
K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 1201–1213, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Automatic Synthesis of an 802.11a Wireless LAN
Antenna Using Genetic Programming

A Real World Application

Rian Sanderson

SiRiFIC Wireless
Santa Rosa, CA 95409

rsanderson@sirific.com

Abstract. This paper describes the application of genetic programming to
synthesize a small form factor, 2 dimensional wire antenna for a 5.2 GHz
802.11a wireless LAN application. Utilizing basic genetic programming
techniques and using a novel approach to discretizing the search space leads to
a more simple problem representation and implementation. The paper presents
simulation results exceeding expectations and that are competitive to
commercial products.

1 Introduction

The enigmatic nature of radio frequency (RF) engineering, the problem domain’s
large search spaces, and the availability of simulators are all factors in the frequent
choice of evolutionary algorithms [1,2,3] for synthesizing and optimizing antennas.
Specifically, genetic programming (GP) is well suited to this domain when antenna
geometries are represented with an implementation of the LOGO drawing language
[2, 3].

This paper uses GP to create a 5.22 GHz antenna for an 802.11a wireless LAN
application. An efficient antenna, one with good gain and low voltage standing wave
ratio (VSWR), is an important part of an 802.11 system; it can extend the reach of
signals, or prolong battery life by requiring less transmission power.

1.1 What Is Genetic Programming?

To paraphrase, [2] genetic programming is a technique for automatically creating
computer programs which solve, or approximately solve, problems by utilizing a high
level statement of the structure's desired characteristics. Genetic programming has
been successfully used for sequencing proteins, synthesizing electronic circuits,
creating robot control algorithms, and other difficult tasks. Genetic programming is
further explained by Koza [5].

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 1800 dpi
 Downsampling für Bilder über: 2700 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Nein

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages false
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Average
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Average
 /DetectBlends true
 /GrayImageDownsampleType /Average
 /PreserveEPSInfo true
 /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 1800
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

1202 R. Sanderson

1.2 Why an 802.11a Antenna?

The IEEE 802.11 standards are the most popular wireless networking standards for
home and enterprise. IEEE 802.11b/g [6], in the 2.4 GHz band, has a low cost and is
prevalent in homes, school campuses, airports and coffee shops. IEEE 802.11a [7]
with its higher data rates, reduced range, and higher cost, is geared more for the
enterprise and is not yet as prevalent.

Antennas for 802.11a are difficult to find, there are far more antennas for 802.11b/g.
Standard, low gain, 5/8 wavelength, omni directional whip antennas are a feature on
most access points. Yaego, a manufacturer of RF components, has a discrete ceramic
802.11a antenna [11] available from major parts suppliers. Murata also has a discrete
ceramic antenna, the LDA131 [12], but only releases it and its data under non
disclosure agreement. Due to their size and fixed position application, Centurion
Technologies Whisper 5 GHz [13], at 6.4 x 6.4 x 1.7 cm, and the Hyperlink
Technologies HG5308P and HG5311P [14], at 11.4 x 11.4 x 2.5 cm, are the most
comparable antennas to this research. All these antennas work in the range from 5.18
GHz – 5.35 GHz.

1.3 Other Research

As its name implies, Electromagnetic Optimization by Genetic Algorithms, is a whole
text describing genetic algorithm (GA) optimization of various RF problems, but the
chapter by Altshuler and Linden, [1] describes automatic synthesis of “crooked wire
antennas” using a GA. This successful antenna work focuses in the 1600 MHz range
and uses the NEC2 simulator.

Lohn et al [3] use both a conventional GA encoded in real numbers, and a branching
GA with elements of the LOGO drawing language. This branching GA is close to a
GP representation with two functions, forward and rotate, each taking a real valued
argument. Their successful 8470 MHz antenna, with a footprint about the size of a
quarter, is scheduled for launch with NASA’s Space Technology 5 space craft.

