Biomass Inferential Sensor Based on Ensemble of Models
Generated by Genetic Programming

Arthur Kordon", Elsa Jordaan’, Lawrence Chew’, Guido Smits’, Torben Bruck’,
Keith Haney’, and Annika Jenings’

'The Dow Chemical Company, Corporate R&D, 2301 N Brazosport Blvd,
Freeport, TX, 77541, USA
*Dow Benelux BV, Corporate R&D, 5 Herbert H Dowweg, Terneuzen, The Netherlands
*The Dow Chemical Company, Biotechnology, 5501 Oberlin Dr.,
San Diego, CA 92121, USA

* corresponding author akordon@dow.com

Abstract. A successful industrial application of a novel type biomass estimator
based on Genetic Programming (GP) is described in the paper. The biomass is
inferred from other available measurements via an ensemble of nonlinear
functions, generated by GP. The models are selected on the Pareto front of
performance-complexity plane. The advantages of the proposed inferential
sensor are: direct implementation into almost any process control system,
rudimentary self-assessment capabilities, better robustness toward batch
variations, and more effective maintenance. The biomass inferential sensor has
been applied in high cell density microbial fermentations at The Dow Chemical
Company.

1 Introduction

Soft (or inferential) sensors infer important process variables (called outputs) from
available hardware sensors (called inputs). Usually the outputs are measured
infrequently by lab analysis, material property tests, expensive gas chromatograph
analysis, etc. Furthermore, the output measurement is very often performed off-line
and then introduced into the on-line process monitoring and control system. Soft
sensors, on the other hand, can predict these outputs online and frequently using either
data supplied from standard, and frequently cheap, hardware sensors or from other
soft sensors.

Different inference mechanisms can be used for soft sensor development. If there
is a clear understanding of the physics and chemistry of the process, the inferred value
can be derived from a fundamental model. Another option is to estimate the
parameters of the fundamental model via Kalman Filter or Extended Kalman Filter.
There are cases when the input/output relationship is linear and can be represented
either by linear regression or by a multivariate model. The most general
representation of the inferential sensor, however, is as a nonlinear empirical model.
The first breakthrough technology for soft sensor development was neural networks
because of their ability to capture nonlinear relationships and their adequate
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framework for industrial use (i.e. no additional cost for fundamental model building
and data collection based on design of experiments).

The common methodology of building neural net soft sensors and the practical
issues of their implementation have been discussed in detail in [2]. Thousands of soft
sensor applications in the chemical, petro-chemical, pharmaceutical, power
generation, and other industries have been claimed by the key software vendors.
However, despite their successes, most commercially available neural net packages
are still based on a classical back-propagation algorithm. Some other recent
approaches, like Bayesian neural networks [18] are still in the research domain and
have not been accepted for industrial applications. As a result, those commercial
neural networks generally exhibit poor generalization capability outside the range of
training data [1]. This can result in poor performance of the model and unreliable
prediction in new operating conditions. Another drawback is that such packages
usually yield neural net structures with unnecessarily high complexity. Selection of
the neural net structure is still an ad hoc process and very often leads to inefficient
and complex solutions. As a result of this inefficient structure and reduced robustness,
there is a necessity of frequent re-training of the empirical model. The final effect of
all of these problems is an increased maintenance cost and gradually decreased
performance and credibility [3].

The need for robustness toward process variability, the ability to handle industrial
data (e.g., missing data, measurement noise, operator intervention on data, etc.) and
ease of model maintenance are key issues for mass-scale application of reliable
inferential sensors. Several machine-learning approaches have the potential to
contribute to the solution of this important problem. Stacked analytical neural
networks (internally developed in The Dow Chemical Company) allow very fast
model development of parsimonious black-box models with confidence limits [4].
Genetic Programming (GP) can generate explicit functional solutions that are very
convenient for direct on-line implementation in the existing process information and
control systems [5]. Recently, Support Vector Machines (SVM) give tremendous
opportunities for building empirical models with very good generalization capability
due to the use of the structural risk minimization principle [6]. At the same time, each
approach has its own weaknesses, which reduces the implementation space and which
make it difficult to design the robust soft sensor based on separate computational
intelligence techniques. An alternative, more integrated approach for a “second
generation” soft sensor development is described in [4]. It combines a nonlinear
sensitivity and time-delay analysis based on Stacked Analytical Neural Nets with
outlier detection and condensed data selection driven by the Support Vector
Machines. The derived soft sensor is generated by GP as an analytical function. The
integrated methodology amplifies the advantages of the individual techniques,
significantly reduces the development time, and delivers robust soft sensors with low
maintenance cost. The methodology has been successfully applied in The Dow
Chemical Company for critical parameter prediction in a chemical reactor [7], for
interface level estimation [8], and for emission estimation [9]. However, the increased
requirements for robustness towards batch-to-batch variation in inferential sensors
applied on batch processes need to be addressed. A potential solution of using an
ensemble of symbolic regression predictors, instead of one model, is proposed in this
paper. The selected models of the ensemble occupy the Pareto front on the
performance-model complexity plane. The experience from implementing the
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proposed methodology for biomass estimation during the growth phase of fed-batch
fermentation is described in this paper.

