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Abstract. The paper focuses on the efficiency of the hybrid evolutionary algo-
rithm (HEA) for solving the global optimization problem arising in electronic
imaging. The particular version of the algorithm utilizes image local response
(ILR), in order to reduce the computational cost. ILR is defined as the variation
of fitness function due to a small variation of the parameters, and is computed
over a small area. ILR is utilized at different stages of the algorithm. At the pre-
processing stage, it reduces the area of the image participating in fitness
evaluation. The correlation in the response space identifies the set of sub-
regions that can contain the correct match between the images. Response values
are used to adaptively control local search with the Downhill simplex method
by applying a contraction transformation to the vector of the standard simplex
coefficients. The computational experiments with 2D- grayscale images provide
the experimental support of the ILR model.

1   Introduction

There are several problems in electronic imaging that can be approached in a unified
manner, and formulated as a global optimization problem. Image registration, object
recognition, and content-based image retrieval are commonly used in remote sensing,
robotic vision, industrial control, as well as in many medical, security and defense ap-
plications. In image registration, two images are given, a reference image Img0 and an
image Img1 subject to registration. A transformation has to be found that correctly
maps points of Img1 into the corresponding points of Img0. In object recognition, a
particular object with a signature (i.e. image) Img1 has to be found in a scene Img0 that
contains many different objects. In content-based image search and retrieval, an origi-
nal scene Img0 has to be found in a large image database, such that Img0 contains a
query image Img1.

All three aforementioned problems essentially attempt to find some transformation
A providing the correct match between the images Img1 and Img0. If Img1 and Img0 are
2-dimensional grayscale images, then it is often convenient to evaluate the quality of
the match by measuring the difference between the pixel values of the two images,
after the transformation A has been applied to one of them (e.g. Img1). Then the mini-
mum value of the difference indicates a likely match between the images, and the cor-
responding parameters define the correct transformation. The problem of finding the
correct transformation A can be formulated now as the problem of finding a feasible
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vector of parameters V* minimizing the difference F between the images Img1 and
Img0, so that

F(V) > F(V*),  for all V  V* . (1)

Without loss of generality the paper assumes that A is an affine transformation in-
cluding image translation, rotation, and non-isotropic scaling, such that the trans-
formed vector p' = {x',y'}T of the original coordinates p = {x,y}T of a pixel P∈ Img1

can be found as

p' = A(p) = SRp + T , (2)

where the matrices S, R, and T  denote scaling, rotation, and translation, respectively
[1]. Vector V = {DX, DY, θ, SX, SY} defines the transformation A, and has five com-
ponents: translations DX and DY along the  x- and y-axis, rotation angle θ, and scaling
factors SX and SY along the x- and y-axis. Matrices R and T correspond to the rigid
body motion, while matrix S describes the local deformation of the image when the
scaling factors are non-isotropic, i.e. SX ≠ SY.

The difference F between the images is defined as the squared difference of the
gray levels of the two images divided over the squared area of their intersection, i.e.
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where g1(x',y') and g0(x, y) are the gray levels of the images Img1′ and Img0, respec-
tively, and Ω is the area of their intersection [1].

The difference F has to be computed numerically for every trial parameter vector
V. If the reference image Img0 is a multi-object, cluttered and noisy scene, and the
object Img1 is significantly distorted during the transformation A, the problem (1)-(3)
becomes a nonlinear, multimodal global optimization problem. Moreover, in many
imaging applications the difference F is a non-convex function, which causes gradi-
ent-based optimization methods to fail or perform poorly [2]. Stochastic approach to
global search and optimization has proved to be a successful alternative to classical
optimization methods in solving real world problems [3], [4]. In particular, a hybrid
version of the evolutionary algorithm is used in the paper to solve the optimization
problem (1)-(3) for 2-dimensional grayscale images under the affine transformation
[5], [6]. According to the evolutionary terminology, the vector V = {DX, DY, θ, SX,
SY} is called a chromosome, and the function F corresponding to V is called the
chromosome’s fitness [7], [8], [9]. The algorithm concurrently works with a popula-
tion of chromosomes {Vi, i = 1,…, PV}, and attempts to find a chromosome V* that
has the minimum value of its fitness F(V*). During the search, the algorithm uses ge-
netic operators of selection, crossover, and mutation. Local neighborhood search is
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utilized to improve and refine a set of the best (i.e. fittest) chromosomes found during
the global evolutionary search.

