
K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 1162–1176, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Designing Multiplicative General Parameter Filters Using
Adaptive Genetic Algorithms

Jarno Martikainen1 and Seppo J. Ovaska2

Institute of Intelligent Power Electronics, Helsinki University of Technology,
 P.O. Box 3000, FIN-02015 HUT, Finland

1jkmartik@cc.hut.fi, 2ovaska@ieee.org

Abstract. Multiplicative general parameter (MGP) approach to finite impulse
response (FIR) filtering introduces a novel way to realize cost effective adaptive
filters in compact very large scale integrated circuit (VLSI) implementations
used for example in mobile devices. MGP-filter structure comprises of addi-
tions and only a small number of multiplications, thus making the structure very
simple. Only a couple of papers have been published on this recent innovation
and, moreover, MGP-filters have never been designed using adaptive genetic
algorithms (GA). The notion suggesting the use of adaptive parameters is that
optimal parameters of an algorithm may change during the optimization proc-
ess, and thus it is difficult to define parameters beforehand that would produce
competitive solutions. In this paper, we present results of designing MGP-FIR
basis filters using different types of adaptive genetic algorithms, and compare
the results to the ones obtained using a simple GA.

1 Introduction

Predictive lowpass and bandpass filters play an important role in numerous delay-
constrained signal processing applications, especially in the area of 50/60 Hz power
systems instrumentation. In these applications distorted line voltages or currents
should be filtered without delaying the fundamental frequency component. Vainio and
Ovaska introduced the multiplicative general parameter (MGP) finite impulse re-
sponse (FIR) filtering scheme in [1] and [2]. Since the line frequency tends to vary
within a constrained interval, typically ±2%, adaptive filters should be used. In MGP-
FIR the adaptation is achieved through adjusting the two MGPs. The coefficient val-
ues of the basis filter do not change during the adaptation process. An MGP-FIR is
designed in the following way. First we optimize the basis filter either by applying
traditional hard computing methods, or, as this paper presents adaptive genetic algo-
rithms [5]. Next, the MGP-FIR is used in the actual application, and fine-tuning is left
to the multiplicative general parameters. The better the basis filter attenuates un-
wanted components and the better the prediction capabilities of the basis filter are, the
easier it is for the MGP filter to adapt to the changing characteristics of the input sig-
nal. Digital filters have been designed before using genetic algorithms, for example in
[8] [9], but MGP-FIRs have never been designed using adaptive genetic algorithms.
Thus, the speedup in convergence of the GA in this application using adaptive pa-
rameters was yet to be studied.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 1800 dpi
 Downsampling für Bilder über: 2700 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Nein

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages false
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Average
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Average
 /DetectBlends true
 /GrayImageDownsampleType /Average
 /PreserveEPSInfo true
 /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 1800
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Designing Multiplicative General Parameter Filters 1163

The paper is organized as follows. Section 2 describes the multiplicative general
parameter approach to filtering. Section 3 explains the basics of genetic algorithms
and defines their use in context with MGP filtering. Section 4 introduces the obtained
results. Section 5 includes concluding remarks and Section 6 presents the paths of our
future research work.

2 Multiplicative General Parameters

The MGP filtering method sets low computational requirements to the implementa-
tion platform, while it simultaneously provides effective and robust filtering of distur-
bances. All this is achieved without delaying the primary signal component, and
maintaining adaptation capabilities around the nominal frequency.

In a typical MGP-FIR, the filter output is computed as

.)()()()()()()(
1

0
2

1

0
211 ∑∑

−

=

−

=
−+−=

N

k

N

k

knxkhngknxkhngny
(1)

Where)(1 ng and)(2 ng present the MGP parameters, and)(1 kh and)(2 kh are the fixed
coefficients of an FIR basis filter. Taking this into account, the coefficients of the
composite filter are),()()(111 khngk =θ []1,...,1,0 −∈ Nk , for the first MGP,
and)()()(222 khngk =θ , []1...,1,0 −∈ Nk , for the second MGP. An example of MGP-
FIR with N=4 is shown in Fig. 1. Here N denotes the filter length.