2 The Need for Biomass Estimation in Batch Fermentation
Processes

Biomass monitoring is fundamental to tracking cell growth and performance in
bacterial fermentation processes. In standard fed-batch fermentations of recombinant
microorganisms, biomass determination over time allows for calculation of growth
rates during the growth phase. Slow growth rates can indicate non-optimal
fermentation conditions which can then be a basis for further optimization of growth
medium, conditions or substrate feeding. Biomass monitoring is also needed to
determine the most optimum time to induce recombinant product formation. During
the production phase, biomass decline can forecast onset of cell lysis which, if
allowed to continue, can result in decreased product yields. Biomass monitoring
therefore can aid in determination of the appropriate time for process termination. In
fed-batch fermentations, biomass data can also be used to determine feed rates when
yield coefficients are known. Certain high cell density fermentations require growth
rates to be controlled in order to prevent accumulation of by-products such as acetic
acid or ethanol, which if left unchecked can be detrimental. Biomass monitoring also
acts as an indicator of batch-to-batch variability.

There are several inferential sensors implementations for biomass estimation in
different continuous and fed-batch bioprocesses [10], [11], [12]. Usually the biomass
concentration is determined off-line by lab analysis every 2-4 hours. However, these
infrequent measurements can lead to poor control and on-line estimates would be
more preferred. In [10], a soft sensor for biomass estimation based on two process
variables — fermenter dilution rate and carbon dioxide evolution rate (CER)
successfully estimated biomass in continuous mycelial fermentation. The neural net
model included six inputs that incorporated process dynamics for three consecutive
sampling periods, two hidden layers with 4 neurons, and one output, the biomass
estimate. Another successful implementation of a biomass soft sensor for a penicillin
fed-batch process is described in [12]. The topology of the neural net in this case is
(2-3-1), where the two inputs are the oxygen uptake rate (OUR) and the batch time,
and the output is penicillin biomass estimates. Good surveys of the current state of the
art of the soft sensors and data driven approaches to bioprocess modeling are given in
[13] and [14]. However, all applied neural net-based soft sensors expressed the
common problems of poor extrapolation, high batch-to-batch sensitivity, and frequent
re-training. As a result, long term maintenance becomes the Achilles heel of neural-
net-based biomass estimators that significantly reduces their credibility.

3 Robust Inferential Sensors Based on Ensemble of Predictors

Robustness toward process changes is the key requirement for industrial application
of inferential sensors. It is crucial especially for batch processes where the batch-to-
batch changes are guaranteed even when applying the most consistent operating
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discipline [14]. One of the possible ways to improve robustness toward process
changes is by using explicit nonlinear functions derived by symbolic regression. The
advantages of this first approach to increase robustness in comparison to black-box
models, like neural networks, are as follows: potential for physical interpretation, the
ability to examine the behavior of the model outside the training range in an easy and
direct way, the ability to impose external constraints in the modeling process and to
relieve the extrapolation level of the final model toward process changes, and last, but
not least, process engineers are more open to take the risk to implement such type of
models. The applicability of symbolic-regression-based inferential sensors has already
been demonstrated in several industrial applications of continuous processes [7], [8],
and [9]. However, an open issue that influences robustness toward process changes is
the control of empirical model complexity. As is well-known, Statistical Learning
Theory in general and Support Vector Machines in particular, give explicit control
over model complexity by the selection of the number of support vectors [6]. There is
a defined optimal complexity for the available data, called the Vapnik-Chervonenkis
(VC) dimension [6]. Unfortunately, direct application of these theoretical results to
symbolic regression-based models faces difficulties. However, the idea of balancing
modeling performance and complexity will be explored by selecting models on the
Pareto front only and this is the second approach to increase robustness that will be
tested.

