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Abstract. It is crucial to maximize marketing efficiency and customer
satisfaction in personalized marketing. In this paper, we raise the multi-
ple recommendation problem which occurs when performing several per-
sonalized campaigns simultaneously. We formulate the multi-campaign
assignment problem to solve this issue and propose methods for solv-
ing the problem. The most notable element is the Lagrange multiplier
method. Roughly speaking, Lagrange multiplier reduces problem com-
plexity with a minor impact on optimality. However, it is not easy to find
Lagrange multipliers in exact accord with problem constraints. We use a
genetic algorithm for finding optimal Lagrange multipliers. Through the
experiments, we verify the effectiveness of the problem formulation and
our genetic approach.

1 Introduction

Customer Relationship Management (CRM) is crucial in acquiring and main-
taining loyal customers. To maximize revenue and customer satisfaction, com-
panies try to provide personalized services for customers. A representative effort
is one-to-one marketing. The fast development of Internet and mobile communi-
cation has enhanced the market for one-to-one marketing. A personalized cam-
paign targets the most attractive customers with respect to the subject of the
campaign. So it is important to predict customer preferences for campaigns.
Collaborative Filtering (CF) [11] and various data mining techniques including
clustering [9] and nearest neighbor algorithm [6] are used to predict customer
preferences for campaigns [3]. Especially, since CF is fast and simple, it is widely
used for personalization in e-commerce [10] [8]. There have been a number of
customer-preference estimation methods based on CF [13] [7] [1]. A survey for
recommender systems in e-commerce is given in [12].

As personalized campaigns are frequently performed, several campaigns often
happen to run simultaneously. It is often the case that an attractive customer
for a specific campaign tends to be attractive for other campaigns. If we per-
form separate campaigns without considering this problem, some customers may
be bombarded by a considerable number of campaigns. We call this the multi-
ple recommendation problem. The larger the number of recommendations for a
customer, the lower the customer interest for campaigns. In the long run, the
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customer response for campaigns drops. It lowers the marketing efficiency as
well as customer satisfaction, which diminishes the customer loyalty and some-
times results in the disastrous “churning.” Unfortunately, traditional methods
only focused on the effectiveness of individual campaigns and did not consider
the problem with respect to the multiple recommendations. In the situation that
several campaigns are performed at the same time, it is necessary to find the
optimum campaign assignment to customers considering the recommendations
in other campaigns.

In this paper, we define the multi-campaign assignment problem (MCAP)
considering the multiple recommendation problem and propose three methods
for the issue. We show that one can solve the MCAP to optimality by a dy-
namic programming algorithm. Although the dynamic programming algorithm
guarantees optimal solutions, it becomes intractable for large problems. We thus
propose a constructive heuristic that not only has practical time complexity but
also shows good performance. However, since it is a heuristic, it does not guaran-
tee optimal solutions. Finally, we propose the Lagrange multiplier method with
the advantages of both the dynamic programming method and the constructive
heuristic. It has linear time complexity for the fixed number of campaigns and
sacrifices little on the optimality. Furthermore, the Lagrange multiplier method
also provides a good upper bound and can be used to measure the suboptimality
of other heuristics. But, randomly generated Lagrange multipliers do not satisfy
problem constraints. It is not easy to find Lagrange multipliers in exact accord
with problem constraints. Since it is important to find good Lagrange multipli-
ers, we use genetic algorithms to optimize Lagrange multipliers. We also verify
the effectiveness of the proposed genetic algorithm with field data.

The remainder of this paper is organized as follows. In Section 2, we describe
the multi-campaign assignment problem. The detailed description of response
suppression function, the key element for the problem, is given in Section 3. In
Section 4, we propose three algorithms for the problem: a dynamic programming
algorithm, a heuristic algorithm, and the Lagrange multiplier method. In Sec-
tion 5, we propose a genetic algorithm for optimizing Lagrange multipliers. We
show experimental results in Section 6 and finally make conclusions in Section 7.

2 Problem Formulation

The multi-campaign assignment problem is to find customer-campaign assign-
ments that maximize the effects of campaigns. The main difference with inde-
pendent campaigns lies in that the customer response for campaigns is influenced
by multiple recommendations.