Comisky et al [2] describe the rediscovery, by GP, of a 424 MHz Yagi Uda type
antenna which fits in a bounding rectangle .4 meters by 2.65 meters. They utilize the
LOGO drawing language to represent antenna geometries and directly compile in the
source for a later version of the NEC2 simulator, NEC4. They use real valued
quantities for wire lengths and angles, and have a more broad function set utilizing
function argument constraints. To deal with simulator geometry restrictions they
employ a complex wrapper which applies a lethal fitness to individuals violating
geometry constraints, and which replaces wire intersections with 4 new wires.

To varying degrees these works preconceive what the final antenna will look like.
While Altshuler and Linden [1] do not specify the configuration of wires, their GA
implementation fixes the number of them at 7. Lohn et al [3] use the GA to design
one arm, which will is symmetrically repeated, in a wire antenna with four arms
separated at 90 degrees. Comisky et al [2] had a goal to not preconceive the solution
as a Yagi Uda antenna, but the extra weight on elements to create separate wires, the
choice of landmark functions and “no wire” terminals, and the symmetrical reflection
of the generated geometry both lead toward a Yagi Uda type solution.

Automatic Synthesis of an 802.11a Wireless LAN Antenna 1203

Based on this research we were confident we could make an antenna, but questioned:
the quality of VSWR and gain we could find, if the targeted physical size was too
small, and if our lack of predefined antenna structure or symmetry would hamper
results.

2 The Problem

The problem is to synthesize a high gain, low VSWR, two dimensional, continuous
wire antenna for the lower sub band (frequency range 5.18– 5.24 GHz) of the 5 GHz
FCC Unlicensed National Information Infrastructure (U-NII) band which is no larger
than 6 cm square, and made of American wire gauge (AWG) #19 wire. The antenna is
simulated using the freely available NEC2 simulator at a single representative
frequency of 5.22 GHz, in free space, assuming a lossless conductor.

Rather than using real valued quantities for wire sections and angles, the 6 cm square
problem space is discretized into a matrix of 15 by 15 points. As Figure 1 shows, a
continuous wire antenna can be viewed as a collection of small wires each joined at a
point in the matrix.

Fig. 1. An antenna viewed as the connection of six individual segments

NEC2 has many conditions regarding allowable geometries [8] with respect to
wavelength, wire radii, and segment length. By spacing the matrix points
appropriately the number of unsimulatable individuals can be minimized. For this
problem, with its 5.7 cm wavelength signal on AWG #19 wire, 4 mm is the minimum
spacing.

We discretized the search space in an intent to obviate the need for complicated
geometry verification, as in [2]. However we ended up having to employ a simple
geometry check to look for improper segment crossing, duplicate segments, and
segments of zero length.

Segment crossing is the major simulator condition that the quantization does not
protect against. Figure 2 demonstrates valid and invalid junctions.

NEC2 is based on the method of moments [8], and the simulator cannot compute the
current on overlapping segments due to an indeterminate matrix calculation.

Discretizing the problem space puts few limits on what the end antennas will look
like. While in this implementation all antennas are continuous and non branching, it
is the choice of terminals which does not allow discontinuity, and the handling of
duplicate segments which prevents branching. Furthermore, the problem space could

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

1204 R. Sanderson

readily be extended to 3 dimensions, where discretizing would help prevent even
more geometry conflicts.

Fig. 2. Wires may only cross at end points, not in the middle of segments

Though bounded, the total size of the search space is difficult to calculate. Calculating
the permutations of all possible wire segments is not correct; each segment must share
at least one end point with another segment, leaving no stray unattached segments.
Also, crossed segments, as discussed previously, must not be counted, nor can
antennas with branches.

3 Methods

The concept and fitness measure are closely modeled after Comisky et al [2], though
our simplifications render the architecture similar to Koza’s artificial ant problem [5].
The methods are summarized in Table 1 and discussed in detail in the following
sections.

3.1 Architecture

The simple architecture of one result producing branch, the connective functions
progn2 and progn3, and terminals which actually do the work, bears similarity to
Koza’s implementation [5] of the Artificial Ant problem. The connective functions,
progn2() and progn3(), evaluate each of their arguments in order, and return no value.
The real work, output of LOGO instructions, happens as a side effect of evaluating
the terminals at the leaves of progn trees.

