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Abstract. Multiple Species Weighted Voting (MSWYV) is a genetics-based
machine learning (GBML) system with relatively few parameters that combines
N two-class classifiers into an IN -class classifier. MSWV uses two levels of
speciation, one manual (a separate species is assigned to each two-class
classifier) and one automatic, to reduce the size of the search space and also
increase the accuracy of the decision rules discovered. The population size of
each species is calculated based on the number of examples in the training set
and each species is trained independently until a stopping criterion is met.
During testing the algorithm uses a weighted voting system for predicting the
class of an instance. MSWV can handle instances with unknown values and
post pruning is not required. Using thirty-six real-world learning tasks we show
that MSWYV significantly outperforms a number of well known classification
algorithms.

1 Introduction

Data classification, as a supervised learning task, has been one of the most researched
subjects and the progress in this area has translated into a large variety of supervised
learning algorithms. Among the genetics-base machine learning (GBML) systems, the
more successful ones have been the learning classifier systems (LCS) with XCS being
the main example [10, 11]. While Multiple Species Weighted Voting (MSWV)
algorithm qualifies as a GBML because of its use of populations of individuals and
two genetic operators, it is not an LCS.

The use of IN 2-class classifiers in IN -class classification tasks, that MSWYV uses
(discovered independently), is also the standard method used by Support Vector
Machines [9]. There are also other algorithms using N(N —1)/2 SVM classifiers

(one for each pair of classes) for an IN -class classification task [5].

In section 2 we introduce a terminology and present a background of the
classification theory while in section 3 we present the important techniques used by
the algorithm. In section 4 we present the experimental results and compare them with
well known competing techniques followed by conclusions in section 5.
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2 Background

A dataset D is a subset of " x C where .t is the input space, also called the feature
space, and C is the class space. In general .2 = X x---x Xy but in many practical

applications X, = R so .t = R"and the feature space is m -dimensional.
C ={e,,...,cx}, usually a discrete set of small cardinality N , is the class space. A
record (instance or sample) of a data set, is a point p = {x,¢;} = {z,...,,,¢;

where {z;},_,, are the feature values and c;is the class of the record (sometimes
called the record tag).

Classification is the problem of predicting the value of an output variable y € €
based on a given value of the input variablex = {z,,...,z,}.

An attribute is a Boolean valued function h, : X, — {0,1} . A decision rule 7 is a

function 7 : {0, 1}n — C usually built as a conjunction or disjunction of attributes.

Decision rules are used in classification and they are usually constructed by a learning
algorithm from a training set of L points p; = {x;,y;},2 = 1, L of known input and
output values. For a given point {x,¢,;} with x = {x,,...,z,} a correct classification
occurs when r({h|(z;),...,h,(2,)}) = 9(x) = ¢;, otherwise (y(x)=c;) it is
considered an error. MSWYV uses decision trees with internal nodes storing Boolean
valued attributes and the leaf nodes containing a tag. Because the path from the root
node to a leaf node is a conjunction of Boolean attributes, a decision tree can be seen

as a disjunction of a limited number of conjunctions.
In general almost all learning algorithms are procedures for obtaining estimates

{£,(x)} of the set of conditional probabilities:

{fi(@)=Pr(y=¢; |2)}’ (1.1)

There are two methods for obtaining these probability estimates [5], the density
estimation approach and a regression methodology. The density estimation approach
uses Bayes' theorem. A well known example of a classification algorithm using the
density estimation paradigm is Naive Bayes [6] but as referenced in [5] there are
many others.

The second approach attempts to directly estimate the conditional probabilities
(1.1). Examples of algorithms using the regression methodology are the decision tree
induction methods [4, 8], the nearest neighbor methods [1] and others. MSWV also
belongs to this class of algorithms. In the case of the algorithms using decision tree
representations, f would be nothing else but a function built on the Boolean valued

attributes h(x) (like a decision rule). MSWV uses a GA to modify these decision trees
and search for those trees that contain the best decision rules = giving us the best
probability estimates {;(x)}~ .
The predicted class i may be obtained from the probability estimates using:

i(x) = arg max L, f.(x) (1.2)
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Very often L, =1 (see [5]) which is equivalent to assigning the predicted class to be

the most probable for a given x. In section 3.7, the equivalent of equation (1.2) will
be given by equation (1.6) showing how the decision is made in the case of MSWV.