One of the important problems arising in practical application of the hybrid evolu-
tionary algorithm is associated with its relatively high computational cost. Different
approaches have been suggested in the literature including the reduction of the total
population size and the fraction of the population subjected to local search, the use of
the gradient-based local optimization techniques, the reduction of the search space,
various self-adaptation techniques, etc. [5], [8], [9]. The purpose of this paper is to
introduce a consistent approach that can be used throughout the entire algorithm, ei-
ther in addition to other conventional methods, or as a particular form of their expan-
sion. The approach is based on the concept of image local response, and focuses on
the problem of reducing the computational cost associated with solving the global op-
timization problem (1)-(3) arising in electronic imaging applications.

The paper is organized as follows. The concept of image local response (ILR) is
introduced in section 2. Sections 3 through 5 discuss the usage of ILR at different
stages of the hybrid evolutionary algorithm, namely in fitness evaluation (section 3),
selection and crossover (section 4), and in local search (section 5). Computational ex-
periments are presented in section 6. Section 7 concludes the paper.

2   Definition of Image Local Response

Image local response is defined here as the variation of the objective (fitness) function
caused by a small variation of the parameter vector [10]. Response is computed over a
small pixel area called the response area ω. For convenience and without loss of gen-
erality, the response area is chosen as a square with a side r called the radius of ω.
The following procedure computes ILR at a base point P:

• Partial affine transformations are applied to the response area ω near P, such that
each transformation corresponds to a unit variation of one of N components of
the vector V (here DX, DY, θ, SX, and SY).

• For each affine transformation, the partial difference Fi between the initial ω and
the transformed ω' areas is computed.

• The local response RP at point P is computed as the averaged sum of all N partial
differences.

Response RP has the following important properties:
• RP is nearly inversely proportional to the distance d from the base point of the re-

sponse area ω over which it is computed, i.e. RP ≈ f(1/d). As the distance d in-
creases, the value of the response very rapidly decreases.

• If two points P and Q have similar gray level distributions, the difference be-
tween their respective responses RP and RQ is small.

• If the gray level near the base point P has a significant change (e.g. near the ob-
ject edge), the response RP has the corresponding increase in its value.

Image local response can serve as an indicator of the smoothness of the fitness
function F (i.e. fitness landscape) on a micro level, in a small locality near its respec-
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tive base point. If the landscape is smooth, the change of ILR in the locality is small,
while any significant change of F causes the corresponding significant change of the
ILR value. If RP is known, one can define a “deformation” of the local area caused by
RP. If the response is nearly flat, the deformation of the area is small; when the re-
sponse grows, the area correspondingly shrinks. An approximate one-dimensional
model suggests the estimate of the deformation ε of the linear segment enclosed be-
tween the image points P and Q caused by their responses RP and RQ in the following
form [10]:

ε = ln(RP / RQ) . (4)

Since the line segment experiences the deformation of shrinking, the following
condition holds:

0 < (1 – ln(RP / RQ))  1 . (5)

The approximate model of the linear deformation is used in section 5 to derive the
adaptive control mechanism for local search with the Downhill simplex method.

3   Cost Reduction in Fitness Evaluation

The total computational cost TC of the hybrid evolutionary algorithm (HEA) includes
the cost of fitness evaluations, and the overhead related to various evolutionary and
bookkeeping operations, i.e.
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where J is the total number of generations, Gj is the total number of chromosomes in
the j–th generation, eij is the number of fitness evaluations for the chromosome Vi in
the j–th generation, ti is the time required for one fitness evaluation, and the term
O(J,G) is the overhead associated with the total number of iterations J and the total
number of chromosomes G.

