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Abstract. This paper presents a lens system design algorithm using
the covariance matrix adaptation evolution strategy (CMA-ES), which
is one of the most powerful self-adaptation mechanisms. The lens de-
sign problem is a very difficult optimization problem because the typical
search space is a complicated multidimensional space including many
local optima, non-linearities, and strongly correlated parameters. There
have been several applications of Evolution Algorithms (EA) to lens sys-
tem designs, and Genetic Algorithms (GAs) are generally expected to
be more suitable for these kind of difficult optimization problems than
Evolution Strategy(ES) because GAs can provide a global optimization.
We demonstrate, however, that a CMA-ES can work better than the
GA methods previously applied to lens design problems. Experimental
results show that the proposed method can find human-competitive lens
systems efficiently.

1 Introduction

The lens system design involves very difficult optimization problems because the
search space is typically a complicated multidimensional space including many
local optima, non-linearities, and strongly correlated parameters. Modern lens
system design is thus generally done with specialized CAD softwares that help
designers visualize the lens, evaluate its quality, and locally optimize its variables.
Several non-linear optimization methods are available for the local optimization
of the lens system (the Newton method, the conjugate gradient method, and
the steepest descent method, etc.), and the Damped Least Squares method [3]
has been used frequently. But the design processes are highly dependent on the
designer’s experience in finding the proper starting points because the search
space has many local optima. Several global optimization methods, such as the
conventional bit-string genetic algorithms, have therefore recently been used in
lens system design [3].

The lens system design problems can be formalized as real-valued function
optimization problems by fixing the discrete variables such as refractive indexes.
Ono et al. applied the real-coded genetic algorithms to lens system design prob-
lems [1]. The crossover operator they used was the unimodal normal distribution
crossover (UNDX) [5] and their generation-alternation model was the minimal
generation gap (MGG) [1] respectively, both of which had shown good perfor-
mance in benchmark problems for real-valued function optimization.
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There are two kinds of evolutionary algorithms for the optimization of real-
valued functions. One is the genetic algorithm (GA), where the solver keeps
the multiple search points (a population) and evolves the population so as to
cover the promised search area in the search space. The other is the evolutionary
strategy (ES), where a single search point is considered and the promised mu-
tation shape is evolved so that it can efficiently generate improved candidates.
The GA is generally thought to work better than the ES in the problems that
have many local optima because GA can provide global optimization. The ES
with covariance matrix adaptation (CMA-ES) [4], which adapts the covariance
of mutation shape, has recently been shown to perform well on some benchmark
optimization problems which have single peak landscapes.

In this paper we will first apply the CMA-ES to the lens system design
problem formalized as real-valued function optimization problems [1] and show
that it works better than the real coded-GA. And then we will apply it to the
benchmark problems for lens design problem.

Section 2 describes the lens system design problems, explaining both the ba-
sis of lens system design and the formalization of the design problems. Section
3 outlines the CMA-ES algorithm. Section 4 gives experimental results and dis-
cusses them. We apply the CMA-ES to the benchmark in section 5. Section 6
concludes this paper.

2 The Lens Design Problem

2.1 The Basis of Lens System Design

Given an object of a certain size in the object space, the main task of a lens
system is to produce an accurate images of the object. An ideal lens system is
defined as follows:

(i) The divergent ray bundles emerging from any single object point on the
object plane should be concentrated, after passing through the lens system,
to a corresponding image point on the image plane.

(ii) The image of an object on the image plane should be similar to the object
on the object plane by a given lateral magnification.

A lens system satisfying these requirements is called an ideal lens system, but
an ideal lens system cannot actually be constructed because there are inevitably
the differences between a real image and a corresponding ideal image. These
differences are aberrations, and the purpose of lens design is to determine the
lens arrangement – its surface curvatures, its thickness and its materials – so as
to minimize the aberrations.

To calculate the aberrations we need to know real image and corresponding
ideal image. The real image is calculated by the procedure called ray trace.
Starting at a given point in the object space and proceeding in a given initial
direction, a ray trace is the computation of the trajectory of a light ray through
the lens system until it reaches the image point on the image plane. The exact
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ray trace is obtained from the first law of refraction, which governs the behavior
of light rays passing through the interface between two media having different
refractive indexes. The path of a ray passing from medium 1 to medium 2 obey
the following equation:

n1 sin θ1 = n2 sin θ2 (1)

where n1 and n2 are the refractive indexes of media 1 and 2, and θ1and θ2
are incident and refracted angles. By using the first-order approximation of the
expansion of a sine function, we can write Eq. (1) as

n1θ1 ≈ n2θ2 (2)

This is the case when rays are close to the optical axis, and this approximation
is called the paraxial approximation. When Eq. (2) holds, a lens system having
spherical surfaces becomes an ideal lens system. Therefore an ideal image point
of an object point is defined as the point at which rays diverging from the object
point converge according the paraxial approximation. The calculation of the
basic specifications of the lens system – such as a focal length, f-number, and
back focal length – can be based on the paraxial approximation.