3 Algorithm Characteristics

In this section we detail the main characteristics of the MSWYV system.

3.1 Representation and Species Definition

MSWYV uses populations of individuals to create 2-class classifiers. The genotype and
phenotype of an individual is a decision tree with internal nodes carrying Boolean
valued attributes and leaf nodes carrying one of two possible class labels. What
distinguishes MSWYV from other algorithms using decision trees is the constraint we
impose that each internal node must carry a Boolean valued attribute constructed from
a feature distinct from the other internal nodes in the tree. This restriction implies that
a decision tree can have a maximum of m internal nodes (wheren , following the
terminology in section 2, is the number of features) and a maximum of n +1 leaf
nodes. Because the path from the root node to a leaf node represents a decision rule
(as a conjunction of Boolean valued attributes) each decision tree can carry a
maximum of n + 1decision rules. This restriction significantly reduces the size of the
search space.

The decision trees are randomly initialized. Each internal node stores a Boolean
valued attribute as a triplet (feature#, featuretype,values). The possible

features and the attribute functions built on them are:
®  Boolean features (type 1). X; = {a,b}. An internal node stores (¢,1,v) with
v €{a,b} . h(z,)=1cx, =v.

o Set features (type 2). X; = {x},---xF}. An internal node stores (7,2, A)
with AC X, ,h(zl)=1e2zlcA

e Numerical features (Integer type 3, Floating point type 4).
X, =[x, x], z;€Z|R. A node stores (4,3]4,{v,v,}),

i A R
[v,9,] € X;, bi(z;) =1 x; € [v),1]
Each 2-class classifier is represented by a population of decision trees with leaf nodes
carrying one of two possible class labels, either a class ¢; € C or the "don’t know"
class that we tag as "?" (i.e.? = C —{¢; }). A population of individuals recognizing
the same two classes {c,,?}forms a species, so each species is a 2-class classifier.

For a N-class classification task, MSWYV creates N species.
The training is done using the 1-v-r (one-versus-rest) method. For a given training
set T' the N classes induce a partition T' = T; U...U T with T; containing only the

records tagged with c, . The i-th species (corresponding to the i-th 2-class classifier)
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is trained with the examples in T;as positive examples and all other examples
(T —T;) as negative examples (treated as the "don't know" class).
The size of the i-th species population is automatically calculated with the formula:

20 if card(T,)/2 <20
m; = 1200 if card(T,)/2 > 200 (1.3)
card(T;)/2 otherwise

The reason behind using a population size of card(T;)/2is linked to the
assumption that in the worst case the training subset T} may contain just 2 examples

for each possible classification rule that needs to be discovered in which case the
maximum number of rules the i-th species should discover (although there is no
guarantee they will be discovered) is card(T;)/2. The upper limit of 200 on the

population size is imposed by computational considerations. The lower limit of 20 is
imposed by training time considerations and will be discussed in section 3.6.

3.2 Mutation Operators

In its current version MSWYV uses only mutation and selection (described in the next
section). Every generation all the individuals of a species (the species could be trained
independently and in parallel) are mutated with probability 1, followed by selection.
MSWYV implements 6 mutation operators but with equal probability uses only one
when mutation is applied. The six mutation operators are shown in Table 1. The term
"randomly" refers to a uniform distribution random variable.

3.3 Rule Discovery and Automatic Speciation

One can classify the decision rules into weak and strong rules depending on whether
they cover a small or a large number of training examples. There are datasets
governed by one (or a very small number of) strong classification rule(s) in which
case placing all the individuals in one large population and having them compete with
each other by applying the selection operator seems to be the right way to go. Copies
of the fittest individual will propagate through the population of decision trees
resulting in an accelerated search for the strongest classification rule.