In a typical imaging application, the most of the computational cost is attributed to
fitness evaluations, i.e. to the first term in formula (6). A single fitness evaluation for
a chromosome Vi includes the following three operations:

• transformation of the image Img1,
• pixel-wise comparison of the transformed image Img1′ with the original image

Img0 of the scene,
• evaluation of the difference F between both images.
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For the M×N - pixel image, each of the above operations has to be performed M×N
times, so the reduction of the number of pixels participating in the evaluation would
result in the significant reduction of the total cost of the algorithm. The effect of the
reduction can be estimated using the area reduction factor ΦΩ defined as

Ω
Ω′

=ΦΩ ,
(7)

where Ω = M×N, and Ω′ is the reduced image area due to the reduced number of pix-
els for fitness evaluation.

The equivalent number of evaluations Ce corresponding to the full image is defined
as

Ce = ΦΩ Cr , (8)

where Cr is the number of fitness evaluations with the reduced area Ω′. Image local
response can be used for the reduction of the number of pixels participating in fitness
evaluation.

Image local response identifies those segments of the image that change the most
during its transformation, i.e. ILR extracts the important feature of the image, its dy-
namic contents. After computing ILR, the total area Ω of the image can be repre-
sented as the sum of the dynamic contents ΩD and the static contents ΩS.

The dynamic area ΩD will contribute the most to the fitness evaluation for the
transformed image Img1. The effect of the static area is not significant, and can be ne-
glected during the beginning of the search. The following procedure for pixel reduc-
tion in fitness evaluation can be formulated now:

• The M×N matrix MR of image local response for Img1′ is computed during the pre-
processing stage.

• The response threshold TR identifying the dynamic contents ΩD is chosen, such
that image segments (pixels) with the response values below TR are temporarily
excluded from the fitness evaluation.

• The M×N bit mask of the image is formed based on MR. Image segments that
have response values below TR correspond to 0s in the mask; the segments that
have response values above TR correspond to 1s in the mask.

• The bit mask is used at the beginning of the search, and fitness F is computed
only over those segments of the image that correspond to 1s in the bit mask.

• In the process of the evolutionary search, the procedure computing F switches to
the full image evaluation when fitness of the best chromosome falls below some
pre-set fitness threshold TF.
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4   Cost Reduction in Selection and Crossover

The selection mechanism plays the key role in evolutionary search guiding it toward
the fitter fraction of the chromosome population. It is aimed at creating more copies
of higher-fit candidate solutions, i.e. chromosomes with lower values of fitness func-
tion (in minimization problem).

When the best match between images Img1′ and Img0 has to be found, the effi-
ciency of the selection mechanism can be increased with the help of the likelihood
matrix Mp defined as follows. The size of the matrix Mp corresponds to the image size
of the scene (i.e. image Img0). The value of the element (i,j) corresponds to the likeli-
hood of the vector V being at the point (i,j) of the image Img0. If the image Img0 was
partitioned (segmented) into sub-regions corresponding to the objects in the scene,
then the background would have nearly zero likelihood of the location of the solution.
At the same time, the sub-regions corresponding to the objects would have fairly high
probability values in Mp. Matrix Mp can be considered as a mask applied to the image,
so that the background areas are eliminated, while the areas corresponding to the ob-
jects have the high probability of the location of the optimal solution.

Image local response can be used to compute the likelihood matrix Mp, according
to the following procedure:

• The response matrices MREF and MOBJ are computed for the scene Img0 and the
object Img1′.

• Correlation is applied to the matrices MREF and (possibly scaled down) MOBJ`, so
that the latter serves as the correlation kernel. In order to increase the signal-to-
noise ratio, the correlation can be repeated with MOBJ rotated e.g. by 90°.

• The result of the correlation (i.e. the modified matrix MREF) is scaled to fit in the
range (0,1).

• After the scaling, the resulting matrix Mp serves as the likelihood matrix identi-
fying the potential sub-regions for selection and crossover. During the selection
process, the modified quality F′ of the parental chromosome is evaluated ac-
cording to the following formula:

])1exp[( 2pFF −⋅=′ , (9)

where F is the actual fitness value, and p is the probability corresponding to the
chromosome’s entry in the likelihood matrix Mp. The exponential term in (9)
plays a role of the penalty if the chromosome is in the sub-region of the low
likelihood of the optimal solution: the penalty and the corresponding modified
fitness F′ exponentially grow as the probability p decreases.