The cross-section of a lens system having three lens elements is shown in
Figure 1. An N-surfaces lens system (N = 6 in Figure 1) can be characterized
by the parameters, c1, . . . , cN , d1, . . . , dN , h1, . . . hN , n1, . . . , nN+1 and s, where
ci is the curvature of the i-th surface and di is the distance from the i-th surface
to the succeeding one (the N+1-th surface is defined as the image surface ).
hi is the aperture of the i-th surface. ni is the refractive index of the medium
occupied between i-th surface and preceding one, and s is the position of the stop.
The ci, s and hi can take any real value as long as the lens system is physically
feasible. Because the refractive indexes are characteristic of materials, however,
we can select for the refractive indexes only the values of available materials.
Refractive indexes are also wavelength dependent, so three or four refractive
indexes corresponding to representative wavelengths in the visible range need to
be known.

The f-number, the focal length, and the field size are fundamental specifica-
tions that can be explained with reference to Figure 1, which illustrates parallel
ray bundles that enter the lens system at field angles of 0 and θ. The line through
the centers of curvature of the surfaces is called the optical axis, and the rays
passing through the center of the stop are defined as principal rays. Considering
the ray bundle parallel to the optical axis, we can see that the focal length is
the distance between the focal point C and the vertical position H at which the
ray refract. The focal length f is also related to the field angle θ and the im-
age height y. When an object is located infinitely far from the lens system, this
relation becomes y = f tan θ. The f-number, which is related to the brightness
of the image, is defined by F = f/Dpupil, where Dpupil is the diameter of the
effective ray bundle parallel to the optical axis (i.e. the parallel ray bundle that
can reach the image surface). The field size 2w is the maximum size of the field
that the lens systems should cover. Therefore, we must consider any ray bundle
having a field angle θ less than w.
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d1 d2 d6d5d4d3

c5c4c3
c1 c2

c6

n1 n2 n6n5n4n3 n7

f: focal length
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Principal Ray

H Cs Optical axis

Image Surface

Dpupil

Fig. 1. An example of the lens system.

2.2 Formalization of Lens System Problems

Ono et al.[1] selected the c1, . . . , cN−1, d1, . . . , dN−1 as the control parameters,
and characterized the lens system by 2N − 2 parameters having real values.
These parameters were scaled so that the search ranges of curvatures and the
distance given in advance were linearly transformed into [0,1]. It should be noted
that cN and dN were not control variables because they are determined for
a lens system to meet a specified focal length. The position of the stop was
determined heuristically. Beaulieu et al. [3] further selected the stop position as
a control variable. Because their experiments treated monochromatic problems,
the refractive indexes were fixed at the helium d wavelength of frequently used
glass.

They evaluated the lens systems by using spot diagrams, which are the sets
of the points at which the ray bundle diverging from an object point intersect on
the image plane. Although as many as possible rays included in the ray bundle
should be traced when evaluating the lens system accurately, computational cost
are usually reduced by tracing only representative rays including the principal
ray and several other several types. Moreover, only three or four representative
object points on the object plane are usually selected. When the object is located
at infinity, three field angles are selected: 0, 0.65w, w. Figure 2 illustrates an
example of the spot diagram and the intersection points of the traced rays having
the field angle of 0 at the first surface.