On the other hand, in general, the training examples are covered by a mixture of
strong and weak rules [3]. This would suggest that following a simple hill climbing
strategy by applying selection only between a parent and its offspring (we call this
restricted selection) while slowing down the process of rule discovery, would ensure
that both the strong and the weak rules were pursued by the evolving population.

MSWYV achieves a compromise between the two extreme cases. Initially, each
species starts with a population of hill climbers, individuals that mutate and use
restricted selection to maintain the diversity of the evolved rules. Periodically the
algorithm checks for similar individuals and places them together forming subspecies.
The similarity is defined not in terms of genetic makeup but in terms of proficiency in
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Table 1. The mutation operators used by MSWV.

Operator

Description

Add node

Remove node

Swap two
leaves

Swap internal
nodes

Adds a new internal node (and a new attribute)

Randomly selects a leaf node and removes it and its
parent node

Randomly selects a pair of sibling leaves and swaps
them.

Randomly selects two internal nodes and swaps them

Swap two Randomly selects two internal nodes and swaps the sub-
branches trees headed by them

Attribute Boolean features: the value used in the node is replaced
change by its complement

Set features: With equal probability either adds one
element to the set stored in the node or removes one

Numerical features: Randomly either shift the range up |
down or shrink | expand the range by a random gain

classifying positive and negative examples. The speciation process is formally
described as follows. Let S, represent the set of all individuals in species , trained

with positive examples from the set T} and negative examples from the set T'—T;.
We introduce a pre-order relation on the elements ofS;. If s,s, € S;are two
individuals from species ¢ and by s,(T;)CT,, (T -T,)CT -T,, s,(T,) CT,
and s,(T—T,) CT —T, we denote the sets of positive and negative examples
correctly classified by s, and s, we say that

s 28, © 8(T;) 2 5(T;) & (T —T;) 2 5(T - T)) (1.4)

In other words, an individual is greater than or equal to another individual (from the
same species) if and only if the first individual can correctly classify all the positive
and all the negative training examples the second individual classifies. It can be easily
shown that the relation "> " is reflexive and transitive but not antisymmetric. MSWV

uses the pre-order relationship on the elements of S;to create subspecies of

individuals that are allowed to compete with each other and accelerate the search for
specific decision rules. Because it is computationally intensive this operation (that we
call automatic speciation) is not performed every generation but at regular intervals.
All the experiments described in section 4 have used a speciation period of 50
generations. When the speciation operation is performed the second (or subsequent)
time subspecies may already exist in the population. In this case only the fittest
individuals from each subspecies participate in the speciation process in which case
the pre-order relation between individuals will result in mergers between their
respective subspecies. The use of the fittest individual of a subspecies is justified by
the lack of diversity that characterizes the subspecies, as a result of full selection
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pressure. We would like to point out that individuals of a subspecies may also be
allowed to mate if an effective crossover operator is devised in the future.

3.4 Rule Confidence and Rule Weight

As previously mentioned, a decision tree encodes as many decision rules as there are
leaf nodes in the tree. Although not mentioned in section 3.1, associated with each
leaf there is some additional information built during the learning phase.
e A counter P that counts all the positive examples that have exercised the
tree path (i.e. decision rule) ending at this leaf.
e A counter N that counts all the negative examples that have exercised the
tree path ending at this leaf.
e A rule confidence coefficient calculated, following training, as follows:

W= (also called the true positive rate) for leaves tagged with ¢;

P+ N

= also called the true negative rate) for leaves tagged with ?
L=3 n N( g ) gg

The rule confidence coefficients are used to weight the individual vote during the
testing phase (see section 3.7) and remove the need for post pruning.

Datasets often contain instances with unknown values, and learning algorithms
must be able to deal with them with minimal degradation of performance.