5   Cost Reduction in Local Search

The particular version of the hybrid evolutionary algorithm described in this paper
combines random search and the Downhill simplex method (DSM) to refine the solu-
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tion [2]. Local search significantly improves the performance of evolutionary algo-
rithm, but requires additional evaluations of the fitness function F, with most of them
attributed to the DSM search. The number of additional evaluations can be reduced
using ILR, as described below.

The Downhill simplex method is an iterative procedure maintaining a non-
degenerate (N+1)-dimensional simplex in the N-dimensional search space [11], [12].
The vertices (V1, V2 , . . . , VN+1) of the simplex, together with the corresponding func-
tion values (F1, F2 , . . . , FN+1), form a set of approximations to the N-dimensional pa-
rameter vector V and the objective function F, respectively. The algorithm attempts to
change the worst vertex of the simplex to a better position, so the function value at the
vertex would decrease. As the procedure moves from iteration to iteration, the sim-
plex is continuously changing its shape and shrinking. The process terminates when
either the size of the simplex or the difference between the function values becomes
very small. The movement of the simplex is based on the ranking order of its vertices,
and is controlled by the vector of four coefficients α = {α1, α2, α3, α4}. The coeffi-
cients define expansion or contraction of the simplex. The commonly used values of
the coefficients are usually fixed at {-1, 2, 0.5, 0.5}. The number of additional fitness
evaluations can be reduced by making the vector α variable and adaptive to the local
properties of the fitness function F in the vicinity of the simplex [10].

A contraction transformation T(α) is applied to the vector α of the DSM coeffi-
cients between two points P and Q of an image, with the contraction coefficient CPQ

estimated using the values of the local responses RP and RQ at points P and Q, as fol-
lows:

))/ln(1( QPPQ RRC −= . (10)

Coefficient CPQ satisfies the following properties:

• CPQ ≈ 1 for a smooth surface with the small variation of the local response, i.e.
when RP ≈ RQ,

• CPQ < 1 for a rough surface with the large variation of the local response, i.e. RP 
RQ,

• CPQ decreases as the roughness of the surface increases.

6   Computational Experiments

In order to validate the use of image local response at different stages of the hybrid
evolutionary algorithm, computational experiments were conducted on a series of 2-
dimensional grayscale images [13], [14]. Some results of the experiments are pre-
sented in this section.

The first experimental set estimated the computational cost reduction in fitness
evaluation. Figure 1 shows a sample test image of a ship. It includes the 256×256-
pixel reference image Img0 of the scene (Figure 1a), and the 256×128-pixel image
Img1′ of the object (Figure 1b) obtained by cropping a section from the scene. The im-
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age Img1 was transformed using the 5-dimensional vector V = {DX, DY, θ, SX, SY},
where translations DX and DY, and rotation θ defined the location of the object in the
scene, and non-isotropic scaling factors SX and SY defined the local deformation of
the object. The object was stretched along the x-axis with the ratio SX / SY = 2. The
problem of object recognition was formulated as the optimization problem of finding
the optimal vector V* minimizing the difference F between the images.

    

Fig. 1. Sample test image of a ship: a) scene Img0 containing the object (indicated with the light
box), b) transformed image Img1´ of the object, c) bit mask of the object after applying the re-
sponse threshold T

R
 = 4.0

The response matrix MR was computed for the object as described in sections 2 and
3 of the paper, and the response threshold TR = 4.0 was applied to obtain the corre-
sponding bit mask shown in Figure 1c. At the beginning of the evolutionary search,
only pixels corresponding to 1s (colored black in Figure 1c) in the bit mask partici-
pated in the fitness evaluation. The fitness threshold TF was set to TF = 0.19. When the
fitness value of the best chromosome fell below TF, the evaluation procedure switched
to the full 256×128 image Img1′.