The rotate terminals, rotxy 45, rotxy 90, rotxy 315, rotxy 270 change the direction of
the turtle in the X-Y plane, and were chosen with the thought of expanding the
experiment to 3 dimensions. While not strictly necessary, all four rotate terminals
seem appropriate when looking at the problem from a human’s point of view. In the
actual results, rotate operators are often stacked five or more deep, causing the turtle
to spin several revolutions to change perhaps 45 degrees.

The move terminal is the only operation that creates wires. It advances the turtle to
the next matrix point in the current direction, creating a wire segment from the point
at the start of the operation to the point at the end of the operation. Moves that will
take the turtle outside of the matrix are ignored and become no-ops.

valid

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •
invalid

Automatic Synthesis of an 802.11a Wireless LAN Antenna 1205

Table 1. Tableau sumarizing methods

Objective: synthesize a two dimensional continuous wire antenna
for the Lower UNII band (frequency range 5.18– 5.24
GHz) which is no larger than 6 cm square, and made of
American wire gauge (AWG) #19 wire.

Architecture: One result producing branch
Functions: progn2(x,y), progn3(x,y,z)
Terminals: move, rotxy 45, rotxy 90, rotxy 315, rotxy 270
Fitness Case: simulation with NEC2 at a single frequency of 5.22

GHz, generating radiation data for a full 3 dimensional
plot with 5 degree increments

Raw Fitness: -maxgain + V(vswr) ; smaller fitness is better
Standardized
Fitness:

-success predicate + Raw Fitness

Hits: not used
Wrapper: ignores out of bounds move instructions. Geometry

checker: crossed segments, zero length segments,
duplicate segments

Selection: tournament with size of 7, .9 probability of cross over, .1
probability of mutation

Parameters: M=1000,G=100; M=5000,G=40; M=6500,G=35;
M=1000, G=30

Success Predicate exit at fitness of -14

3.2 Fitness and Selection

Simulating at only one frequency cannot be called rigorous, but it speeds
computation. A more robust fitness case, such as [2], would run the simulation over a
frequency range and use the worst case.

The raw fitness measure (1) combines the two most important antenna criteria, the
maximum gain and the voltage standing wave ratio (VSWR), to try and get the most
negative number possible

fitness= -maxgain + V(vswr) (1)

V(vswr)= vswr *C,
where

 C= .1 for vswr <= 2,
 C= 1 for vswr <= 3 ,

C= 10 for vswr > 3 .

(2)

This fitness measure is based on work by Altshuler and [1] as well as Comisky et al
[2], though an even higher penalty for poor VSWR was assessed because VSWR is
critical in 802.11 systems. Early on in the process the VSWR term dominates, but to
get a really negative (better) fitness the antenna must have a high gain.

1206 R. Sanderson

The voltage standing wave ratio (VSWR) [9] is a measure of reflective wave
interference, and can be thought of as how well matched an antenna input is to the
transmission line feeding it. As its name suggests, VSWR is a ratio; a value of 1.0
means all energy is radiated from the antenna and it reflects nothing back to the
feeding source. A VSWR of infinity radiates all energy back to the line feeding the
signal and radiates no energy in its intended direction. The VSWR for a particular
antenna is not a single quantity; it is a function which varies across the excitation
frequency. When VSWR is mentioned as a single quantity in this paper it is at the
simulated frequency of 5.22 GHz with a 50 ohm input impedance. A VSWR greater
than 3 is unacceptable in a WLAN system.

Gain describes an antenna’s ability to apparently amplify a signal [9]. The higher the
gain the more distant a signal of a given power may be transmitted or received. Gain
is measured in decibels relative to isotropic (dBi); where an isotropic antenna is an
ideal antenna which radiates equally in all directions. Standard whip antennas have
gains around 2 dBi, directional antennas such as the biquad have gains near 10 dBi.