The filter coefficients in the adaptation process are updated as follows.

)()()()()1(
1

0
111 ∑

−

=
−+=+

N

k

knxkhnengng µ
(2)

.)()()()()1(
1

0
222 ∑

−

=
−+=+

N

k

knxkhnengng µ
(3)

Where µ is the adaptation gain factor and)(ne is the prediction error between the filter
output and the training signal. The MGP-FIR has two adaptive parameters to adapt
only to the phase and amplitude of the nominal frequency. More degrees of freedom
would allow the filter to adapt to undesired properties, such as the harmonic frequen-
cies. The training signal)(ts is defined as

15

3,5,7,...

15

3,5,7,...

() sin(2 49 0.1 sin(2 49) 0.004 (), 0 300 samples

() sin(2 50 0.1 sin(2 50) 0.004 (), 300 600 samples

() sin(2 51 0.1 sin(2 51

m

m

s n n) m n r n n

s n n) m n r n n

s n n) m

π π

π π

π π

=

=

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ < ≤

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ < ≤

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅
15

3,5,7,...

) 0.004 (), 600 900 samples.
m

n r n n
=

⋅ + ⋅ < ≤

(4)

r(n) denotes a uniformly distributed random value between -1 and 1. The duration
of the training signal is 900 samples. This signal is divided into three parts, each of
which contains 300 samples. These training signal blocks correspond to frequencies
of 49 Hz, 50 Hz, and 51 Hz. The training signal constitutes thus of the nominal fre-

1164 J. Martikainen and S.J. Ovaska

quency sinusoid, odd harmonics up to the 15th with amplitudes 0.1 each, and white
noise. The training signal is similar to that used in [1] and [2], and it mimics the line
signal (voltage/current) with varying fundamental frequency, harmonics, and noise.

Fig. 1. An example of MGP implementation, where N=4. Signal values)1(−nx and)2(−nx are
connected to the first MGP and values)(nx and)3(−nx are connected to the second MGP with
filter coefficients -1, 1, 1, and -1 respectively

The basic idea of MGP-FIR filters is that all the samples of input delay line should
be connected either to the first or to the second MGP, and no value should be left un-
used. Computational efficiency of these particular MGP filters arises from the fact
that the filter coefficients are either -1, 0, or 1. Thus the number of multiplications in
filtering operations is radically reduced compared to a normal filtering operation us-
ing more general coefficient values. Especially in VLSI or other hardware imple-
mentations, the number of multiplications, as well as other operations should be kept
at minimum to guarantee fast operation and low cost of implementation.

3 Genetic Algorithms

Genetic algorithms model the nature’s way of optimizing the characteristics of a sys-
tem to comply with the demands of the surrounding environment. Genetic algorithms
manipulate the possible problem solutions using selection methods, crossover and
mutation operators, and survival strategies [3] [4] [7].

In this application, the cross connections and coefficients of the basis filter are to
be optimized using a GA. Using non-evolutionary methods would limit the set of
tools to using exhaustive search, since no gradient information is available in this
problem domain. These filter tap cross connections and coefficients are modeled as

Designing Multiplicative General Parameter Filters 1165

chromosomes in the following way. There are two separate vectors in one chromo-
some: the first vector,)(1 nh , of the chromosome represents the weights of the input
samples connected to the first MGP, and the second vector,)(2 nh , corresponds to the
weights of the input samples connected to the second MGP. The weights can be -1, 0,
or 1. -1 and 1 in a vector indicate that this particular input value is associated to the
corresponding MGP. 0, on the other hand, determines that a particular input value is
not associated with the MGP in concern, rather it is connected to the other MGP. An
example of a chromosome is presented in Table 1.