The third approach that could improve robustness toward process changes is to use
an ensemble of predictors. By combining diverse symbolic regression models it is
possible to use the statistical characteristics of the ensemble for more reliable
prediction and for model self-assessment [15].

3.1 Integrated Methodology for Robust Inferential Sensors Development

The objective of the integrated methodology is to deliver successful industrial
inferential sensors with reduced development time, better generalization capability,
and minimal implementation and maintenance cost. The main blocks of the
methodology (data pre-processing, nonlinear variable selection based on analytic
neural networks, data condensation based on SVM, automatic model generation based
on GP, model selection, on-line implementation and maintenance) are described in
detail in [4]. The key idea is to optimize the synergy between three methods for
empirical model building: neural networks, Support Vector Machines, and Genetic
Programming. Special types of neural networks, called analytic neural networks, are
used for nonlinear sensitivity analysis and variable selection [4]. The data set is
further reduced by using SVM with selected level of complexity (% support vectors).
As a result, only relevant variables and information-rich data points are used for GP
model generation. In this way the efficiency of symbolic regression, which is
computationally-intensive, is increased significantly. In addition, the probability for
finding parsimonious solutions increases due to the reduced search space. The
integrated methodology has been successfully implemented for several soft sensors on
continuous industrial processes [4]. However, the increased requirements for
robustness in batch processes require some improvements in the areas of proper
model selection and using ensemble of predictors.
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3.2 Pareto-Front Based Model Selection

Several thousand empirical models are generated in a typical GP run with at least 20
simulated evolutionary processes of 200 generations. Most of the generated models
are with similar performance and proper model selection is non-trivial. The direct
approach is to use the R’-statistic as model selection criterion and to select the “best”
model based on the fitness measure at the end of the run.

However, the fitness measure does not take complexity or smoothness of the
function into account. Furthermore, it is possible that for a slight decrease in the
measure a far less complex function may be obtained that may have higher
robustness. For this the experience of the analyst is needed. Therefore it is necessary
to extract a manageable number of models to inspect.

One indicator of the complexity of the models in a GP-run is the number of nodes
used to define the model. The measure may be misleading for it does not discern
between the types of operators used in each node. For example, no distinction is made
between an operator that is additive and an operator that is an exponential function.
Clearly there is a huge difference in complexity. However, using the number of nodes
as an indicative measure can help reduce the number of models to inspect to a
reasonable size.

In order to find the right trade-off between complexity and accuracy, the Pareto-
front is constructed. The Pareto-front is a concept commonly used in multi-objective
optimization [16]. In multi-objective optimization, apart from the solution space,
which is constructed by the constraints in terms of the input variables, there is also an
objective space. The objective space is a mapping of the solution space onto the
objectives. In classical multi-objective optimization, the problem is cast into a single
objective optimization problem by defining an a priori weighted sum. The solution to
the single objective optimization problem is one point in the objective space.
However, as the optimal weighted sum is seldom known a priori, it is often better to
make the final decision from a set of solutions which is independent of the weights.
This set of solutions is given by the Pareto-front. The Pareto-front thus represents a
surface in the objective space of all possible weighted combinations of the different
objectives that optimally satisfy the constraints.

Since the model selection task is in principle a multi-objective problem (i.e.
accuracy vs. complexity), the fundamentals of the Pareto-front can be applied. Using
the Pareto-front for GP-generated models has many advantages [17]. Firstly, the
structural risk minimization principle [6] can be easily applied to GP-generated
models. Secondly, it effectively displays the trade-off between the measures, which
enables the analyst to make an unbiased decision. Thirdly, as only a small fraction of
the generated models in GP will end up on the Pareto-front, the number of models
that need to be inspected individually is decreased tremendously. Finally, additional
considerations such as variety in input variables used for ensemble construction can
be taken into account. For example, if a Pareto-optimal model uses an undesirable
transformation or input variable, one could look for an alternative model among the
models close to the Pareto-front.