To evaluate lens systems in view of the requirements (i) and (ii) for the ideal
lens system, Ono et al. defined the resolution R and the distortion D as follows:

R =
∑

θ∈{0,0.65w,w}

√√√√
M∑

k=1

{(xθk − xθ0)2 + (yθk − yθ0)2}/M (3)

D =
∑

θ∈{0,0.65w,w}

√
(xθ0 − xθI)2 + (yθ0 − yθI)2 (4)
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(x I,y I)

(x 0,y 0)(x k,y k) Dpupil

x

y

Fig. 2. Spot diagrams and the intersection points of the traced rays at the first surface
(the field angle is 0)

where (xθI , yθI) is the ideal image points, (xθ0, yθ0) is the image point of principal
ray and (xθk, yθk) are the image points of the other surrounding rays on the im-
age plane, each inclined to the optical axis by an angle θ. In this case (xθI , yθI)is
defined as (0, f tan θ). Given the number of surfaces N , a focal length f , a f-
number F , and a field size 2w, as a specifications, Ono et al. used real-coded
genetic algorithms to optimize the lens system under the evaluation function
F = D + R. They also applied the multi-objective GA using the Pareto optimal
selection strategy. Beaulieu et al. [3] applied the bit-string GA and the genetic
programming under the similar conditions, where the distortion D was consid-
ered as the constraint. In their experiments the distortion had to be less than
1% and the definition of D was different from that specified by Eq. (4). It was

D = max
θ∈{0,0.65w,w}

{
√

(xθ0 − xθI)2 + (yθ0 − yθI)2√
(xθI)2 + (yθI)2

} (5)

3 The CMA-ES Algorithm

The algorithm for the covariance matrix adaptation evolution strategy (CMA-
ES) [4], one of the most powerful self adaptation mechanisms available, is the
following.

(1) Initialize g ∈ R, C ∈ Rn×n, pc ∈ Rn, pσ ∈ Rn, σ ∈ R+ and < x >µ∈ Rn

as follows:
g = 0, p

(0)
c = p

(0)
σ = 0, C(0) = I (unity matrix). σ(0) and < x >

(0)
µ are given

as inputs.
(2) At each generation g + 1, compute the λ offspring by using Eq. (6), where

zk are N (0, I) distributed (elements of zk are independently N (0, 1) dis-
tributed).

x
(g+1)
k =< x >(g)

µ +σ(g)B(g)D(g)z
(g+1)
k , k = 1, . . . , λ (6)
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(3) Select the µ best offspring among them (the set of indices of the selected
offspring is denoted as I

(g)
sel and compute < x >

(g+1)
µ and < z >

(g+1)
µ .

< x >(g+1)
µ = 1/µ

∑

I
(g+1)
sel

x
(g+1)
i (7)

< z >(g+1)
µ = 1/µ

∑

I
(g+1)
sel

z
(g+1)
i (8)

(4) Update the global step size σ and matrices B and D as follows:

p(g+1)
c = (1 − cc)p(g)

c +
√

cc(2 − cc)
√

µ/σ(g)(< x >(g+1)
µ − < x >(g)

µ ) (9)

C(g+1) = (1 − ccov)C(g) + ccovp(g+1)
c (p(g+1)

c )T (10)

p(g+1)
σ = (1 − cσ)p(g)

σ +
√

cσ(2 − cσ)
√

µB(g) < z >(g+1)
µ (11)

σ(g+1) = σ(g) exp(
1
dσ

‖P
(g+1)
σ ‖ − χ̂n

χ̂n
) (12)

The matrices B and D are determined so as to satisfy

C(g) = B(g)D(g)(B(g)D(g))T and C(g)b
(g)
i = (d(g)

ii )2b(g)
i (13)

(5) Increment g and go to step (1)

The parameter setting is discussed in [4] and the default setting is as follows:

cc =
4

n + 4
, ccov =

2
(n +

√
2)2

, cσ =
4

n + 4
, dσ = c−1

σ + 1 (14)

The term < x >
(g)
µ in Eq. (7) represents the mean vector of the selected individ-

uals of generation g that becomes the center of search point of next generations.
The offspring is created by adding a distributed vector N (0, σC) to < x >

(g)
µ ,

where σ is the global step size and C is the covariance matrix. The term σ and
C respectively represent the overall variance and distribution shape of the mu-
tation. These two factors are adapted separately because they should change on
different time scales. The covariance matrix C is adapted by Eq. (9) and Eq.
(10), and the global step size σ is adapted by Eq. (11) and Eq. (12) respectively.
The covariance matrix C is updated with p

(g+1)
c (p(g+1)

c )T , which is a symmetric
matrix of rank one. pc is the evolution path that is the weighted accumulation
of the previously successful mutation. The evolution path often speeded-up the
adaptation of the covariance matrix C. The global step size σ is updated with pr

in Eq. (12) where χ̂n is expectation of the length of a (0, I)-normally distributed
random vector which is approximated by χ̂n ≈ √

n(1 − 1
4n + 1

21n2 ). The pσ is
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also the evolution path calculated by Eq. (11) that is similar to Eq. (9) except
that the scaling matrix D is omitted.