Table 1. Example of the the chromosomes, N=40. h1 and h2 associate the input signal values to
the first and second MGPs, respectively

h1 1 1 -1 0 0 1 -1 0 1 1 0 -1 -1 0 1 0 -1 -1 0 1 0 0 0 1 1 0 -1 0 -1 0 1 -1 0 0 0 -1 0 1 1 0
h2 0 0 0 1 -1 0 0 1 0 0 -1 0 0 1 0 -1 0 0 -1 0 1 -1 1 0 0 1 0 1 0 -1 0 0 1 1 1 0 -1 0 0 -1

In [2] Ovaska and Vainio stated that satisfactory results can be achieved using an
initial population, the size of which is twice the number of the filter length. Since the
filter length N in this case is 40, the initial population size was set to be 80.

In this paper, we compare five different genetic algorithms. The first one is a sim-
ple genetic algorithm with no adaptive parameters. The second genetic algorithm ap-
plies adaptive mutation and crossover probabilities as presented in [5]. The third ge-
netic algorithm features also the adaptive mutation and crossover scheme, but with
different parameters than in [5]. In the fourth genetic algorithm, we used adaptive µ
(see Eqs. (2) and (3)). The fifth algorithm used modified probabilities of [5], adaptive
µ, and seeding.

The fitness of the chromosomes is evaluated using the fitness function:

.
)515049()51,50,49max(ITAEITAEITAENGNGNG

K
fitness

++⋅
=

(5)

 K is assigned a value of 107 to scale the output of the fitness function to be expressed
in thousands. Terms NG49, NG50, and NG51 represent the noise gain at a specific
stage of the test input signal. These terms were added to the fitness function to attenu-
ate noise. The noise gain is calculated as

[] []∑∑
−

=

−

=
⋅+⋅=

1

0

2
22

1

0

2
11 .)()()()()(

N

k

N

k

khngkhngnNG
(6)

)(1 ng and)(2 ng represent the first and second MGP at the end of a certain fre-

quency period, respectively, whereas)(1 nh and)(2 nh denote the filter coefficients

associated to the corresponding MGPs. In other words, NG49 is calculated using the
MGP values after 300 samples, NG50 and NG51 are calculated after 600 and 900
samples, respectively, the frequency of the training signal changing every 300 sam-
ples.

ITAE49, ITAE50, and ITAE51stand for the Integral of Time-weighted Absolute Er-
ror (ITAE) for each of the three signal parts, respectively. These terms were added to
the fitness function to smoothen the adaptation of the filter to the varying input signal
characteristics. The ITAE is calculated as follows.

1166 J. Martikainen and S.J. Ovaska

.)(
1
∑

=
⋅=

M

n

nenITAE
(7)

n is the sample index, and M stands for the sample number at the end of a specific
frequency period, in this case 300, 600 and 900.)(ne is the error between the output
of the system and the pure input signal without any harmonics or noise. The GA may
in some cases create filters with unreasonably low noise gains, leading thus to very
high fitness value of chromosomes. Theoretical minimum limits can be calculated that
have to be passed in order the filter to be practical [10]. If these limits were not met, a
penalty term was added to corresponding chromosomes’ fitness value so that it was
very likely eliminated from the next generation.

The genetic algorithms were given 1000 generations to converge to a solution, and
each genetic algorithm was run 20 times to get some statistical reliability. Elitist mu-
tation scheme was applied in each case, so that the best chromosome was never mu-
tated. A single simulation run of 1000 generations using initial population of 80
chromosomes and filter length of 40, took 70-80 minutes to run on a Dell computer
equipped with 2.66 GHz Intel Pentium 4 processor, 512 MB of memory, and
MATLAB 6.5.0 software.

3.1 Reference Genetic Algorithm

To create a reference point, we implemented a simple genetic algorithm without any
fine tuning to solve the problem. The algorithm starts by creating the initial popula-
tion. The probabilities of assigning -1, 0, or 1 to a particular gene in the chromosome
related to the first MGP are 1/3 all. In the case of assigning -1 or 1 to a gene in)(1 nh ,
0 is assigned to this same gene in)(2 nh . This is because one input sample can be
connected to only one MGP, not both. If 0 is assigned to a gene in the vector related
to the first MGP, -1 or 1 is assigned to a gene related to the second MGP with the
probability of 1/2 for both -1 and 1.

