
How to Overcome the Equivalent Mutant
Problem and Achieve Tailored Selective

Mutation Using Co-evolution

Konstantinos Adamopoulos, Mark Harman, and Robert M. Hierons

Department of Information Systems and Computing,
Brunel University,

Uxbridge, Middlesex, UB8 3PH, UK
konstantinos.adamopoulos@brunel.ac.uk

Abstract. The use of Genetic Algorithms in evolution of mutants and
test cases offers new possibilities in addressing some of the main problems
of mutation testing. Most specifically the problem of equivalent mutant
detection, and the problem of the large number of mutants produced. In
this paper we describe the above problems in detail and introduce a new
methodology based on co-evolutionary search techniques using Genetic
Algorithms in order to address them effectively. Co-evolution allows the
parallel evolution of mutants and test cases. We discuss the advantages
of this approach over other existing mutation testing techniques, showing
details of some initial experimental results carried out.

1 Introduction

Software testing is a vital yet expensive part of the software development process.
Studies suggest that it often consumes in the order of fifty percent of the total
development budget [1,2]. Thus, approaches that automate or semi-automate
sections of software testing may significantly improve the efficiency and quality
of the software development process.

1.1 Overview of Mutation Testing

Mutation testing is a software testing technique originally proposed by Ham-
let [3]. Mutation testing is based upon seeding the implementation (original
program) with a fault (mutating it), by applying a mutation operator, and
determining whether testing identifies this fault. A mutated program is called
a mutant and if a test case distinguishes between the mutant and the original
program it is said to kill the mutant. Given a set of test cases, if no test case
can distinguish between the mutant and the original program then the mutant
is still live.

Mutation testing may be used to judge the effectiveness of a test set: the test
set should kill all the mutants. Similarly, test generation may be based on mu-
tation testing: tests are generated to kill the mutants. Interestingly, many test

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 1338–1349, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

How to Overcome the Equivalent Mutant Problem 1339

criteria may be represented using mutation testing by simply choosing appro-
priate mutation operators. Test sets are measured according to mutation score,
or adequacy score, which is defined as the total number of killed mutants over
the number of non-equivalent mutants, where a mutant is said to be equivalent
if there does not exist a test case which can distinguish the output of the mu-
tant from the output of the original program. Mutation score takes real values
between 0.0 and 1.0, where 1.0 is the best score possible, meaning that this par-
ticular test set can kill all the non-equivalent mutants. Such a test set is said to
be 100% mutation adequate.

Due to the fact that mutation testing is of high computational cost, even in
the case of small and rather simple programs, several techniques were developed
to reduce considerably the computational cost of effectiveness. Among these
techniques are selective mutation [4], mutant sampling [5], weak mutation [6,7],
schema-based mutation [8], separate compilation [9], and search. In this paper we
examine some weak points of the ‘do fewer’ techniques, such as selective mutation
and mutant sampling, and we introduce a new, search based, methodology based
on Genetic Algorithms (GAs).

Selective mutation identifies the critical mutation operators that provide al-
most the same testing coverage as non-selective mutation. A number of mutants
are rejected, because low performance mutation operators are rejected. As a
result, the number of mutants is considerably decreased thereby reducing com-
putational cost.

In a similar manner, mutant sampling is another approach to reduce the
number of mutants under consideration. The main concept of this approach is
the random selection of a subset of mutants; either by using samples of some a
priori fixed size, or until sufficient evidence has been collected indicating that a
statistically appropriate sample size has been reached [4,5].

The main assumption of the present work is that the ‘do fewer’ approaches
(selective mutation and mutant sampling) have some weak points: Selective mu-
tation does not take into consideration the fact that there are different sets of
critical mutation operators for different classes of programs. On the other hand,
mutant sampling is an approach that works satisfactorily with small randomly
selected subsets of mutants but the testing coverage achieved is reduced [10].

While mutation testing is a powerful and general technique, a number of
associated problems have limited its practical impact.

1. One of these problems is that the standard set of mutation operators may
lead to a vast number of mutants, not always appropriate ones. Typically
there is a large number of mutants for even small software units. Because
of this, mutation testing is considered to be a computationally expensive
method; all mutants must be tested against all test cases, leading to an
increasing demand for computational resources. However, it has been noted
that this problem can be reduced by an appropriate choice of mutation
operators, using selective mutation [4].