Though not explicitly included in the measure of fitness, beam width is also an
important characteristic. Beam width, measured in degrees, describes how wide the
gain pattern is dispersed. Outside the arc of beam width, signals are transmitted at less
than half the power as inside the beam width. Antennas with higher gain tend to have
a more narrow beam width. The success predicate indirectly affects beam width,
because it terminates the run before the antenna overspecializes with a super high gain
and narrow beam width.

We employ a geometry checker as a wrapper to screen individuals to ensure they do
not violate simulator constraints. The geometry checker looks for crossed segments,
segments of zero length, and duplicate segments. Rather than try and fix each of these
problems, as in the simple case of ignoring move instructions when they happen, the
geometry checker flags the individual as a geometry error, giving it an enormously
large, and lethal, fitness value.

Standardized fitness, a transformation of raw fitness so that 0 is the most fit, is
necessary for the breeding process, and is achieved using the success predicate term.

3.3 Choice of Parameters

Based on results from Koza [10] tournament selection is used with .9 probability of
crossover and .1 probability of mutation.

Initially we chose values for M and G, population and number of generations, with a
12 hour run as the target. After hypothesizing that genetic diversity was being lost
due to excessive culling by the geometry checker we increased the population size
and found faster servers to run on. Initial results ran in about .4 seconds per
individual(M1000, G100 in approximately 11 hours), faster hardware yields
evaluation times of .16 seconds per individual (M6500, G35 in approximately 10
hours). Improvement in large M runs started to level off around generation 30.

Automatic Synthesis of an 802.11a Wireless LAN Antenna 1207

4 Structures Undergoing Adaptation

The trees of functions and terminals that actually undergo adaptation bear no
resemblance to the antennas they generate. Figure 3 shows a portion of the program
tree for a random individual of generation 0.

(progn2(progn2 (progn3 (progn2 (progn2 rotxy 90 rotxy 90)
(progn3 rotxy 90 rotxy 45 move))
(progn3 (progn2 (progn3 rotxy 315 rotxy 270 move)
(progn2 rotxy 90 move))
(progn3 rotxy 90 move rotxy 270)
(progn3 rotxy 90 rotxy 270 rotxy 45))

Fig. 3. A portion of a program tree from an individual in generation 0

The individual in Figure 3, like most others, wastes effort spinning around in circles.

The antennas are much easier to view in their evaluated structure, as Figure 4
demonstrates. This average individual has a reasonable gain of 4.79 dBi, but its
dismal VSWR of 240 contributes most to its raw fitness of 2395.21.

Fig. 4. Average individual from generation 0 with raw fitness of 2395.21. The branched portion
is a sign of a duplicate segment, and the latest geometry checker would tag it with lethal fitness

The starting wire where the excitation signal is fed to the antenna is represented with
a small circle. Note that in this run the individual started from the middle of the grid,
later runs put the starting wire at the lower left. We changed the starting position for
figure clarity rather than any performance difference.

As stated previously, a wire is created between two points upon the execution of a
move instruction and rotate instructions don’t actually create wires, they only select
which point the next move instruction will connect to.

Figure 4 is generated from a tree that condenses into: rotxy 90, move, rotxy 270,
move, rotxy 90, rotxy 45, move, rotxy 270, move, move, rotxy 90, rotxy 90, move,
rotxy 90, rotxy 45, move, rotxy 45, move, move, rotxy 90, rotxy 45, move, move,
rotxy 315, move.

1208 R. Sanderson

The branched portion in the middle of figure 4 demonstrates an illegal duplicate
segment. The turtle creates a segment by moving forward, rotating 180 degrees, then
moving again. This is from an early run without the geometry check, which would tag
it with lethal fitness.

5 Implementation

A foundation of this project is the quantizing of the problem space. In conjunction
with the scaling feature of NEC, the quantization allows direct writing of matrix
points to the NEC input file. This creating a one to one mapping from the theoretical
points of the matrix and their actual mapping in the input file. In addition to bounding
the search space, the discretization also fixes the two variables of wire size and
segment length, further narrowing the dimensionality of the problem.