Let N be the number of customers, C = {1, 2, . . . , N} be the set of customers,
and K be the number of campaigns. In the following, we describe the input,
output, constraints, and evaluation function for the problem.
Input: For each customer, the preference for each campaign is given. Each cam-
paign has a weight. A response suppression function R related to multiple rec-
ommendations is given.
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Fig. 1. The campaign assignment matrix M = (mij)

– w1, w2, . . . , wK : the weight of each campaign (wj > 0 for each campaign j).
– f1, f2, . . . , fK : C −→ [0, ∞) : the preference function of each campaign.
– R : N −→ [0, 1] : the response suppression function with respect to the number
of recommendations.
The preferences for a campaign can be gotten from some existing method such
as CF. If Hi is the number of multiple recommendations for customer i and fj(i)
is the preference of customer i for campaign j, the actual preference of customer
i for campaign j becomes R(Hi) · fj(i).
Constraints: The maximum and minimum numbers of recommendations for
each campaign are enforced. Let P j be the maximum number of recommenda-
tions for campaign j, and Pj be the minimum number of recommendations for
campaign j. Then the number of recommendations in campaign j is between Pj

and P j . These constraints can be tight or loose according to the situation of
business.
Output: The output is a binary campaign assignment matrix M = (mij) in
which mij indicates whether campaign j is assigned to customer i. Figure 1
shows an example campaign assignment matrix.
Evaluation: The campaign preference for campaign j is defined to be the
actual preference sum of recommended customers for campaign j as follows:∑

i∈C;mij=1 R(Hi) · fj(i). The fitness F (M) of a campaign assignment matrix
M is the weighted sum of campaign preferences.

F (M) =
K∑

j=1



wj ·
∑

i∈C;mij=1

R(Hi) · fj(i)





.

The objective is to find a matrix M that maximizes F .
Nomenclature: The nomenclature that would be used in the remainder of this
paper is given in the below:
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w = (w1, w2, . . . , wK) ∈ RK : the campaign weight vector
fj : C −→ [0,∞): the preference function for each campaign j

R : N −→ [0, 1]: the response suppression function
(for convenience, we assume R(0) = 0)

p∗ = (P 1, P 2, . . . , P K) ∈ NK : the upper bound constraint vector
p∗ = (P1, P2, . . . , PK) ∈ NK : the lower bound constraint vector
M = (mij): the N ×K binary campaign assignment matrix
M ′ = (m′

ij): the N ×K real matrix where m′
ij = fj(i) ·mij

mi = (mi1, mi2, . . . , miK): the ith row vector of the matrix M

m′
i = (m′

i1, m
′
i2, . . . , m

′
iK): the ith row vector of the matrix M ′

1n: an n-dimensional vector (1, 1, . . . , 1)
Hi = mi · 1T

K : the number of multiple recommendations for customer i

σi = m′
i ·wT : the weighted sum of preferences of customer i for

recommended campaigns

Formal Definition: More formally, we define the multi-campaign assignment
problem (MCAP) as follows.

Definition 1 The multi-campaign assignment problem is to find a campaign as-
signment matrix M = (mij) that maximizes 〈w, R(1KMT )·M ′〉 subject to p∗ ≤
1NM ≤ p∗, where R(x1, x2, . . . , xn) = (R(x1), R(x2), . . . , R(xn)).

3 The Response Suppression Function

In case of multiple campaign recommendations, the customer response rate drops
as the number of recommendations grows. We introduce the response suppres-
sion function for the response-rate degradation with multiple recommendations.
Finding a reasonable response suppression function is the subject to be tuned
over abundant field data. The optimal response suppression function depends on
situations and it is a longterm research topic. Instead, we devised a number of
suppression functions. Definitely, the function should be monotonic nonincreas-
ing.

Figure 2 shows a basic response suppression function. The function is non-
negative monotonic nonincreasing with the maximum value one. It was derived
from the Gaussian function. By the function, the preference for a campaign drops
to, e.g., one third when four campaigns are performed simultaneously to a cus-
tomer. In the experiment, we used the function R as the response suppression
function.