In Fig. 1 the Pareto-front is displayed for a set of GP-generated models in terms of
two objectives, ratio of nodes and R’. The ratio of nodes is a measure of complexity
and needs to be minimized. The second objective, R’ is a measure of the performance
of the models. Using 1-R’ instead of R’ allows easier interpretation as both objectives
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are minimized. The Pareto-front models are models for which no improvement on one
objective can be obtained without deteriorating another objective. The optimal model
will therefore lie somewhere on the Pareto-front. Its position will depend on the
problem at hand. For example, if the complexity and performance have equal
importance then the optimal model would lie in the lower left corner of the Pareto
front. This example shows how the structural risk minimization is used in finding the
optimal model as well as the trade-off between complexity and accuracy.
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Fig. 1. Pareto-front based on the performance of the training data

Recall that another advantage of using the Pareto front is the reduced number of
models to inspect. This is clearly seen in Fig. 1. In total there are 88 models depicted
in the figure. However, only 18 of them are identified as Pareto-front models.
Furthermore, one can clearly see that using models with a ratio of nodes higher than
0.3 does not result in a significant improvement of R’. Therefore, the number of
models to consider may even be less.

Finally, if the analyst is interested in a set of models to be used in the ensemble, the
pool of interesting models can be easily extracted. It is possible to perform model
selection in an interactive way such that the analyst can request a model’s functional
form, error statistics, and response surfaces by clicking on the particular model
depicted in the figure.

3.3 Ensemble Design

It is often preferred to not to develop a single-model soft sensor, but a soft sensor that
uses an ensemble of models. An ensemble consists of several models that will be used
to predict future measurements. The average of the various models will be used as
the final prediction.
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One advantage of using an ensemble soft sensor is that the standard deviation of
the different models in the ensemble can be used as model disagreement measure.
This measure indicates how much the performance of the models differs from each
other within a given estimate. The smaller the difference, the more certain the
operators can be of the prediction made by the soft sensor. This indicator is of special
importance for automatically detecting that the inferential sensor goes outside the
training range. It is assumed that in the extrapolation mode the different models will
diverge more strongly than in interpolation mode, i.e. the standard deviation of their
predictions will significantly increase. There are several methods to design an
ensemble of predictors [15]. The key issue is that one should be careful not to use
models in the ensemble that are too similar in performance, because then a false sense
of trust can be created as the standard deviation will be very small. On the other
hand, the models should not be too different in performance, because then the
predictive power of the soft sensor will be lost. Ideally, the selected models are
diverse enough to capture uncertainties, but similar enough to predict well. The final
selection of the models to be used in the ensemble depends mainly on the expertise of
the analyst.

Another advantage of using an ensemble of models is that it enables redundancy.
Since soft sensors are mainly used in processing conditions it often occurs that one or
more of the instruments measuring the input variables can fail. If the ensemble
consists of models that have different input variables, there will be another model
available in the ensemble that still can predict. This prediction may not be the most
accurate one, but at least there is a prediction instead of nothing.

In order to select the final models for the ensemble, we inspect the models on the
Pareto-fronts based on their performance with both the training and test data. Model
selection of the ensemble is based on the following error statistics: correlation
coefficient, standard deviation, relative error, R’-statistic, Root mean square error
prediction (RMSEP) and the ratio of nodes. A matrix of variables used by the models
is also taken into account. This is needed to identify models that don’t use certain
variables when ensembles with redundancy are constructed.

4 Development of Biomass Inferential Sensor for the Growth
Phase in a Batch Fermentation Process

The described methodology for design of inferential (soft) sensors based on an
ensemble of symbolic regression-type predictors will be illustrated with an industrial
application of biomass estimator for the growth phase in a batch fermentation process
at the Dow Biotech facilities in San Diego.

4.1 Data Collection and Pre-processing

The growth phase data were selected from eleven repeat fermentation runs on
different 20L fermentors. Each experiment produced a batch of time series data that
included seven input variables (air, pressure, OUR, time elapsed, agitation, nutrient,
and total volume) and one output — Optical Density (OD), a measurement for



Biomass Inferential Sensor Based on Ensemble of Models 1085

biomass. The selected inputs have been recommended by the process experts and
were sampled every 15 min. The output measurement, which is highly correlated to
the biomass, was sampled every two hours. The data from each batch was
preprocessed in order to remove outliers, faults and missing values. From the eleven
batches eight batches were chosen for training purposes and three batches were set
aside for testing purposes.