MSWYV treats the unknown (missing) values similar but not identical to other
practical learning schemes like C4.5 [8] and PART [4]. When a record is evaluated
(during training or testing) a path weight variable p W', initially set to 1, is associated
with the path taken by the record through the decision tree. Associated with each
internal node of a decision tree there are 4 variables (p,,p,,mn;,n,) counting how
many positive or negative examples have gone left or right. If an instance cannot be
assigned deterministically to a branch because of an unknown value we assume that it
may go on both branches and consequently two paths are created from that node
down. The path weights of these two paths are updated using the 4 variables stored in
the node with separate equations depending on whether we are testing or training.
During testing, the left and right path weight are given by p Wep, and p Wep, where

pr= (pl +nl)/(pl +pr +nl +n'r’) > P = (pr +n'r-)/(pl +pr +nl +n'r’)

During training after calculating the path weight updating factors p, and p, we also
have to (on-line) update the variables (p,, p,.) or(n;,m,.) :

p=p/P+P). P =0 /(P+DP). 2 =P +PW.p, =p, +PW,

P :nl/(nl +nr)’ Pr :nr/(nl +n'r’)’ n =n +pM’ n,=n, +pWr
Because a path from the root node to a leaf node defines a rule, a path weight is
nothing else but a rule weight. In section 3.5 we show how the path weights (or rule

weights) are used during training (in fitness calculation) and in section 3.7 we show
how they are used during testing (in vote weighting).
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3.5 Individual Fitness Calculation

The fitness of an individual is calculated only once, when the individual is born, using
the training data set. When during the process of evaluating a decision tree shaped
chromosome on a training example a leaf node is reached the following updates take
place. If the leaf has a tag c; that matches the class of the example we increment the

positive examples counter P and give a reward, otherwise we increment the negative
examples counter N and give no reward. If the leaf is tagged "7 " and the example is
tagged c,we increment the positive examples counter P and give no reward,

otherwise we increment the negative examples counter N and give a reward.

The reward score for correctly classifying an example depends on the path weight.
However we need to correct for the imbalance that may exist in the data set. If a class
has very few representatives we need to give a higher reward for correctly classifying
samples from this class. Consequently, the reward for correctly classifying a positive
example z € T, CT ist,(x) = Z pWecard(T)/card(T,). The reward for

all paths

classifying a negative example € T'— T, (at a leaf node tagged with the unknown

class "?") is given by the equation:r,(z)= > pWecard(T)/card(T —T;).
all paths
The sum over all paths is required for handling unknown values as explained in
section 3.4. With these definitions, the fitness of an individual s € S; is given
by: g;(s) = (Z () + Z r,(x))/2 (therefore g,(s) € [0, card(T)] ).
zeT; zeT-T;

One of the major concerns in machine learning is the generalization power of the
rules learned. To encourage the emergence of short rules with a high generalization
potential, MSWYV reduces an individual's fitness by a penalty factor defined as:
6 = 0.0005(rn — 1)L where n is the number of internal nodes in the tree (and distinct

features used in the decision tree), L is the number of records in the training data set
and the constant 0.0005 has been experimentally determined. Assuming a training
dataset of 1000 instances, this small penalty factor implies that adding a new internal
node to a decision tree must be justified by an increase in fitness greater than 0.5.

3.6 Training Time

Unlike other GBML systems that use a fixed, experimentally determined training time
parameter [2, 3], MSWV uses a dynamic stopping criterion. The reasons why a
stopping criterion is superior to a fixed training time method are:

if the training phase stops too early the achieved rule accuracy may be too low

a training phase that is too long may encourage data overfitting

— the "optimum" training time may greatly vary from dataset to dataset

— it improves the algorithm efficiency (stopped species do not consume CPU time)
Every A generations MSWYV calculates the average fitness of all the individuals

of a species. If the average fitness of all individuals of species i at time t = jA is

given by g;(jA), the training will stop at time FA if the following condition is met
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9:(38) — 9,((5 = 3)A)
3

MSWYV system uses a value of 10 for A . Put in words, a species is evolved until
the increase in the (smoothed over 2A ) average fitness of its individuals falls below
2% of the highest jump in average fitness over A generations. Because the highest
jump in fitness usually occurs in the first A generations for almost all datasets it is
reasonable to ensure the same behavior in the case of those datasets that have a very
small number of examples for a certain class (these datasets are very rare but they do
exist in the real-world). It is because of these special cases that we established a lower
limit on population of 20 (see section 3.1) to increase the probability of positive

evolutionary changes and a non zero average fitness increase early in the training.