After the generation of the initial population, the chromosomes are arranged in de-
scending order according to their fitness values. Mating is based purely on the rank of
the chromosomes: the best and the second best chromosomes act as parents for two
offspring. The offspring are created using single-point crossover, the crossover point
of which is selected randomly. Also, the third and fourth best chromosomes constitute
parents for two offspring, and so on. Altogether, 40 best chromosomes produce 40
offspring. Thus the 40 chromosomes with the lowest fitness scores are replaced by the
offspring of the 40 best chromosomes. Also the parents remain within the population
thus keeping the population size constant at 80 chromosomes.

The convergence behavior of this reference GA can be seen in Fig. 2. This figure
shows clearly how the simple genetic algorithm converges in a typical optimization
run. Maximum and average fitness values for each generation are well separated, and
the minimum fitness lies very close to zero. This simple GA does not fully converge
during the 1000 generations it was allowed to operate. Mutation probability of 5%
and µ value 0.002 were used in this GA.

Designing Multiplicative General Parameter Filters 1167

Fig. 2. Typical convergence behavior of the reference GA

3.2 Adaptive Genetic Algorithm

Optimal parameters for a GA may change during the iteration process and thus it is
usually difficult to choose initial parameters that produce satisfactory results. Adap-
tive GA (AGA) parameters have been studied by Srinivas and Patnaik in [5]. In their
approach, the mutation probability,

mp , and the crossover probability,
cp , are adjusted

as follows.

()
 ,

max

'
max1

ave
'

ave
c ff

ff

ffk
p ≥

−
−=

(8)

 ,3 ave
'

c ffkp <= (9)

()
 ,

max

max2
ave

ave
m ff

ff

ffk
p ≥

−
−=

(10)

. ,4 avem ffkp <= (11)

321 , , kkk , and
4k represent coefficients with values equal or less than one. fmax de-

notes the maximum fitness value of a generation, whereas fave denotes the average fit-
ness value of the same generation. f’ denotes the higher fitness value of a parent pair.
The authors of [5] propose values 1.0, 0.5, 1.0, and 0.5 for

321 , , kkk , and
4k respec-

tively.

1168 J. Martikainen and S.J. Ovaska

Using this approach, the crossover probability decreases as the fitness value of the
chromosome approaches fmax and is 0.0 for a chromosome with fitness value equal to
fmax. Also, mutation probability approaches zero as the fitness of a chromosome ap-
proaches fmax. µ value 0.002 was also used in this GA.

The convergence behavior of this AGA can be seen in Fig. 3. This algorithm con-
verges rapidly and the maximum value stays the same for the rest of the time. The
maximum is however local, since the fitness value is smaller than with the reference
GA. Maximum, average, and minimum fitnesses are the same after about 70 genera-
tions.

Fig. 3. Typical convergence behavior of the AGA

3.3 Adaptive Genetic Algorithm with Modified Probabilities

The values for
321 , , kkk , and

4k presented in [5] are not obviously appropriate for all

applications. Referring to the “no free lunch” theorem discussed by Wolpert and
Macready in [6] and Fogel in [7], we decided to give value equal to one for each of
the

321 , , kkk , and
4k , because the values presented in [5] do not perform so well in

this application. This way we may prevent premature convergence, which seemed to
be a problem in our application, when 1.0, 0.5, 1.0, and 0.5 were assigned to

4, 3, 2, 1, , =iki
 respectively. Since elitist mutation saves the best solution from cor-

ruption, we apply the mutation probability of 1.0 to all but the best chromosome. This
way, although possibly near the optimal solution, we still search efficiently the sur-
roundings for a better one. Typical convergence behavior of this AGA can be seen in
Fig. 4. This GA converges to the maximum rather slowly, while the minimum stays
close to 0 all the time.