2. Another important problem with mutation testing is that a mutant, while
syntactically different from the initial program, may have the same behaviour

1340 K. Adamopoulos, M. Harman, and R.M. Hierons

as the program. Clearly such equivalent mutants can never be killed and
thus it is important, but often difficult, to identify them. Some approaches to
detecting equivalent mutants and reducing the number of equivalent mutants
produced have been introduced [11,12,13,14,15]. Manual equivalent mutant
detection is tedious and new methodologies to automate this process should
be introduced.

The contributions of this paper are to:

– Address the problem of selecting the effective mutants and test cases by
searching for them.

– Reduce the large number of mutants produced and the associated computa-
tional cost, using natural selection, rather than artificial selection.

– Show how the fitness function can be designed to avoid generation of equiv-
alent mutants.

– Explore how co-evolution can be used to automatically generate and evolve
both mutants and test cases.

The first author to consider the application of genetic algorithms to mutation
testing was Bottaci [16,17]. Many other authors have also suggested search for
test data generation for other forms of testing [18,19,20,21,22,23,24,25,26,27,28].
However, this is the first paper to introduce the idea of co-evolution for mutation
testing. A recent survey of work on evolutionary test data generation is provided
by McMinn [29].

The problem of selection is a special case of the Feature Subset Selection
Problem [30], where from an existing set of features there must be selected a
subset of features that can achieve the same quality of properties. In our case
to select the subsets of mutants and the corresponding subsets of test cases that
provide the highest testing coverage possible. That is, as close as possible to
100% mutation adequacy.

In the present work we will present a three step methodology. The first step
is to utilize a GA for the evolution of the mutants of a given program. The
second step, similarly, is to utilize a GA for the evolution of the test cases of a
given program. And finally, the third step which refers to the use of GAs for the
co-evolution of both a population of mutants and a set of test cases for a given
program.

The rest of the paper is organized as follows: Section 2 describes the proposed
methodology. Section 3 presents some results of the experiments carried out.
Section 4 outlines some of the outstanding issues for future consideration. Finally
section 5 presents the conclusions.

2 Methods

In this section the three aspects of our methodology will be presented, namely
the evolution of subsets of mutants against a fixed set of test cases, the evolution
of subsets of test cases against a fixed set of mutants, and the co-evolution of
both populations by evolving in parallel subsets of mutants and subsets of test
cases.

How to Overcome the Equivalent Mutant Problem 1341

2.1 Evolution of Subsets of Mutants Against a Fixed Set of Test
Cases

In order to evolve subsets of mutants that are non-equivalent and at the same
time difficult to kill first we generate a pool of mutants of the original program
under test. From this pool our candidate mutants will be drawn. This is done
by using a simulation of a mutation testing tool such as Mothra [31].

Each member of the constructed pool of mutants has been validated against
a fixed set of test cases. This validation procedure associates each mutant with
a corresponding score that is related to the performance of the mutant against
a given fixed set of test cases. The higher the score, the more difficult it is for
a mutant to be killed. In this way the score is a measure of the ability of the
mutant to avoid being killed by the test cases. This validation procedure has
been simulated. The simulation generates random real numbers between 0.0 and
1.0; each number represents a score associated with a mutant.

The main idea is to construct subsets of these mutants, each subset to be
considered as an individual of the genetic algorithm. Therefore the initial popu-
lation of the genetic algorithm consists of subsets of mutants that are randomly
selected from the pool of mutants. The simulation does this by grouping a num-
ber of scores together; each group of scores correspond to a subset of mutants.

Evolution of this population with a GA will lead to subsets of mutants that
are combined to give the maximum total score. This is done by selecting the
fitness function of an individual to be the sum of the scores of the mutants
divided by the length of the individual. That is, if Si is the score of a mutant
i and the individual consists of L mutants the fitness Mf of this individual is
given by:

Mf =

{ ∑L

i=1
Si

L if ∀i.Si �= 1.
0 otherwise.

(1)

It is obvious that if there exists i such that Si = 1, then there is a mutant killed by
no test cases. This may be equivalent, that’s why in this case the fitness function
of this particular set of mutants is penalized by assigning to it the value 0. Also,
the normalization of the fitness values, in order to get real values between 0.0
and 1.0, makes the fitness of individuals with different length comparable.