< 0.02max(z(kA) - Gi((k—14) (1)

3.7 Testing

Given an instance x from a testing dataset with N classes, MSWV uses a voting
scheme to predict its class. Because the individuals in a subspecies are all very similar
(due to the strong selection pressure) only the fittest individual in the subspecies is
allowed to vote. Experiments performed with a very large number of datasets have
shown there is no difference in results if all are allowed to vote or only the best is
allowed to vote (but this method is more efficient). Let's assume species % finishes
the training phase, with its population distributed in M, subspecies. Let's also denote

by M the maximum number of subspecies in any of the N species (i.e.
M = max card(M;)). The outcome of the weighted voting process is given by the

following formula (also see equation 1.2 for reference):
M.

“ i

'I;(X) = arg 1223{\[ M Z vij (X)

i=1

(1.6)

where w,;(x)is the confidence and path (rule) weighted vote of the fittest individual
from the j -th subspecies of the % -th species and is given by the formula:

life =1t
s = 3 T @ = [ 7T )
K ’ 0if ¢ = false

all paths
where p is the confidence coefficient calculated as explained in section 3.4, p W is

the path weight and the summation over all possible paths is required for handling
instances with unknowns (as explained in section 3.4). Confidence weighting removes
the need for post pruning (for example, the vote of a rule with confidence 0, is 0).

4 Experimental Results

The performance of MSWYV has been evaluated on a set of thirty-six standard datasets
available from UCI at: www.ics.uci.edu/~mlearn/MLRepository.html. The thirty-six
datasets used for the study exhibit a large variety of characteristics in terms of number
of instances, number and diversity of features, number of classes, missing feature
values, etc. The datasets and their characteristics are listed in Table 2.
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Table 2. The datasets used for experiments (unknown values given as a percentage of total).

Dataset Id Inst Unknown #feat #nom #num #class
Audiology aud 226 2.0 69 69 24
Balance bal 625 - 4 4 3
Breast-w brw 699 0.3 9 9 2
Bupa bpa 345 - 6 6 2
Contraceptive cmec 1473 - 9 4 5 3
Credit-austral. cra 690 0.6 15 9 6 2
Credit-german crg 1000 - 20 13 7 2
Glass gls 214 - 9 9 6
Heart-c h-c 303 0.2 13 7 6 2
Heart-h h-h 294 20.5 13 7 6 2
Hepatitis hep 155 5.6 19 12 7 2
Ionosphere ion 351 - 34 34 2
Iris irs 150 - 4 4 3
Labor Ibr 57 35.7 16 8 8 2
Pima-indians pmi 768 - 8 8 2
Primary-tumor  prt 339 3.9 17 17 22
Sonar snr 208 - 60 60 2
Soybean soy 683 9.8 35 35 19
Vehicle veh 846 - 18 18 4
Vote vot 435 5.6 16 16 2
Vowel vow 990 - 13 3 10 10
Wine wne 178 - 13 13 3
Yeast yst 1484 - 8 8 10
700 zoo 101 - 16 16 7
Adult ADL 48842 0.9 14 8 6 2
Hypothyroid HTH 3772 5.5 29 22 7 4
Kr-vs-kp KRK 3196 - 36 36 2
Led (10%noise) LED 6000 - 7 7 10
Letter LTT 20000 - 16 16 26
Mushrooms MUS 8124 1.4 22 22 2
Optical-digits ODG 5620 - 64 64 10
Satellite-image ~ SAT 6435 - 36 36 6
Segment SEG 2310 - 19 19 7
Sick SIC 3772 5.5 29 22 7 2
Splice SPL 3190 - 60 60 3
Waveform+noise WVF 5000 - 40 40 3

The performance of MSWYV is compared to six other learning algorithms: NB [6],
IB1 and IB3 (IBk or Instance-Based learner [1] that we use with k=1,3) , C4.5
(revision 8, an induction tree algorithm, [8]) , PART (an algorithm for inferring rules
by repeatedly generating partial decision trees, [4]) and SMO (Sequential Minimal
Optimization, a SVM classifier system [7]), all of them run using the Weka v3.4
package [12] available at: www.cs.waikato.ac.nz/ml/weka

The datasets are divided in two groups, twenty-four small (under 2000 instances)
datasets and twelve large (over 2000 instances) datasets.
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On the group of small datasets (lower case IDs) the comparison between classifiers
is based on averaging ten ten-fold cross-validation runs. To test the statistical
significance of the differences between classifiers on this group of datasets we used a
paired two-sided #-test at 99% confidence level.