Designing Multiplicative General Parameter Filters 1169

Fig. 4. Typical convergence behavior of the AGA using modified probabilities

3.4 Adaptive Genetic Algorithm with Modified Probabilities and the µ-Term

In the previously presented GAs we used a constant adaptation gain factor µ (see Eqs.
(2) and (3)). Since the characteristics of the input signal vary with time, it is difficult
to determine the optimal parameters of the system before the optimization process.
Adaptive µ was applied in order to speed up the convergence of genetic algorithm.

The chromosome was modified so that one gene was added to present the µ value.

The µ values in the initial population were chosen randomly so that 009.00 << µ .

Values larger than this can easily make the filter unstable. In crossover the offspring
µ value,

oµ , was calculated as follows.

.)1(21 ppo rr µµµ ⋅−+⋅= (12)

r stands for a random number between 0 and 1.
1pµ and

2pµ are the µ values of the

first and second parents, respectively. Mutation was applied as follows.

. 5.0 ,1.0

5.0 ,1.0

≥−=
<+=

r

r

m

m

µµµ
µµµ (13)

mµ presents the value of µ after mutation, and r is a uniformly distributed random

number between 0 and 1. An example of the converged µ values and corresponding
fitnesses are shown in Table 2. The average converged µ value of the 20 runs was
0.0034. This value can be considered as the practical maximum µ value. Values larger

1170 J. Martikainen and S.J. Ovaska

than 0.0034 could easily cause the filter to be unstable, whereas values below 0.0034
merely slow the convergence of the GA down.

Table 2. Example of converged µ values an correponding fitnesses. Each run was done using
1000 generations

Run Converged µ Best fitness
1 0.0034 3420
2 0.0025 3069
3 0.0032 3735
4 0.0030 3225
5 0.0042 3387
6 0.0044 2962
7 0.0034 2877
8 0.0042 3249
9 0.0029 3504

10 0.0036 3052
11 0.0029 3541
12 0.0033 3447
13 0.0037 3761
14 0.0026 3606
15 0.0039 3481
16 0.0040 3215
17 0.0037 3304
18 0.0026 3776
19 0.0028 3772
20 0.0026 3722

Average 0.0034 3405

The convergence of this AGA with modified probabilities of [5] and adaptive µ is
shown in Fig. 5. This GA converges quite rapidly, and the average fitness follows
quite close the maximum fitness. The minimum fitness values vary a lot, because µ is
a sensitive parameter and even small changes can easily make the filter unstable re-
sulting in a low fitness value.

3.5 Adaptive Genetic Algorithm Using Seeding

When analyzing the chromosomes produced by the GA mentioned above, one could
see a systematical structure in the converged solutions. All the GAs had a tendency of
creating blocks of consecutive equal gene values within a chromosome. An example
of a converged chromosome can be seen in Table 3.

This kind of repeating structure was present in nearly all the converged chromo-
somes. Bearing this in mind, seeding was applied to the GA while generating the ini-
tial population. Seeding means applying the information of the structure of the solu-
tion to the generation process of the initial set of chromosomes. Seeding was imple

Designing Multiplicative General Parameter Filters 1171

Fig. 5. Typical convergence behavior of the AGA using adaptive µ

Table 3. Example of converger chromosomes. Note the block like structure of the genes

h1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0
h2 -1 1 1 1 -1 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0 -1 1 1 1

mented so that the chromosomes in the initial population we formed of blocks of ran-
dom number of consecutive equal gene values. The block length was set to be 1 at the
minimum and the other extreme was a chromosome constituting only of a single gene
value.

The typical convergence behavior of this GA is presented in Fig. 6. The conver-
gence rate is rather fast. Variations in minimum fitness are explained by the adaptive
µ, since the filter can easily become unstable if the µ value changes too drastically.

4 Results

The performance of the different GA approaches in MGP filter design are reported in
Table 4. Each GA took about 70-80 minutes to go through 1000 generations. How-
ever, there were significant differences in the convergence properties of the algo-
rithms. The adaptive GA proposed in [5] was clearly the fastest to converge, but the
algorithm was very likely trapped in a local minimum, and it thus behaved worse in
statistical sense than the simple GA used for reference.