We use the lil-gp genetic programming toolkit for taking care of the grunt work
involved in breeding, program tree representation, and program tree execution. We
had little difficulty getting this C++ toolkit to run under Linux with gcc 2.9, WIN32
Cygwin with gcc 3.3.1, and native WIN32 with MSVC 6.0.

We ran NEC2 v2.3 for the simulator, compiling it for both Linux and WIN32 as a
separate application. Under WIN32 the supporting 4nec2 program plotted antennas,
drew gain fields, and gave instructional geometry warnings on models.

Our data flow is disk intensive, but writing to a file at each stage made modular
development and discrete unit testing possible.

The evaluation of an individual is staged over several steps. The data flow starts with
evaluating the GP tree to generate a LOGO instruction file as show in Figure 5.

rotxy 315
rotxy 90
rotxy 45
rotxy 45
move
rotxy 45
move
rotxy 270

Fig. 5. LOGO instructions generated from a GP tree

The LOGO instructions are easier for a person to understand than the original GP tree,
but still difficult to visualize.

The parser converts from LOGO to NEC input, shown in Figure 6. The first wire is a
fixed stub for the excitation connection and its second endpoint is the starting point
for the first GP generated instruction. This fixed wire also allows for an individual
which is made up of only rotate instructions.

Automatic Synthesis of an 802.11a Wireless LAN Antenna 1209

CM Copyright (c) 2003
CM GP generated 802.11a antenna, 4 mm segs, #19 wire
CM TAG, #Segs, x1, y1, z1, x2, y2, z2, radius
CE
GW 1 1 0 0 0 1 1 0 .120
GW 2 1 1 1 0 2 1 0 .120
GW 3 1 2 1 0 3 2 0 .120
GW 4 1 3 2 0 2 3 0 .120
GW 5 1 2 3 0 1 4 0 .120
GS 0 0 .004
GE
EX0 1 1 0 1 0
FR0 1 0 0 5220
RP 0 73 73 1000 -180.0 0.0 5.0 5.0
EN

Fig. 6. GP generated NEC input file

In the lines starting with GW (generate wire card), notice the direct matrix
coordinates in the NEC input file, as mentioned previously. The starting segment goes
from (0, 0, 0) to (1, 1, 0). The direct coordinates are possible due to the problem
space discretization and the 4 mm scaling operation of the GS card. Looking at this
file a person can get a better sense of where the antenna is going: the first wire moves
up and to the right, the second goes right, the third goes up and to the right again.

After translation, the geometry checker is run on the .nec input file. On a successful
geometry check the input is sent to the NEC2 simulator via a system call to generate a
.out file. Finally the fitness evaluator parses this .out file to compute a raw fitness.

The .out file can then be reviewed interactively outside of the GP run using 4nec2.
The 4nec2 software will plot the antenna geometry for easy viewing, give a three
dimensional radiation plot, and plot VSWR over a range of frequencies.

5.1 Problems Encountered

Error checking on file opening and closing, programming niceties usually shirked by
most programmers, turned out to be important implementation details. Early runs
failed due to a filled user disk quota and segmentation faults after opening too many
file handles.

We added a duplicate segments check to the geometry screening after finding wildly
successful data then discovering that duplicates were a serious error. 4nec2 does not
warn about duplicate segments, and literature does not explicitly forbid them,
however there is no physical way to represent them. Doubling the wire diameter for
that segment violates the minimum spacing between wire segments rule, and also
increases the VSWR. Removing the duplicate segments from a final model increases
the VSWR above 10, invalidating results.

1210 R. Sanderson

6 Results

All best of run individuals show convergence and improvement, with several runs
producing excellent high gain, low VSWR antennas. One run exceeded our
expectations with high gain and low VSWR in a frequency range doubling the
problem specifications.