The fitness function, as described here, is relatively easy to optimise (even
without a search technique). However, the evolution of subsets of mutants against
a fixed set of test cases is only a preliminary milestone in the road towards the
ultimate goal of achieving full co-evolution of both test set and mutant set. See
Section 2.3.

We use uniform crossover. The mutation operator exchanges a single mutant
of an individual with another mutant randomly selected from the pool of mu-
tants. The selection operator is the roulette-wheel selection that ensures that
the probability of selection of an individual is proportional to its fitness. Elitism
was also introduced in the GA, that means a user defined number of highly fit
individuals are automatically passed unchanged to the next generation.

1342 K. Adamopoulos, M. Harman, and R.M. Hierons

By applying the GA we achieve to work with the whole set of mutation
operators; there is no need to decrease the number of mutation operators, as in
selective mutation. At the same time the GA achieves tailored selective mutation
by genetically selecting sets of mutants with higher fitness values. That is, a
higher chance of avoiding being killed. Additionally possible equivalent mutants
are detected and eliminated.

2.2 Evolution of Subsets of Test Cases Against a Fixed Set of
Mutants

We can apply the same methodology to the evolution of subsets of test cases
as we applied to evolution of mutants. First, we randomly generate a pool of
test cases from which our candidate test sets will be drawn. Each test case is
a sequence of random appropriately typed values that can be used as input for
the program under test.

Each member of the constructed pool of test cases has been validated against
a fixed set of mutants. This validation procedure associates each test case with a
corresponding mutation score that is related to the performance of the test case
against a given fixed set of mutants. The higher the mutation score the more
effective is a test case in killing mutants, so, in this way the score is a measure
of the ability of the test case to kill mutants. This validation procedure has been
simulated. The simulation generates random real numbers between 0.0 and 1.0;
each number represents a mutation score associated with a test case.

The main idea is to construct subsets of these test cases, each subset to be
considered as an individual of the genetic algorithm. Therefore the initial popu-
lation of the genetic algorithm consists of subsets of test cases that are randomly
selected from the pool of test cases. The simulation does this by grouping a num-
ber of mutation scores together; each group of mutation scores correspond to a
subset of test cases.

Evolution of this population with the GA, will lead to subsets of test cases
that are combined to give the maximum total mutation score. This is done by
selecting the fitness function of an individual to be the sum of the mutation
scores of the test cases divided by the length of the individual. That is, if MSi

is the mutation score of a test case i and the individual consists of L test cases
the fitness Tf of this individual is given by:

Tf =
∑L

i=1 MSi

L
(2)

The normalization of the fitness values, in order to get real values between 0.0
and 1.0, makes the fitness of individuals with different length comparable. As
for the mutants, the fitness function is relatively easy to optimise. However, the
presented here technique is a useful step towards the ultimate goal of achieving
full co-evolution of both test set and mutant set.

Similarly with the GA for the mutants above, we use uniform crossover. This
well-known crossover operator is applied to the individuals of the population.

How to Overcome the Equivalent Mutant Problem 1343

Each test case is a gene of the individual and each individual is a set of test
cases. The mutation operator refers to exchange of a test case of an individual
with another test case randomly selected from the pool of test cases. The selec-
tion operator is the roulette-wheel selection that ensures that the probability of
selection of an individual is proportional to its fitness.

Elitism is defined in the same way as for the previous GA in Section 2.1; a
user defined number of high performance sets of test cases pass automatically to
the next generation.

By applying this GA we work with a large set of test cases, and at the
same time genetically select sets of test cases with higher fitness values. That
is, higher ability in killing mutants and achieving high mutation scores. This
method can automatically generate high performance test cases for an original
program under test.

Fig. 1. GA performance for a standard set of parameter values used as a reference.

