted, weaken
the predictions of individual software measures with regard to evolutionary testabil-

1ty.

4.5 Eliminating Disturbing Influences

Other influences resulting from the test objects investigated also play a decisive role
in determining evolutionary testability. Buhr [12] believes that it is not the structure
but rather the data flow properties of a test object which primarily influence its evo-
lutionary testability. This assumption is based on the localization of different dis-
turbing influences — disturbing influences which could occur during the execution of
the evolutionary structure test. Examples are incrementors, i.e. local static variables
which act as timers and only make it possible to achieve a condition by repeating
program calls very often; floating point optimizations whose randomly created opti-
mization steps might possibly be too large to reach a certain constant value correctly;
flags [16] or side-effects [17]. These so strongly disturb the evolutionary testability
that characteristics described by source code or structure-based software measures no
longer have any sufficient effect.

If we eliminate those test objects which have disturbing influences on the evolu-
tionary structure test concerning test goal reachability, this would leave us with only
seven of the 13 test objects described. With these seven test objects some of the soft-
ware measures analyzed provide quite reliable predictions about evolutionary test-
ability. As a measure for the quality of a reliable prediction the divergence from the
evolutionary sorted test objects was again chosen. In table 6 the divergences of all
software measures for this test series are depicted, in table 7 and figure 3 the evolu-
tionary sorting is shown, and in table 8 and figure 4 one can find the most successful
sorting according to CYC.

With seven test objects the average divergence divy achieves a value of 16. Nev-
ertheless, the sorting based on CYC surpasses this by a factor of 4. Even if we com-
bine the software measures with the help of the evolutionary algorithm, the result of 6
reached by test objects without disturbing influences on the evolutionary structure
test, is not better than the most successful sorting of individual software measures.

Table 6. Divergences of software measures compared to evolutionary sorting of test objects
without problem cases

Software measure | ELOC | HALF | HALL | CYC MI NLC | NTA
Divergence 6 10 10 4 6 6 6
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Table 7. Evolutionary sorting of test objects Table 8. Sorting of test objects without prob-

without problem cases lem cases based on CYC
Test | Testobject | Cover- | Number Test | Testobject |Cover- | Number [CYC
ob- name agein | of gen- ob- name agein | of gen-
ject % erations ject % erations
no. no.
4 firstJan 100,0 28 4 firstJan 100,0 28 22
10 leap 100,0 47 10 leap 100,0 47 22
8 hail 100,0 70 6 gedl 100,0 79 22
6 gedl 100,0 79 3 |einklemmschutz| 90,0 308 44
3 |einklemmschutz| 90,0 308 8 hail 100,0 70 59
9 _|kindersicherung| 88,9 | 3.175 9 |kindersicherung| 88,9 | 3.175 | 169
100,0 10.000 100,0 10.000
a0,0 4 — 9.000 90,0 4 — 9.000
80,0 4 §.000 80,0 q 8.000
= 1004 7.000 2 700 4 7.000 2
£ 600+ 6.000 2 T e00q B.000 E
£ 5004 s % & 00 | s.om §
& 400 4000 = 2 400 4000 3
30,0 3.000 2 < 300 4 a.000 £
20,0 4 2.000 2000 q 2.000
10,0 4 1.000 100 4 1.000
0.0 . . ! [ ] 0 0,0 - 0
4 1M 8 &8 3 a9 13 4 085 3 8 913
Fig. 3. Evolutionary sorting of test objects Fig. 4. Sorting of test objects without
without problem cases problem cases based on CYC

5 Evaluation

On the basis of the experiments it could be shown that by using source code or struc-
ture-based software measures it was only possible to make mediocre predictions as to
evolutionary testability, which complies with Buhr’s findings. Characteristics of the
test objects exist, which are not sufficiently depicted by these software measures,
even if the test objects are free of disturbing influences regarding the reachability of
the test aim. It is questionable how strongly the differing weightings of the test ob-
jects within the sortings would affect the results. To make better statements, extensive
test series which use an application area which is as broad as possible need to be
executed.

Moreover, slight source code modifications such as, for example, greater limita-
tions in the test objects’ conditions hardly influence the software measures or do not

do so at all. They can, however, have a powerful influence on evolutionary testability.
This is illustrated by the following example:

long w, X, vy, Z;
if (w == 0 && x == 0 & v == 0 && z == 0) { // testaim
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In the experiment, this artificially created test object obtained an average coverage of
40% for five test runs. This low coverage is a consequence of the subconditions’
substantial limitations. The evolutionary structure test is already overstrained starting
from two subconditions to be fulfilled together, producing 200 test data generations.
The ratio of positive to negative test data is 1 to 1.84 * 10" for two subconditions and
around 1 to 3.40 * 10™ for all four conditions. Only for one or no subconditions to be
fulfilled, could a successful test datum be found. The test object thus possesses low
evolutionary testability, whereas the low software measures would lead one to expect
high evolutionary testability (except for MI and NTA the evaluation of the software
measures is always the lowest in this example). In the case of this test object, the
source code and structure-based software measures would fail to evaluate evolution-
ary testability.

6 Conclusion

In order to increase the quality of tests and to reduce the development costs for soft-
ware-based systems, test methods are called for which support a complete test and
which are, to a large extent, automatable. The evolutionary test lends itself to this,
because it supports fully automated test case generation during structure tests.

So as to estimate the evolutionary testability of test objects we checked for a possi-
ble connection between different software measures and the execution of the evolu-
tionary test. We looked at the following source code and structure-based software
measures: Number of Test Aims, Executable Lines of Code, Halstead’s Vocabulary,
Halstead’s Length, Cyclomatic Complexity, Myers Interval, Nesting Level Complex-
ity, and Number of Test Goals. The values measured were compared to the evolution-
ary testability of test objects of varying complexity. After the elimination of disturb-
ing influences within test objects which would hinder the execution of the evolution-
ary test, the structure-based software measure Cyclomatic Complexity was able to
generate the best forecasts for the evolutionary testability to be expected.. The sorting
of the test objects based on this software measure came quite close to the sorting
based on evolutionary testability and surpassed an average sorting by a factor of 4.

It was possible to identify cases in which the software measure Cyclomatic Com-
plexity would fail, i.e. there are test objects whose evolutionary testability is rated
incorrectly by the Cyclomatic Complexity measure (or any other of the source code or
structure-based software measures analyzed). The reason for this can be found in the
dependency of evolutionary testability on certain structure characteristics of the soft-
ware to be tested, which none of the software measures analyzed (nor any other
known software measure) is capable of expressing. Thus, future work should concen-
trate on the development of a software measure which is able to mirror evolutionary
testability as exactly as possible.
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