The best antenna synthesized, run 404803468, is pictured in figure 7 with its full
radiation pattern and VSWR across the band. This antenna’s performance far exceeds
the Yaego chip antenna, it is within .6 dBi of the Hyperlink HG5308P, and 1.6 dBi of
the Centurion Whisper 5GHz. Though a distance from the 11 dBi gain of the
HG5311P, that antenna’s narrow beam width of 60 degrees horizontal and 30 degrees
vertical makes it more difficult to use. VSWR for antenna 404803468 creeps slightly
above 2 at the bottom of the band but its average VSWR of 1.62, with a minimum of
1.27, is as good or better than the others. Its approximate size of 6 cm x 2.3 cm, one
tenth the area of the HG5308P/HG5311P and one third the area of the Whisper 5GHz
arguably makes it a portable or embeddable antenna.

Fig. 7. The best antenna synthesized, from random seed 404803468. It has a max gain of 7.42
dBi, a VSWR of 1.68 at the fitness frequency, and a minimum VSWR of 1.27

Beyond 404803468’s raw fitness, it has several desirable traits. The gain pattern is
well focused, yet not overly narrow, with a beam width of 90 degrees vertical and 45

Automatic Synthesis of an 802.11a Wireless LAN Antenna 1211

degrees horizontal. The simple geometry lends itself to more accurate construction.
Most importantly, its VSWR is under 2.0 for twice the frequency range of the other
GP generated antennas.

Along with antenna 404803468, Table 2 shows several other competitive and
interesting antennas. Antenna 624971 (population 5000) has the second best fitness,
but its complicated shape and VSWR past 5.24 GHz limit its use. Antenna 392561,
though the worst in raw fitness, is actually a decent omni directional antenna with
simple construction and a small 12mm by 12mm right isosceles triangle footprint.
Antenna 274933 has the best minimum VSWR of 1.05 at 5.18 GHz, but this quickly
rises above 3.0 after 5.24 GHz. Antenna 624971 (population 10000) looks good in the
table, but its many lobed gain pattern makes it less desirable.

Table 2. Summary of results, with whip, Yaego, Centurian, and HyperLink antennas for
reference

Random
Seed

Population
Size

Fitness VSWR Max Gain
(dBi)

Comments

whip for reference, not from GP 1.3 2 omni directional

Yaego for reference, not from GP 2.5* 4 max VSWR

Centurion for reference, not from GP 2.0* 9 max VSWR

HG5308P for reference, not from GP 1.5** 8 avg. VSWR

HG5311P for reference, not from GP 1.5** 11 60/30 beam width

5281999 1000 -13.86 1.46 14 invalid model,
duplicate
segments

8281999 1000 -3.23 2.52 5.75
5647348 1000 -4.71 2.98 7.69
392561 1000 -1.63 1.57 1.79 good omni

pattern, trivial
construction

624971 5000 -7.1 1.73 7.27
624971 10000 -6.23 1.36 6.37 odd gain pattern

274933 6500 -6.57 1.362 6.71 narrow VSWR
band, min VSWR
1.05

212519772 6500 -4.4 1.74 4.61
404803468 10000 -7.25 1.68 7.42 best antenna

Though not an explicit goal, the fitness measure over optimizes high gain. Runs
without the geometry checker, such as 5281999, produced extraordinarily high (and
invalid) gain numbers, and when these runs were allowed to go for many generations
the gain numbers kept getting higher while VSWR stayed just under 2.0. Increasing
the weight of the VSWR term, or framing the fitness measure as a single objective
problem with constraints could remedy this.

Culling out all antennas with geometry errors may be too drastic. While easy to
implement, it seems to lead to a loss of too much genetic material. This hypothesis is

1212 R. Sanderson

validated by the success of runs with a greater initial population, and suggests that a
less drastic strategy for handling geometry errors should be employed.

7 Conclusion

We achieved better than expected results which validate the methodology and create
the opportunity for more investigation. The genetic programming architecture is
proven and simple. Discretizing the problem space reduces complexity without
sacrificing the quality of results, though in the end does not obviate all geometry
errors. The fitness measure is successful in selecting low VSWR, high gain
individuals, but can be improved.