2.3 Co-evolution of Sets of Mutants and Sets of Test Cases

The concept of co-evolution in evolutionary computing is inspired by nature,
where organisms that are ecologically intimate, for example, predators and prey,
or hosts and parasites, influence each other’s evolution. Co-evolution entails a
change in the genetic composition of one species (or group) in response to a
genetic change in another. This approach has been chosen to be part of our
methodology for two main reasons:

1. We achieve selective mutation. Previous work has shown selection of
mutation operators to be a productive way to reduce the (often infeasibly

1344 K. Adamopoulos, M. Harman, and R.M. Hierons

Fig. 2. Improved GA performance for higher elitism value, increased from 2 to 10.

large) number of mutants. However previous work requires that the muta-
tion operators are selected a priori. Using evolution we are able to select
individual mutants, tailored to the program under test, based upon their
individual fitness.

2. Our fitness function guarantees not to generate equivalent mu-
tants. The fitness function for mutants requires that at least one test case
kills the mutant. Those mutants which are killed by no test cases, receive
a very low value of fitness. This means that mutants are guaranteed to be
non-equivalent. It may be that some stubborn (hard to kill) mutants which
are not equivalent are also given low fitness scores. It is hoped that the ro-
bustness of the evolutionary search strategy will ensure that such stubborn
mutants are rediscovered. That is, as the co-evolving test set improves its
fitness, a point will be reached where the test set can kill the stubborn mu-
tant. The authors believe that the ability to guarantee that all mutants are
non-equivalent is an important goal. It justifies the ‘aggressive’ approach
adopted here, because the presence of equivalent mutants makes mutation
testing infeasible.

These two properties of our approach aim to address the two fundamental
barriers to wider uptake of mutation testing, specifically:

1. Too many mutants are generated.
2. Too much effort is spent on identifying equivalent mutants.

In this paper the concept of co-evolution is based on the idea that two popula-
tions, that is the one consisting of individuals of mutants, and the one consisting
of individuals of test cases, are evolved in parallel with a specifically designed
GA. On each generation of the GA, the fitness of the individuals of these two

How to Overcome the Equivalent Mutant Problem 1345

Fig. 3. Lower GA performance for higher individual’s length, increased from 10 to 30.

populations are recalculated considering the alteration of the individuals of these
two populations.

In other words the score of each mutant is re-evaluated with respect to the
present population of the test cases, and on the other hand the score of each
test case is re-evaluated with respect to the present population of mutants. Co-
evolution of these two populations is expected to lead to individuals consisting
of mutants that are very difficult to be killed and individuals consisting of test
cases that are capable of killing high quality mutants.

3 Results and Discussions

This section presents simulated results for the GA that evolves sets of mutants. A
pool of N mutants was generated and evaluated. Figure 1 shows the performance
of the GA for N=10,000, constant population size POP of 100, individual’s
length L=10 (10 mutants in each set), crossover probability Pc=1.0, mutation
probability Pm=0.05, and elitism E=2. The GA ran for 1000 generations and
the results presented are averaged over 10 runs for each GA.

The solid line shows the evolution of the fitness of the fittest individual of
each generation, whereas the dotted line represents the evolution of the mean
fitness of each generation.

By increasing the value of elitism from 2 to 10, leaving the values of the rest
of the parameters the same, we obtain the results shown in Figure 2.

We observe that in this case the algorithm converges faster, and achieves a
higher value of best fitness. This result introduces the idea of how elitism, or
similar operators, can be used in the future as a kind of memory to improve the
performance of the algorithm.

1346 K. Adamopoulos, M. Harman, and R.M. Hierons

Fig. 4. Higher performance for the mean fitness of each generation when the mutation
probability has decreased from 0.05 to 0.01.

Figure 3 shows the performance of the GA when the length of each individual
has increased to 30 genes. The values of the rest of the parameters are the same
as for Figure 1. In this case the algorithm converges more slowly and does not
perform as well. It appears that the number of genes forming an individual is a
critical parameter for the performance of the GA.

Figure 4 illustrates the performance of the GA when the mutation probability
has decreased from 5% to 1%, while the values of the other parameters are the
same as in Figure 1. The algorithm achieves an increase in the effectiveness of
the average fitness of each generation.

4 Future Work

In future work, more simulated results from all the GAs will be presented. These
results will be compared with those obtained from a real mutation testing tool,
which is currently under development.

In addition more results will be presented concerning the performance of the
GAs and the influence of GA parameters (population size, crossover probability,
choice between one-point crossover and uniform crossover, mutation probability,
length, selection scheme, elitism) on that performance.

Moreover elitism will be expanded to offer a kind of memory of the best
individuals. The influence of this memory on GA performance will be further
analysed.