The area reduction factor ΦΩ for the sample ship image was ΦΩ = 0.408; the actual
number Cr of fitness evaluations with the bit mask was Cr = 1836; the equivalent
number of evaluations was Ce = ΦΩ Cr  = 749. The number of fitness evaluations Cf

with the full image was Cf = 1836; the total number of evaluations C was C = (Cf +
Ce) = 6088. For comparison, the number of fitness evaluations using the algorithm
without image reduction was C = 9119. The use of ILR for the reduction of the area
participating in the fitness evaluation resulted in the significant reduction of the com-
putational cost associated with the evaluations. The total number of evaluations
dropped from 9119 to 6088, constituting nearly 33% savings. The optimal value of
the parameter vector was virtually the same, and very close to the exact value. Table 1
summarizes the findings of the experiment.

 a)  b)

 c)
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Table 1. Summary of experimental results for the sample test image of a ship

Parameters DX DY θ SX SY
Exact values 108.0 144.0 1.57 3.56 1.78
Full image 108.7 146.2 1.57 3.52 1.74
Reduced image 109.1 146.9 1.57 3.51 1.79

Attributes Total number of
generations

Total number of
evaluations

Min.
fitness

Full image 20 9119 0.00876
Reduced image 17 6088 0.01154

The second experimental set evaluated the cost reduction in selection and cross-
over, as described in section 4 of the paper. Figure 2 shows a sample recognition
problem for the distorted image of a boat (Figure 2b) in a scene (Figure 2a). The small
boat object is located in the upper half of the scene, which is cluttered with bushes
and trees.

                

Fig. 2. A sample test image of a boat: a) image Img0 of the scene with the indicated location of
the object; b) image Img1´ of the object; c) correlation result in the response space with the indi-
cated sub-region of the search

The presence of the vast water area with high-intensity reflections in the lower half
of the image makes the recognition task particularly complex for the regular evolu-
tionary algorithm. Following the selection pressure, the evolutionary search focuses
on the sub-regions of the image that have lower values of the difference F between
the scene and the object. Analysis shows that the chromosomes located in the water
area have lower average values of F than the chromosomes located in the upper half
of the image. This makes the regular EA focus the search in the water area. In the
particular case of the boat image, the regular algorithm was terminated after 90 gen-
erations, with the search being trapped at one of the local minimum points in the
lower half of the image. This type of problem is known as deceptive function in the
EA theory [15]. For deceptive function, the intermediate partial solutions have low
fitness values misleading the algorithm, and directing the search toward the areas that
are away from the optimal solution.

a)

b)

c)
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The average local responses of the scene and the object were computed and corre-
lated, with the response matrix MOBJ of the object served as the correlation kernel.
Correlation was applied twice, with the correlation kernel MOBJ scaled down and ro-
tated 90°. The result of the correlation of the response matrices MREF and MOBJ shown
in Figure 2c was used as the likelihood matrix MP defining the probability of finding
the solution in different sub-regions of the image Img0. The sub-regions in the corre-
lation image that had higher intensity levels corresponded to the sub-regions with the
higher probability of the optimal solution.

The correlation of the response matrices effectively lowered the probability of the
search in the deceptive water area, so selection and recombination were limited to the
upper half of the scene, where the boat object is located – see Figure 2a. The algo-
rithm was able to find the object after 24 generations, with the optimal parameter
vector V* = {33, 144, 1.61, 3.71, 2.1}, while the exact solution was V* = {26, 141,
1.57, 4.01, 2.0}. The analysis of the performance of the regular algorithm and its re-
sponse-based modification shows that the regular version leads at the beginning of the
search while exploring the deceptive water area; it stalls in one of the many minima
located in that area. The modified version utilizes the probability matrix (shown in
Figure 2c) to avoid the deceptive area, and successfully finishes the search with the
nearly optimal configuration of the parameter vector.