4 Methods

4.1 Dynamic Programming

We can find the optimal campaign assignment matrix of the MCAP using dy-
namic programming (DP). DP has been useful for diverse problems [2] [5]. We
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Fig. 2. Basic response suppression function (R(x) = 0 for x ≥ 11)

DP(R, P∗, P ∗)
{

S0(0K) = 0;
for each v such that 0K �= v ≤ P ∗, S0(v) = −∞;
for i = 1 to N

for each v ≤ P ∗ {
Si(v) = maxmi; ∀j,mij≤vj (Si−1(v −mi) + R(Hi) · σi);
Li(v) = argmaxmi; ∀j,mij≤vj (Si−1(v −mi) + R(Hi) · σi);

}
optimum value = maxv; p∗≤v≤p∗SN (v);
rv = argmaxv; p∗≤v≤p∗SN (v);
for i = N to 1 {

mi = Li(rv);
rv = rv −mi;

}
return optimum value and M ;

}

0n is an n-dimensional vector (0, 0, . . . , 0) and v = (v1, v2, . . . , vK) ∈ NK

Fig. 3. A dynamic programming algorithm for MCAP

devised a DP algorithm for MCAP. Figure 3 shows the pseudo-code. In the al-
gorithm, Si(v) means the optimum fitness of the multi-campaign assignment
problem with P∗ = P ∗ = v and the customer set {1, 2, . . . , i}. The algorithm
requires O(NK · ΠK

j=1P
j) space. Since the maximum number of mi configura-

tions is 2K , it takes O(NK2K · ΠK
j=1P

j) time. If K is a fixed number, this is a
polynomial-time algorithm. However, when K is not small and almost all P j ’s
are Ω(N), it is nearly intractable. An optimum assignment matrix is obtained by
backward links Li(v) stored during the process of dynamic programming. The
proposed DP algorithm is only applicable to problems with small K, N pairs.
Thus we need heuristics for large problems. Since the DP algorithm guarantees
optimal solutions, it is useful in evaluating the suboptimality of other heuristics
proposed in the next subsection.
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M = O;
Create an AVL tree;
for each campaign j

Find topmost α customers with high gain values, and
for each customer i of them, insert the node (gij , (i, j))
into the AVL tree;

do {
Choose a maximum gain node (i, j) and delete it from the AVL tree;
if (gij is not positive and every campaign satisfies

its constraint on the minimum number of recommendations)
then break;

if (the campaign j is not full) then {
Recommend the campaign j to the customer i; // mij ← 1
for each not-full campaign k

Update the gain values gik in the AVL tree;
}

} until (the AVL tree is empty or every campaign is full)

∗ We set α to be N/2 in our experiments.

Fig. 4. The constructive assignment algorithm

4.2 Heuristic Algorithm

Starting at the initial situation that no customer is recommended any campaigns,
we iteratively assign campaigns to customers by a greedy method. We call this
algorithm Constructive Assignment Algorithm (CAA). Define the gain gij of
a pair (customer i, campaign j) to be the amount of fitness gain by assigning
campaign j to customer i. Initially, the gain gij is equal to wjfj(i), the product
of campaign weight and the preference of customer i for campaign j. Generally
the gain is formulated as: gij = R(Hi + 1) · (σi + wjfj(i)) − R(Hi) · σi . We use
an AVL tree for the efficient management of real-valued gains. Figure 4 shows
the template of the CAA. It chooses the most attractive α customers for each
campaign and inserts them into the AVL tree. Next, it iteratively performs the
following. It chooses a pair (customer i, campaign j) with the maximum gain and,
if the gain is positive and campaign j does not exceed the maximum number of
recommendations, it recommends campaign j to customer i. If a recommendation
is done, it updates the gains of customer i for the other campaigns. We naturally
assume that the response suppression function is monotonic nonincreasing. In
that case, any gain cannot be positive after the maximum gain drops below zero.
When the maximum gain is not positive, the algorithm terminates as far as every
campaign satisfies the constraint on the minimum number of recommendations.
There are O(NK) nodes in the AVL tree during a run of the algorithm. Hence,
both the insertion and deletion of a node in the AVL tree take O(log(NK)),
i.e., O(logN). The time complexity of the algorithm is O(NK2logN). If the
algorithm is implemented without an AVL tree, it would take O(N2K3).
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LM(R, λ)
{

for i = 1 to N {
Fi = maxmi∈{0,1}K (R(Hi) · σi − 〈λ, mi〉);
m̃i = argmaxmi∈{0,1}K (R(Hi) · σi − 〈λ, mi〉);

}
p =

∑N
i=1 m̃i;

optimum value =
∑N

i=1 Fi + 〈λ, p〉;
return optimum value, M̃ = (m̃ij), and p;

}

λ = (λ1, λ2, . . . , λK) ∈ RK and p = (p1, p2, . . . , pK) ∈ NK

Fig. 5. Lagrange multiplier method for MCAP

4.3 Lagrange Multipliers

Since the multi-campaign assignment problem is a constraint optimization prob-
lem, it can be solved using Lagrange multipliers as in the following:

Max {〈w, R(1KMT ) · M ′〉 − 〈λ,1NM〉}.