On the group of large datasets (upper case IDs) the comparison is based on the
holdout estimate, where 33.3% of the instances are used for training and 66.6% are
used for testing. The statistical significance of the differences between classifiers is
performed using a test for the differences of two proportions at 99% confidence level.
The large datasets have been shuffled offline and we have ensured that all
classification systems have used the same partitions for training and testing.

Finally, the paired Wilcoxon signed rank test is used to calculate the statistical
significance of the overall observed differences between two learning systems.

The accuracy rates (given as percentage of correct classifications) of the
classification systems are summarized in Table 3. Results for the six learning systems
used in the study are marked with o if they show significant improvement over the
corresponding results for MSWYV, and with e if they show significant degradation.

The results presented in Table 3 can serve as basis for several observations. The
first observation is that on this set of thirty-six datasets MSWV significantly
outperforms 4 other classification systems (NB, IB1, C4.5 and PART), slightly
outperforms IB3 and it is outperformed by SMO. This conclusion is based on the
results presented in the row labeled W-L-T (wins-losses-ties) and also from the
outcome of the paired Wilcoxon signed rank test as shown in the row labeled
"Confidence". For example, MSWYV significantly outperforms C4.5 on 17 datasets
and it is significantly outperformed by C4.5 on 7 datasets. Using the results of the
Wilcoxon test we can say that on this group of datasets MSWYV improves C4.5 with
97.6% confidence but it is also improved by SMO with 54.7% confidence. The
comparison with the other classification systems is done similarly.

Using a similar methodology and the experimental results on thirty datasets, [2]
reported that XCS and their own UCS (both are Learning Classifier Systems) were
outperformed by C4.5, PART and IB3. The SMO classifier used in our study could
handle nominal and numerical valued features (different from the version used in [2]).
We can indirectly conclude that MSWV may outperform XCS and UCS on a
subgroup of datasets. In addition to that, MSWYV does not exhibit the deterioration in
performance reported in [2] on datasets with high number of classes like aud, soy or
vow (see Table 2 for IDs and Table 3 for MSWV's results).

As shown in Table 3, MSWYV is outperformed by all other six classifier systems on
one single dataset, ADL that happens to be the dataset with the highest number of
instances. Future experiments on datasets with very large number of instances (>
20,000) will help clarifying whether the performance degrades for very large datasets.

MSWYV has outperformed all other classifiers on two datasets, gls and yst that have
continuous numerical features and more than two classes. This may suggest that either
MSWYV does particularly well on this kind of datasets or, alternatively, the
performance of the other six classifiers on datasets with continuous numerical features
does not match their performance on datasets with integer or nominal features (this
second alternative may be particularly true for the SMO classifier).
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Table 3. Accuracy rates (%) of the classifiers used in the study. The row labelled W-L-T
counts the wins-losses-ties of one-on-one comparison between MSWYV and another classifier.
The last two rows show the z-value and the confidence level of the Wilcoxon signed rank test.