The distributed vector N (0, C) can be created by BDz, where z is the N (0, I)
distributed vector and BD satisfies Eq. (13). The matrix B is the orthogonal n×n
matrix whose i-th columns are normalized eigenvectors of the covariance matrix
C, and the matrix D is the n×n-diagonal matrix whose elements dii are square
roots of eigenvalues of C. The main drawback of the CMA algorithm is that the
computation time for a single cycle of the algorithm is O(N3), where N is the
dimension of the search space. Several modified algorithm CMA-ES algorithms
have therefore been proposed with the aim of reducing the computational time
[7,8].

4 Experiments and Results

To evaluate the capability of the CMA-ES for the lens design problems, we
apply it to the lens design problems and compare the results with those of
representative real-coded GAs.

4.1 Problems

In the experiments we choose two specifications of lens systems used in Ono’s
experiments [1]. For each specifications we design the lens systems having 4 or
6 lens elements. The specifications are given as follows.

– Specification 1: The focal length, f = 100mm, the F number, F/2.0, and
the field angle, 2w = 45.0 deg. The refractive indexes of all lens are fixed at
1.613.

– Specification 2: The focal length, f = 100mm, the F number, F/3.0, and
the field angle, 2w = 38.0 deg. The refractive indexes of all lens are fixed at
1.613.

The evaluation function is the resolution defined by Eq. (3) and the distortion
defined by Eq. (5) is used as a constraint that it must be less than 1%.

4.2 Parameter Setting

N-surfaces lens system are represented by vector x = (c1, . . . , cN−1, d1, . . . , dN−1)
∈ [0, 1]2N−2. The search range of each parameter is given in advance and linearly
transformed into [1, 0]. The search ranges of the curvatures ci and the distances
di are set to [−0.66, 0.66] (the absolute values of radius are larger than 15.0)
and [0.0, 20.0] respectively. The position of stop is determined heuristically in
the same way as the Ono’s experiments [1].

The CMA-ES uses the parameter setting λ = 20, µ = 4, and σ(0) = 10.0. 100
trials are performed for each problem, where each run is stopped if converged.
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In Ono’s experiments, GA consisted of UNDX and MGG. UNDX-m crossover
has been proposed as an generalization of the UNDX and shown a better per-
formance on some benchmark [6]. So we apply UNDX-m, where m is set to
1,2, and 4 (UNDX(m=1) is equal to UNDX). Moreover we try two kind of
alternation-generation model, one is the original MGG where the best and the
roulette-selection individuals survive to the next generation. and the other is
modified MGG where the best two individuals survive. The later has strong se-
lection pressure. Though we applied the 6 type of GAs, only the results of two
GAs are shown. One is the GA with UNDX and the original MGG model, that
is used in Ono’s experiments. The other is the GAs with UNDX-m(m = 4) and
the modified MGG, that showed the best performance among them. 30 trials are
performed for each problem, where each run is stopped if converged.

4.3 Results

Figure 3 shows the convergence curve on the 6-elements lens design of the specifi-
cation 1. The horizontal axis and vertical axis respectively represent the number
of evaluations and the resolution of the best individual obtained so far. The
CMA-ES can converge about 40 times faster than the GAs. Moreover, the qual-
ities of the lens systems obtained by CMA-ES are not inferior to those of the
GAs as shown Figure 4.
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Fig. 3. The converge curve of each optimization method. The 6-elements lens design
problems on the specification, f = 100mm, F/2.0, 2w = 45.0 deg

Fig. 4 shows the qualities of the lens systems obtained by each method. The
horizontal axis and vertical axis respectively represent the resolution and the
frequency, where the number of trials of the CMA-ES and the GAs are 100 and
30 respectively. Fig. 5 shows the best lens systems obtained by CMA-ES.

The computation time for a single run of the CMA-ES is about 300 sec when
applied to the 6-elements lens design of the specification 1. The GAs converge
about 40 times slower than the CMS-ES. The algorithms are implemented by
C++ language on Xeon processors at 1.7 GHz.
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Fig. 4. The frequency of the best solutions. GAs perform 30 trials and CMA-ES per-
forms 100 trials.