4.2 GP Models Generation and Selection

The symbolic regression-type models have been derived on a MATLAB toolbox,
developed internally in The Dow Chemical Company. The key parameters of a typical
Genetic Programming run are given in Table 1. Several GP simulated evolution
processes of 20 runs were made varying the values for the number of generations and
the parsimony pressure.

Table 1. Genetic Programming Parameter Settings

Parameter Value/Setting
Random subset selection [%] 100
Number of runs 20
Population size 100
Number of generations 30, 100
Probability for function as next node 0.6
Optimization function Correlation Coefficient
Parsimony pressure 0.1, 0.08, 0.05
Probability for random vs. guided crossover | 0.5
Probability for mutation of terminals 0.3
Probability for mutation of functions 0.3

Pareto Front for R? (training data) Pareto Frant for R? {test data)

1-R2

0 08 1
Ratio of Modes Ratio of Modes

Fig. 2. Performance and Pareto-fronts for combined results of all GP runs
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Performance of Ensemble on Learning Data
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Fig. 3. Performance of the ensemble on the training data

The results from the different GP runs were combined and all duplicate models with
equal symbolic strings were removed. In Fig. 2, the performance of the various
models on the training and testing data are shown as well as the Pareto-fronts based
on both data sets.

For the biomass inferential sensor, it was important that the models not be too
complex and have an R’—performance above 0.94. The models of interest were
therefore those in the lower left corner of the Pareto-fronts of both training and test
data. Furthermore, it was desirable that all the models have similar performance on
the test data. The set of models that satisfy these conditions is within the
compounding boxes of the training and test data, as shown in Fig. 2. The first set of
the potential members of the ensemble were identified and inspected from the models
that appear within both the boxes. Several models turned out to be duplicate models
and were consequently removed. The final set of models for the ensemble is as
follows:

(~x6)
fi=-116471+329.8129 ¢

f5 =7.4698 +6.296 x5x26
X7
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X2%6

f3=7.6537+343.9166
X7
exp(-x6 )+exp[,exp(x71/4 jjj

fa==37.7896+647.9714 ¢ ¢
f5 ==1.3671+0.12025,[x¢ (x5 — x7)

All of them are simple enough and provide significant diversity (in terms of selected
inputs and nonlinear relationships) to allow a proper design of the ensemble of
predictors. There is no direct physical or biological interpretation of the models but
the experts agree that the most often used variable in all models x, is of critical

importance to the cell growth.

4.3 Ensemble Performance

The prediction of the ensemble is defined as the average of the predictions of the five
individual models obtained in the previous section. The accuracy requirements for the
ensemble were to predict OD within 15% of the observed OD-level at the end of the
growth phase. The performance of the ensemble on the training data used by GP can

be seen in Fig. 3.

Performance of Ensemble on Test Data
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In Fig. 3 (a) the OD-level is plotted against the sample number, which corresponds
to the time from the beginning of the fermentation. The solid (blue) line indicates the
observed OD-level. The dashed lines represent predictions of the individual models.
The solid (red) line corresponds to the prediction of the ensemble. In Fig. 3(b) the
residuals of the ensemble’s prediction with respect to observed OD is shown. The
15% error bound is also shown. For the training data one sees that for three batches
(030813A, 030819A and 030930B), the ensemble predicts outside the required
accuracy. For batch 030813A it was known that the run was not consistent with the
rest of the batches. However, this batch was added in order to increase the range of
operating conditions captured in the training set.

The performance of the ensemble on the test data can be seen in Fig. 4. Again, in
Fig. 4(a) the OD-level is plotted against the sample number for the observed data, the
individual model predictions and the ensemble. In Fig. 4(b), the error with respect to
the test data can be seen. We see that the performance of the ensemble at the end of
the run for all the batches of the test data is within the required error bound.

5 Conclusions

In this paper we have shown a successful application of a novel type of biomass
estimator based on GP. Furthermore, it is one of the rare applications of inferential
sensors to batch processes.

We have also improved the model selection by using the Pareto-front approach.
The main advantages of this approach are that the complexity of the generated models
is taken into account and an unbiased decision is made. Furthermore, the number of
interesting models to inspect manually is decreased to a manageable number.

Finally we have successfully implemented an ensemble-based inferential sensor
of symbolic regression-generated functions for a notoriously difficult batch process.
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