Modifying the probabilities of the AGA produced fitness average closer to the ref-
erence GA than with original parameters, while simultaneously reducing the number
of required generations to one tenth. Adding the adaptive µ term succeeded in

1172 J. Martikainen and S.J. Ovaska

Fig. 6. Typical convergence behavior of the AGA using modified probabilities, adaptive µ, and
seeding

achieving higher average fitness, while simultaneously increasing the number of re-
quired generations. Applying seeding helped the adaptive µ enhanced AGA to pro-
duce best results, indicating highest average fitness with even better convergence
characteristics as the AGA with adaptive µ but without seeding. Standard deviations
presented in Table 4 indicate that the AGA with modified probabilities, adaptive µ,
and seeding converges to high fitness solutions rather reliably.

The time to achieve the best results was 11.5 minutes, which is about 18% of the
time required by the reference GA to produce results. The gained speedup makes the
introduced method a tempting tool for practicing engineers. The average time to go
through 1000 generations is almost the same for all the GAs. Then again, the differ-
ences between the average convergence times are notable.

Table 4. Performance comparison of the featured Gas. The results are averages of 20 runs

Genetic Algorithm Average Best
Fitness / Stan-
dard Deviation

Convergence (genera-
tions) / Standard Devia-

tion

Time
(mins)

Convergence
Time (mins)

Simple GA 3249 / 324 837 / 130 76.4 63.9
AGA 1472 / 505 21 / 11 77.9 1.6
AGA, Modified
Probabilities

2824 / 557 89 / 34 76.7 6.8

AGA, Modified
Probabilities and µ

3638 / 287 329 / 218 73.9 24.3

AGA, Modified
Probabilities, µ,
seeding

3617 / 329 156 / 65 73.6 11.5

Designing Multiplicative General Parameter Filters 1173

The best converged chromosome had fitness value of 3985 and was achieved using
AGA with adaptive µ and seeding. This chromosome is presented in Table 5.

Table 5. The best converged chromosome

h1 1 1 1 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
h2 0 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 -1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1

Fig. 9 describes the signals before and after filtering. The evaluation signal eval(n)
used is defined as follows.

15

3,5,7,...

15

3,5,7,...

3,5,

() sin(2 49 0.15 sin(2 49), 0 300 samples

() sin(2 50 0.15 sin(2 50), 300 600 samples

() sin(2 51 0.15 sin(2 51)

m

m

m

eval n n) m n n

eval n n) m n n

eval n n) m n

π π

π π

π π

=

=

=

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ < ≤

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ < ≤

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅
15

7,...

, 600 900 samples.n< ≤

(14)

 The amplitude response of the filter presented in Table 5. after 600 samples of the
evaluation signal can be seen in Figs. 7. This response shows how the GA tries to
dampen the harmonic frequencies of the nominal components (i.e., 150 Hz, 250 Hz,
…, 750 Hz). The phase delay in samples is shown in Fig. 8. The phase delay is nega-
tive in the 50 Hz region, and thus the filter has the desired predictive capabilities. Ta-
ble 6 shows the calculated total harmonic distortion (THD) values for each of the
training signal nominal frequency components before and after filtering. After filter-
ing the THD values as well as the amplitudes of the harmonics are about a tenth of the
values before filtering.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency in Hz

M
ag

ni
tu

de

Fig. 7. Instantaneous magnitude responses of the MGP-FIR

1174 J. Martikainen and S.J. Ovaska

30 35 40 45 50 55 60 65

-4

-3

-2

-1

0

1

Frequency in Hz

P
ha

se
 d

el
ay

 in
 s

am
pl

es

Fig. 8. Phase delay of the MGP-FIR. The phase delay in samples is negative in the 50 Hz re-
gion, as it should be in predictive filters

Fig. 9. Test signal defined in Eq. (13) (dash dotted) is filtered using the best MGP-FIR given in
Table 5. Output (solid line) is almost sinusoidal