4.4 Discussion

The figure 4 shows that the GAs always produce the high quality solutions.
Though the averages of resolution obtained by CMA-ES are significantly worse
than those of the GAs, the CMA-ES can produce high quality lens systems
more efficiently than the GAs because the number of evaluations of CMA-ES
requited for the convergence is much smaller than those of the GAs (See Figure
3). The GA with UNDX-m(m = 4) and MGG(best two) work better than GA
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N=8,  F=2.0,  f=100mm,  w=22.5deg
Resolution=0.094139, Distortion=1.000%

N=12,  F=2.0,  f=100mm,  w=22.5deg
Resolution=0.025045, Distortion=0.105%

N=8,  F=3.0,  f=100mm,  w=19.0deg
Resolution=0.021121, Distortion=1.000%

N=12,  F=3.0,  f=100mm,  w=19.0deg
Resolution=0.014689, Distortion=1.000%

Fig. 5. The best lens design obtained by GAs and CMA-ES

with UNDX and MGG(best+roulette). The results indicate that the GA that
converges rapidly tend to work well on the lens system design problems. The
landscapes of the lens system are very complicated, therefore crossovers have a
few chance to generate improved offspring from parents located remotely in the
search space because there is no correlation between such parents. Therefore the
population need to converge to a certain degree. On the other hand CMS-ES can
adjust the global step size rapidly and locally estimates the landscape. Moreover
the results shows that the CMA-ES doesn’t easily fall into local optimum

5 Application to the Benchmark

Beaulieu et al.[3] applied the bit-string GA to the benchmark for the lens design
problems. The problem is stated in the 1990 International Lens Design Confer-
ence (ILDC) [9] and human experts made several solutions, one of these seem
to be global optimum. The specification of the lens system is as follows:

– Specification 3: The focal length, f = 100mm, the F number, F/3.0, and
the field angle, 2w = 30.0 deg. The refractive indexes of all lens are fixed at
1.51680. The number of lens elements is 4.

We apply the CMA-ES with the same parameter setting and the evaluation
function described in the previous section. The search ranges of the curvatures
ci and the distances di are set to [−0.66, 0.66] and [0.0, 75.0] respectively. We
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F/3.0, f=100mm, w=15.0
Distortion=0.331812, Resolution=0.008924

Fig. 6. The best lens design obtained by the CMA-ES under the specification f =
100mm, F/3.0, 2w = 30.0 deg, N = 8

Table 1. Parameters of the best lens design obtained by the CMA-ES. The stop
position is given in the column of thickness.

surface      radius        thickness          aperture    fractive index 
  
    1        112.865308   10.887726      22.383670     1.000000
    2       -276.900906   12.930491      22.383670     1.516800
    3       -103.878518   77.560903      15.018847     1.000000
    4       -127.478825     0.005718       15.018847    1.516800 
    5          63.343159   60.486656       19.410025    1.000000
    6        671.192334   19.317317       19.410025    1.516800
    7         -41.532186   15.531193       26.488189    1.000000
    8      3805.818724     0.198941       26.488189    1.516800
  stop                           61.012946       14.064979

performed 300 trials for this problem. The averaged computation time for a
single run is 113 seconds on the same processors.

Fig. 6 and Table 1 show the best lens system obtained by 300 trials. The
resolution of the best solution is 0.008942. The resolution of the best 1990 ILDC
lens system is 0.010434 in our used evaluation function. The best lens system
obtained in this experiment is better than the best presented at the 1990 ILDC.
Though the evaluation function may be differ a bit from the one used in 1990
ILDC because of the flexibility for selecting tracing rays in the process of the
ray trace, we can conclude that the CMA-ES can find the human-competitive
solutions efficiently.

6 Conclusion

In this paper we applied the CMA-ES to the lens system design problems and
demonstrated that this method can provide high quality solution efficiently bet-
ter than the representative real-coded GAs. Moreover the human-competitive
solution was found on the benchmark of the 4-element lens design problem. GAs
are generally expected to be suitable for the problems whose landscape has a
lot of local optima And the ES is expected to converge rapidly to the local op-
timum. Many papers have reported these features on the benchmarks. In the
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lens system design problem, the CMA-ES and the GAs have almost same ca-
pabilities of reaching at good solution even if the landscapes are very complex.
More over, the CMA-ES converges much faster than the GAs and doesn’t easily
fall into local optima. We conclude that the landscape of the lens system design
problems are very complicated and then crossovers cannot generate improved
offspring from parents located remotely in the search space because there is no
correlation between such parents. In this case the ES can perform better than
GAs.
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