MSWV NB 1IB1 1B3 C4.5 PART SMO
aud 76.86 72.61 e 75.00 78.41 77.26 7942 o 80.75 o
bal 86.62 90.53 o 79.28 e 86.74 7782 e 8317 e 8742 o
brw 96.91 96.07 e 9544 e 96.61 95.01 e 9469 e 96.75
bpa 67.39 5487 o 6220 e 6249 e 65.83 6525 e 58.00 e
cme 52.99 4972 e 4249 e 4511 e 52.73 50.17 e 4982 e
cra 85.72 77.86 o 81.57 o 8496 e 85.57 8445 e 8488 e
crg 73.59 75.16 o 71.88 e 7221 e 7125 e 7054 e 7515 o
gls 72.01 4944 e 6995 o 70.00 o 67.62 e 6874 e 5734 e
h-¢ 82.44 83.33 o 76.04 e 81.82 7693 e 7799 e 8389 o
h-h 83.40 83.95 7833 e 8207 e 8020 e 81.12 e 82.79
hep 84.26 83.81 81.35 @ 80.84 o 7923 e 7974 e 8568 o
ion 91.03 82.17 e 87.09 e 86.01 e 89.74 e 90.83 88.06 e
irs 94.80 95.53 95.40 95.20 94.73 94.20 9620 o
lbr 84.39 93.51 o 84.21 92.81 o 7877 e 7789 e 9298 o
pmi 74.61 7576 o 70.62 e 73.87 74.49 73.46 76.80 o
prt 44.96 4971 o 3434 e 4499 4139 e 4086 e 4696 o
snr 80.53 67.69 e 86.15 o 83.75 o 73.61 e 7740 e 7649 e
soy 91.40 92.81 o 90.07 e 91.07 91.65 91.27 9297 o
veh 67.55 4468 e 69.59 o 7021 o 7228 o 7221 o 7408 o
VOW 87.47 6290 e 99.05 o 9699 o 8020 e 77.67 e 7059 e
vot 95.08 90.02 e 9244 e 93.08 e 96.57 o 9598 o 9577 o
wne 96.01 9747 o 95.11 95.84 9320 e 9208 e 9876 o
yst 58.76 5799 e 5261 e 5509 e 56.61 e 5481 e 57.10 e
Z00 93.86 94.95 96.53 o 95.54 92.57 93.37 96.04 o
ADL 7591 83.38 o 7875 o 81.74 o 8592 o 8480 o 8498 o
HTH 93.52 95.63 o 90.66 e 92.64 9920 o 9920 o 93.83
KRK 94.60 84.61 e 8756 e 9207 e 99.01 o 9822 o 9423
LED 74.33 74.08 6248 e 7425 74.28 74.23 74.03
LTT 76.29 6420 e 9302 o 91.55 o 8133 o 8242 o 79.18 o

MUS  99.89 9443 e 100.0 99.91 100.0 99.88 100.0

ODG 9293 90.71 e 97.84 o 98.05 o 86.55 e 8770 e 97.12 o
SAT 61.91 61.42 69.04 o 69.53 o 59.62 61.35 69.63 o
SEG 92.98 79.22 e 9552 o 9435 93.50 93.90 90.71
SIC 97.10 93.04 e 9530 e 9594 98.25 o 97.89 9376 e
SPL 95.63 94.54 73.01 e 7739 e 9205 e 90.79 e 9304 e
WVE  82.27 79.75 7129 e 7588 e 7345 e 7663 e 8599 o
W-L-T 18-10-8 22-9-5  13-8-15 17-7-12 19-7-10  10-19-7
z-value 2.31 2.2 0.31 2.26 2.26 -0.75
Confid. 97.91 97.22 24.34 97.62 97.62 -54.67

The performance of MSWYV on two large datasets that have noise artificially
added, LED and WVF, is also good, as shown in Table 3.
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5 Conclusions

MSWYV uses a GA to evolve populations of decision trees (each population a 2-class
classifier) but uses a calculated population size and a training stopping criterion rather
than some fixed values. Other variables (like speciation period or fitness averaging
interval) have been kept constant in all our experiments supporting the claim that
MSWYV is a relatively parameter free GBML system. An innovative speciation
mechanism ensures that strong and weak rules are pursued by the evolving population
at the best pace possible. The restriction that the decision tree be constructed on
attributes built on distinct features clearly helps the search but seems to introduce a
limit on the complexity of the decision rules that can emerge in such trees and to
negatively impact the classifier accuracy. This potential problem is successfully
compensated by the statistical power of a voting system, making classification a
collective task. Tested on a large number of real world classification tasks the
algorithm significantly outperforms a number of well known classification
algorithms. MSWV performs well on noisy datasets, can handle records with
unknown values and does not require post pruning. Based on the experimental results
we believe that at this moment MSWYV is the best GBML system reported in the EC
literature.
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