The third set of computational experiments was designed to show that the trans-
formation T(α) of the DSM coefficients described in section 5 of the paper efficiently
controls the movement of the DSM simplex, and significantly reduces the number of
additional fitness evaluations during the DSM search. A set of 100 runs for a number
of test images was performed. For every test run, the initial simplex was placed in the
proximity of the optimal solution using the following technique. The value of each
component of the vector V for each of the six vertices was independently drawn at
random with uniform probability from the (±10%) range of the corresponding domain
centered at the component’s optimal value. For example, the translation DX for a
256×256-pixel image has the domain range 0 – 255. Correspondingly, the value of
DX for the image of a boat (Figure 2a) was drawn at random with uniform probability
from the interval (26.0 ± 25.5), i.e. from the interval (0.5, 51.5).

The set of 100 runs was performed for the standard DSM coefficients, and using
the proposed ILR-based modification. Table 2 shows the sample comparative results
for the number of fitness evaluations for the regular and the modified versions of
DSM, for the image of a boat. The standard values of the DSM coefficients required
the most fitness evaluations 5204 over 100 runs. The use of the response coefficients
in the DSM search significantly reduced the number of evaluations across all its
measures: the mean, the standard deviation, the maximum, the minimum, and the sum
over 100 runs. The overall reduction rate was 43.4%, which constituted significant
savings in the computational cost of the local search. The interesting effect of the
ILR-enhanced DSM search was the decrease of the variance of the number of fitness
evaluations. It is reasonable to assume that smoothing occurred due to the averaging
operation in the response value. Moreover, the reduction occurs virtually across all
sample runs, and not just on the average.
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Table 2. Number of fitness evaluations and minimum fitness value for the regular ver-
sion of DSM (Reg), and its ILR-enhanced modification (Rsps), for the boat image

Number of
evaluations

Minimum fitness
value

Value

Reg Rsps

Reduction
rate, %

Reg Rsps
Mean 52 29 44.2 0.025 0.031
St.dev 9.6 6.7 30.2 0.009 0.005

Max 90 47 47.8 0.035 0.042
Min 30 14 53.3 0.007 0.011
Sum 5204 2945 43.4 -- --

7   Conclusions

Image registration, object recognition, and content-based image retrieval are common
problems in electronic imaging applications. The concept of global optimization pro-
vides a general and versatile framework for solving these problems. The hybrid ver-
sion of evolutionary algorithm utilizing image response analysis is discussed in the
paper. The algorithm solves the optimization problem in electronic imaging applica-
tions, i.e. the search for a proper transformation that provides the best match between
two images.

In order to compute the unique characteristics of the object and the scene that are
invariant to image transformation and distortion, the image transform is utilized in the
form of image local response (ILR). The response values are computed for all image
points participating in the evolutionary search, and used at different stages of the al-
gorithm. The image transform is first applied at the pre-processing stage, to extract
the dynamic contents of the images. The response adequately captures the dynamics
of the image transformation, which makes it particularly well suited for the evolution-
ary search. The response matrix of the object is evaluated and used to reduce the area
of the image participating in the fitness evaluation.

The correlation in the response space is applied then to both images, in order to re-
duce the search space, and to identify the set of sub-regions that can contain the po-
tentially correct match between the sought object and the object in the scene. Corre-
lated response matrices of the object and the scene form the likelihood matrix that
limits the creation of new chromosomes to the sub-regions of the search space that
most likely contain the optimal match. During the selection of parental chromosomes
for crossover, their quality is estimated via the modified fitness. The latter contains
the penalty term based on the probability that the chromosome is located in the area of
the optimal match.

The particular model of HEA is used that alternates random search and the Down-
hill simplex method (DSM) for local search and refinement. Image response values
are used to adaptively control the DSM simplex by applying a contraction transfor-
mation to the vector of the standard DSM coefficients. The technique correlates the
movement of the DSM simplex with the local properties of the fitness function in the
vicinity of the simplex.
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Computational experiments with 2D grayscale images provide the experimental
support and justification of the analytical model of image local response, and its utili-
zation for the reduction of the computational cost of the hybrid evolutionary algo-
rithm in electronic imaging. Moreover, the quality of the final solution does not de-
grade, in comparison with the regular version of HEA.
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