Though antenna 404803468 is a competitive solution and could be used, its size is
still prohibitive for the average 802.11a user. This exercise really serves as an
important proof of concept. We chose the problem dimensions with manufacturability
in mind; AGW#19 bent at 45 degree angles with sections no smaller than 4mm can be
built with a careful hand, and then tested to verify model accuracy. If after further
work, simulations and empirical data correlate well we will try to shrink the wire size
down so the entire grid would be 3 mm square, or apply this technique to printed
circuit board antennas.

The market for external antennas is small, but a printed circuit board antenna or a
wire antenna less than 3mm square (and encased in resin) could then be used in an
embedded wireless device, or placed into the top of the housing of a notebook
computer.

Acknowledgements. Thanks to Dr. John Koza for his interest and assistance with this
endeavor, Brad Marsh from Texas Instruments for making time in a demanding
schedule for the initial project, and Bryan Bell at SiRiFIC wireless for its continued
support.

References

1. Altshuler; Edward E. and Linden; Derek S. 1999. Design of wire antennas using genetic
algorithms. In Rahmat-Samii, Yahya and Michielssen, Eric (editors). Electromagnetic
Optimization by Genetic Algorithms. New York, NY: John Wiley & Sons. Pages 211 -
248.

2. Comisky, William, Yu, Jessen, and Koza, John. 2000. Automatic synthesis of a wire
antenna using genetic programming. Late Breaking Papers at the 2000 Genetic and
Evolutionary Computation Conference, Las Vegas, Nevada. Pages 179 - 186.

3. Lohn, Jason D; Linden, Derek S; Hornby S, Gregory; Kraus, William.F; Rodriguez-
Arroyo, Adaan. Evolutionary Design of an X-Band Antenna for NASA's Space
Technology 5 Mission. 2003 NASA/DoD Conference on Evolvable Hardware (EH'03)
July 09 - 11, 2003 Chicago, Illinois. Page 155

4. Abelson,Harold and diSessa,Andrea.1980. Turtle Geometry. Cambridge,MA: The MIT
Press.

Automatic Synthesis of an 802.11a Wireless LAN Antenna 1213

5. Koza, John R. 1992. Genetic Programming: On the Programming of Computers by Means
of Natural Selection.Cambridge, MA: The MIT Press. Chapter 1, Chapter 12 Pages 327-
345

6. Std. IEEE 802.11b-1999, Wireless LAN Medium Access Control and Physical Layer
Specifications:Higher Speed Physical Layer Ext. in the 2.4 GHz band.September 1999.

7. Std 802.11a-1999. Wireless LAN Medium Access Control and Physical Layer
specifications High-speed Physical Layer in the 5 GHz Band. September 1999.

8. Burke, G. J.; Poggio, A. J. Numerical Electromagnetics Code (NEC) Method Of Moments
Part II Program Description Code. UCRL- Livermore, CA: Lawrence Livermore National
Laboratory. 1981

9. Sinnema, William; Electronic Transmission Technology, Lines, waves, and antennas.
Pearson Education POD, 17 February, 1998. Pages 76-78, 275

10. Koza, John R. 1994a. Genetic Programming II: Automatic Discovery of Reusable
programs. Cambridge, MA: MIT Press.

11. Multilayer Ceramic Antenna for Bluetooth/Wlan IEEE 802.11b & WLAN IEEE 802.11a
(2.45/5.2GHz) (Surface Mounted Ceramic Dual Band Antenna) Product Specification.
Taiwan: Phycomp Taiwan LTD. September, 2001

12. http://www.murata.com/nproduct/6l04.html
13. http://www.centurion.com/antennaProd/whisper5ghz.asp
14. http://www.hyperlinktech.com/web/hg5308_11p.php

	1 Introduction
	1.1 What Is Genetic Programming?
	1
	1.2 Why an 802.11a Antenna?
	1.3 Other Research

	2 The Problem
	3 Methods
	3.1 Architecture
	3.2 Fitness and Selection

	4 Structures Undergoing Adaptation
	5 Implementation
	5.1 Problems Encountered

	6 Results
	7 Conclusion
	References