However, since it is a discrete problem which is not differentiable, it is formulated
to a restricted form. Figure 5 shows the pseudo-code of the Lagrange multiplier
method for MCAP. The following proposition guarantees its optimality.

Proposition 1 (Optimality) Given the constraint vector p, Lagrange multiplier
method outputs an optimum matrix M̃ = (m̃ij).

Proof: Suppose that M̃ = (m̃ij) is not an optimum matrix. Let M̄ = (m̄ij) be an
optimum matrix with p as the constraint vector. Let F̄i be R(Hi) · σi − 〈λ, m̄i〉 for
each i in campaign assignment matrix M̄ . For each i, by the optimality of Fi, Fi ≥ F̄i.
Since p is given,

∑N
i=1 Fi + 〈λ, p〉 ≥∑N

i=1 F̄i + 〈λ, p〉. This contradicts that M̃ = (m̃ij)
is not an optimum matrix. Therefore, M̃ = (m̃ij) is an optimum matrix. �

Given a Lagrange multiplier vector λ, we can get the constraint vector p and
the optimum result with p by the Lagrange multiplier method.

Proposition 2 Let λ = (λ1, λ2, . . . , λK) and λ′ = (λ′
1, λ

′
2, . . . , λ

′
K). Suppose

that λi = λ′
i for i �= k and λk �= λ′

k. Then, if λk < λ′
k, pk(λ) ≥ pk(λ′) and if

λk > λ′
k, pk(λ) ≤ pk(λ′).

Proof: Suppose that λ and λ′ correspond to M = (mij) and M ′ = (m′
ij), respectively.

By the optimality of λ,
∑N

i=1 Fi(λ) ≥ F ′
i (λ). By the optimality of λ′,

∑N
i=1 F ′

i (λ
′) ≥

Fi(λ′). From the summation of above two formulas,

N∑

i=1

−〈λ, mi〉+
N∑

i=1

−〈λ′, m′
i〉 ≥

N∑

i=1

−〈λ, m′
i〉+

N∑

i=1

−〈λ′, mi〉
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⇐⇒
N∑

i=1

−λkmik +
N∑

i=1

−λ′
km′

ik ≥
N∑

i=1

−λkm′
ik +

N∑

i=1

−λ′
kmik

⇐⇒ −λkpk(λ)− λ′
kpk(λ′) ≥ −λkpk(λ′)− λ′

kpk(λ)

⇐⇒ (λ′
k − λk)(pk(λ)− pk(λ′)) ≥ 0. �

Proposition 3 (Sensitivity) Suppose that λ0 and λ1 correspond to {M0, p0}
and {M1, p1}, respectively. Then, the following inequalities are satisfied.

〈λ0, p0 − p1〉 ≤ F (M0) − F (M1) ≤ 〈λ1, p0 − p1〉.

In particular, for any assignment matrix M , F (M)−F (M0) ≤ 〈λ0,1NM −p0〉.

Proof: By the optimality of λ0, F (M0)−〈λ0, p0〉 ≥ F (M1)−〈λ0, p1〉. Hence, F (M0)−
F (M1) ≥ 〈λ0, p0−p1〉. By the optimality of λ1, F (M1)−〈λ1, p1〉 ≥ F (M0)−〈λ1, p0〉.
Hence, F (M0)− F (M1) ≤ 〈λ1, p0 − p1〉. �

Fact 1 F is a nondecreasing function of p (i.e., p < p′ ⇒ F ≤ F ′). This
implies λ ≥ 0K .

From Proposition 2, pi inversely grows with λi. However, it is not easy to
find λ satisfying p∗ ≤ p ≤ p∗. Proposition 3 shows that our Lagrange multiplier
method also gives good upper bounds. By using the Lagrange multiplier method,
the problem of finding the optimum campaign assignment matrix becomes that
of finding a K-dimensional real vector λ with Lagrange multipliers. The La-
grange multiplier method takes O(NK2K) time. It is more tractable than the
original problem. Roughly, for a fixed number K, the problem size is lowered
from O(NK+1) to O(N).