Additionally a comparative analysis with selective mutation and mutation
sampling will be presented.

Finally the technique used for elimination of equivalent mutants will be anal-
ysed in order to examine if this technique results in killing also stubborn mutants.

How to Overcome the Equivalent Mutant Problem 1347

5 Conclusion

In this paper we addressed two main problems of mutation testing. First, the
problem of equivalent mutant detection; we showed how to design a fitness func-
tion in such a way that possible equivalent mutants can be detected. Second,
the problem of the large number of mutants produced; we showed how to select
effective mutants and test cases of an original program. We approached these
problems as search problems using probabilistic, meta-heuristic algorithms such
as Genetic Algorithms and co-evolution.

Our main motivation was to overcome the twin difficulties of the infeasibly
large number of generatable new mutants and the problem of weeding out equiv-
alent mutants. The proposed method does not reject mutation operators like the
method of selective mutation, nor does it decrease the number of mutants by
selecting a random sample of the mutants. Instead the proposed method gener-
ates a pool of mutants that can be generated from an original program, after the
application of all the mutation operators. As a second step the method utilizes
a GA that evolves subsets of mutants and therefore genetically rejects irrelevant
and low performance mutants.

In this way we overcome one of the principal disadvantages of selective mu-
tation; false generalisation for the rejection of mutation operators.

In the same manner genetic evolution on sets of test cases is proposed as a
method for increasing their testing ability according to their adequacy score.

Finally these two methods are incorporated in an algorithm for the co-
evolution of both mutants and test cases in parallel. These two populations
compete with each other and therefore better results are expected.

References

1. Myers, G.J.: The Art of Software Testing. Wiley - Interscience, New York (1979)
2. Pressman, R.: Software Engineering: A Practitioner’s Approach. 3rd edn. McGraw-

Hill Book Company Europe, Maidenhead, Berkshire, England, UK. (1992) Euro-
pean adaptation (1994). Adapted by Darrel Ince. ISBN 0-07-707936-1.

3. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Transactions
on Software Engineering 3 (1977) 279–290

4. Bottaci, L., Mresa, E.S.: Efficiency of mutation operators and selective mutation
strategies: An empirical study. Software Testing, Verification and Reliability 9
(1999) 205–232

5. Budd, T.A.: Mutation analysis: Ideas, examples, problems and prospects. In:
Proceedings of the Summer School on Computer Program Testing, Sogesta (1981)
129–148

6. Howden, W.E.: Weak mutation testing and completeness of test sets. IEEE Trans-
actions on Software Engineering 8 (1982) 371–379

7. Woodward, M.R., Halewood, K.: From weak to strong, dead or alive? an analysis of
some mutation testing issues. In: Proceedings of the Second Workshop on Software
Testing, Verification, and Analysis, Banff, Canada (1988)

8. Untch, R.H., Offutt, A.J., Harrold, M.J.: Mutation analysis using mutant
schemata. In Ostrand, T., Weyuker, E., eds.: Proceedings of the 1993 Interna-
tional Symposium on Software Testing and Analysis (ISSTA). (1993) 139–148

1348 K. Adamopoulos, M. Harman, and R.M. Hierons

9. Byoungju, C., Mathur, A.P.: High-performance mutation testing. The Journal of
Systems and Software 20 (1993) 135–152

10. Offutt, A.J., Untch, R.: Mutation 2000: Uniting the orthogonal. In Wong, W.E.,
ed.: Mutation Testing for the New Century (proceedings of Mutation 2000), San
Jose, California, USA, Kluwer (2001) 45–55

11. Baldwin, D., Sayward, F.: Heuristics for determining equivalence of program mu-
tations. Research Report 276, Department of Computer Science, Yale University
(1979)

12. Hierons, R.M., Harman, M., Danicic, S.: Using program slicing to assist in the
detection of equivalent mutants. Software Testing, Verification and Reliability 9
(1999) 233–262

13. Offutt, A.J., Craft, W.M.: Using compiler optimization techniques to detect equiv-
alent mutants. Software Testing, Verification and Reliability 4 (1994) 131–154

14. Offutt, A.J., Pan, J.: Detecting equivalent mutants and the feasible path problem.
In: Annual Conference on Computer Assurance (COMPASS 96), IEEE Computer
Society Press, Gaithersburg, MD (1996) 224–236

15. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible
paths. Software Testing, Verification, and Reliability 7 (1997) 165–192

16. Bottaci, L.: Instrumenting programs with flag variables for test data search by
genetic algorithms. In Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis,
D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L.,
Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N., eds.: GECCO
2002: Proceedings of the Genetic and Evolutionary Computation Conference, New
York, Morgan Kaufmann Publishers (2002) 1337–1342

17. Bottaci, L.: Predicate expression cost functions to guide evolutionary search for
test data. In Cantú-Paz, E., Foster, J.A., Deb, K., Davis, D., Roy, R., O’Reilly,
U.M., Beyer, H.G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener,
J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K., Jonoska, N., Miller,
J., eds.: Genetic and Evolutionary Computation – GECCO-2003. Volume 2724 of
LNCS., Chicago, Springer-Verlag (2003) 2455–2464

18. Ferguson, R., Korel, B.: The chaining approach for software test data generation.
ACM Transactions on Software Engineering and Methodology 5 (1996) 63–86

19. Jones, B., Sthamer, H.H., Eyres, D.: Automatic structural testing using genetic
algorithms. The Software Engineering Journal 11 (1996) 299–306

20. Jones, B.F., Eyres, D.E., Sthamer, H.H.: A strategy for using genetic algorithms
to automate branch and fault-based testing. The Computer Journal 41 (1998)
98–107

21. Michael, C., McGraw, G., Schatz, M.: Generating software test data by evolution.
IEEE Transactions on Software Engineering (2001) 1085–1110

22. Mueller, F., Wegener, J.: A comparison of static analysis and evolutionary testing
for the verification of timing constraints. In: 4th IEEE Real-Time Technology and
Applications Symposium (RTAS ’98), Washington - Brussels - Tokyo, IEEE (1998)
144–154

23. Pargas, R.P., Harrold, M.J., Peck, R.R.: Test-data generation using genetic al-
gorithms. The Journal of Software Testing, Verification and Reliability 9 (1999)
263–282

24. Pohlheim, H., Wegener, J.: Testing the temporal behavior of real-time software
modules using extended evolutionary algorithms. In Banzhaf, W., Daida, J., Eiben,
A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E., eds.: Proceedings of the
Genetic and Evolutionary Computation Conference. Volume 2., Orlando, Florida,
USA, Morgan Kaufmann (1999) 1795

How to Overcome the Equivalent Mutant Problem 1349

25. Schultz, A., Grefenstette, J., Jong, K.: Test and evaluation by genetic algorithms.
IEEE Expert 8 (1993) 9–14

26. Tracey, N., Clark, J., Mander, K.: The way forward for unifying dynamic test-
case generation: The optimisation-based approach. In: International Workshop on
Dependable Computing and Its Applications (DCIA), IFIP (1998) 169–180

27. Wegener, J., Grimm, K., Grochtmann, M., Sthamer, H., Jones, B.F.: Systematic
testing of real-time systems. In: 4th International Conference on Software Testing
Analysis and Review (EuroSTAR 96). (1996)

28. Wegener, J., Sthamer, H., Jones, B.F., Eyres, D.E.: Testing real-time systems using
genetic algorithms. Software Quality 6 (1997) 127–135

29. McMinn, P.: A survey of evolutionary testing. (Software Testing, Verification and
Reliability) To appear.

30. Kirsopp, C., Shepperd, M., Hart, J.: Search heuristics, case-based reasoning and
software project effort prediction. In Langdon, W.B., Cantú-Paz, E., Mathias,
K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G.,
Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska,
N., eds.: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation
Conference, New York, Morgan Kaufmann Publishers (2002) 1367–1374

31. DeMillo, R.A., Offutt, A.J.: Experimental results from an automatic test generator.
acm Transactions of Software Engineering and Methodology 2 (1993) 109–127

	Introduction
	Overview of Mutation Testing

	Methods
	Evolution of Subsets of Mutants Against a Fixed Set of Test Cases
	Evolution of Subsets of Test Cases Against a Fixed Set of Mutants
	Co-evolution of Sets of Mutants and Sets of Test Cases

	Results and Discussions
	Future Work
	Conclusion