Designing Multiplicative General Parameter Filters 1175

Table 6. Total harmonic distortions (THD) of the best MGP-FIR basis filter

Input amplitude Output at 49 Hz Output at 50 Hz Output at 51 Hz
Nominal fre-

quency
1 0.87 0.93 0.88

3rd harmonic 0.15 0.018 0.016 0.011
5th harmonic 0.15 0.023 0.025 0.023
7th harmonic 0.15 0.018 0.009 0.008
9th harmonic 0.15 0.012 0.012 0.013

11th harmonic 0.15 0.010 0.008 0.006
13th harmonic 0.15 0.005 0.002 0.007
15th harmonic 0.15 0.005 0.004 0.007

THD 39.7% 4.4% 3.7% 3.6%

5 Conclusions

In this paper, we have presented a new way to design MGP-FIR basis filters. Adap-
tive genetic algorithms produced better results than genetic algorithms without any
adaptive parameters. Knowing what to look for, or understanding the structure of the
possible solution helped to apply seeding in the GA in order to further speed up the
optimization process. Also, it is likely that using adaptive µ and seeding as parts of the
design process had a greater impact on the final results than the use of adaptive muta-
tion and crossover probabilities. MGP-FIRs were designed using evolutionary pro-
gramming in [2], but the approaches used in the present paper make the GA converge
more rapidly. Having said that, we conclude that the best proposed method excels
among the others in MGP-FIR design methods, and should therefore be regarded as a
competitive tool for experts working in the field of power systems instrumentation.

6 Future Work

Our future work will concentrate on experimenting how multiple population GAs
would affect the performance of the optimization process. Also, since GAs are by
nature well parallelizable, a parallel computing approach to GA aided design of MGP-
FIRs will be explored.

References

1. Vainio, O., Ovaska, S.J., Pöllä, M.: Adaptive filtering using multiplicative general pa-
rameters for zero-crossing detection. IEEE Transactions on Industrial Electronics, Vol. 50,
No. 6, Dec 2003, 1340-1342

2. Ovaska, S.J, Vainio, O.: Evolutionary programming in the design of adaptive filters for
power systems harmonies reduction. IEEE International Conference on Systems, Man and
Cybernetics, Vol. 5, Oct 2003, 4760-4766

3. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New
York, NY (1996)

1176 J. Martikainen and S.J. Ovaska

4. Haupt, R. L., Haupt, S. E.: Practical Genetic Algorithms. John Wiley & Sons, New York,
NY (1998)

5. Srinivas, M., Patnaik, L. M.: Adaptive probabilities of crossover and mutation in genetic
algorithms. IEEE Transactions on Systems, Man and Cybernetics, Vol. 24, No. 4, Apr
1994, 656-667

6. Wolpert, D. H., Macready, W. G.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation, Vol. 1, No. 1, Apr 1997

7. Fogel, D.B.: Evolutionary Computation, Toward a New Philosophy of Machine Learning.
IEEE Press, Piscataway, NJ (2000)

8. Wade, G., Roberts, A., Williams, G.: Multiplier-less FIR filter design using a genetic algo-
rithm. IEE Proceedings of Vision, Image and Signal Processing, Vol. 143, No. 3, Jun 1996

9. Lee, A.; Ahmadi, M., Jullien, G.A., Miller, W.C., Lashkari, R.S.: Digital filter design us-
ing genetic algorithm. IEEE Symposium on Advances in Digital Filtering and Signal Proc-
essing, 1998, Jun 1998, 34-38

10. Vainio, O., Ovaska, S.J.: Noise reduction in zero crossing detection by predictive digital
filtering. IEEE Transactions on Industrial Electronics, Vol. 42, No. 1, Feb 1995, 58-62

	1 Introduction
	2 Multiplicative General Parameters
	3 Genetic Algorithms
	3.1 Reference Genetic Algorithm
	3.2 Adaptive Genetic Algorithm
	3.3 Adaptive Genetic Algorithm with Modified Probabilities
	3.4 Adaptive Genetic Algorithm with Modified Probabilities and the µ-Term
	3.5 Adaptive Genetic Algorithm Using Seeding

	4 Results
	5 Conclusions
	6 Future Work
	References