5 A Genetic Algorithm for Optimizing Lagrange
Multipliers

We propose a genetic algorithm (GA) for optimizing Lagrange multipliers.
It conducts a search using an evaluation function with penalties for vio-
lated constraints. The search space with N customers and K campaigns has
ΠK

i=0Π
P i

j=Pi

(
N
j

)
elements if all possibilities are considered. But, too large a prob-

lem size may make the search intractable. Our GA provides an alternative search
method to find a good campaign assignment matrix by optimizing K Lagrange
multipliers instead of directly dealing with the campaign assignment matrix.

5.1 Genetic Operators

The general framework of a typical steady-state genetic algorithm is used in our
GA. In the following, we describe each part of the GA.
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– Encoding: Each solution in the population is represented by a chromosome.
Each chromosome contains K Lagrange multipliers. A real encoding is used
for representing the chromosome λ. From Fact 1, each Lagrange multiplier
is nonnegative. So we set a gene corresponding to a Lagrange multiplier to
be a real value between 0.0 and 1.0.

– Initialization: The GA first creates p real vectors between 0K and 1K at
random. We set the population size p to be 100.

– Selection and crossover: To select two parents, we use a proportional se-
lection scheme where the probability for the best solution to be chosen is
four times higher than that for the worst solution. A crossover operator cre-
ates a new offspring by combining parts of the parents. We use the uniform
crossover [14].

– Mutation: After the crossover, mutation operator is applied to the offspring.
We use a variant of Gaussian mutation. We devised it considering the relation
between λi and pi given in Proposition 2. For each selected gene λi, we choose
a Gaussian random real number t normally distributed with parameters
µ = 0 and σ2 = 1 (i.e., t ∼ N(0, 1)). If the corresponding constraint pi is less
than P i, we set λi to λi +(1−λi) · |t|/γ. Otherwise, we set λi to λi −λi · |t|/γ.
Mutation rate is 0.05 and the constant γ is 2.58.

– Replacement and stopping condition: After generating an offspring, our GA
replaces the worse of the two parents with the offspring. It is called preselec-
tion replacement [4]. Our GA stops when one of the following two conditions
is satisfied: i) the number of generations reaches 15,000, ii) when the fitness
of the worst chromosome is equal to the fitness of the best one.

5.2 Evaluation Function

Our evaluation function is to find a Lagrange multiplier vector λ that has high
fitness satisfying the constraints as much as possible. In our GA, the following
evaluation function is used: F (M)−∑K

j=1 cj ·excess(j) where cj is the campaign
penalty and excess(j) is the number of exceeded recommendations for campaign
j. In this paper, we used K times the weighted average preference of campaign
j as the campaign penalty cj (i.e., cj = K · wj · 1

N

∑N
i=1 fj(i)).

6 Experimental Results

6.1 Inputs and Parameters

We used the preference values estimated by CF from a set of field data with
48,559 customers and 10 campaigns. We used the function R which was derived
from Gaussian function as the response suppression function. The weight for each
campaign was given equally 0.1. The maximum number of recommendations for
each campaign was set to 7,284, equal to 15% of the total number of customers.
The minimum number of recommendations was set to 0.

The average preference of customers for a campaign was 4.74. We examined
the Pearson correlation coefficient of preferences for each pair of campaigns.
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Fig. 6. Histogram for Pearson correlation coefficient of each campaign pair

Table 1. Comparison for Small Data Sets (K = 3)

Method N = 200 N = 400 N = 600 N = 800 N = 1000
CAA 733.61 1303.98 2030.10 2725.59 3479.30

(Time∗) (0.0010) (0.0021) (0.0032) (0.0045) (0.0058)
DP† 734.64 1304.43 2031.22 2726.99 3483.02

(Time∗) (145.82) (2336.41) (11553.92) (28838.84) (71479.06)

Maximum 50% and minimum 0% recommendation for each campaign.
Equally weighted campaigns; i.e., wj = 0.33 for each campaign j.
† The optimum value.
∗ CPU seconds on Pentium III 1 GHz.

Figure 6 shows its histogram. Thirty three pairs (about 73%) out of totally 45
pairs showed higher correlation coefficient than 0.5. This property of field data
provides a good reason for the need of MCAP modeling.

6.2 Analysis of Results

First, we compare the proposed heuristic algorithm with the DP algorithm which
guarantees optimality. Due to the running time of dynamic programming, we re-
stricted the instances with up to 1,000 customers and three campaigns. Table 1
shows their performance. We chose three campaigns among the 10 campaigns,
and the sets of customers were sampled at random to prepare the sets with sizes
from 200 to 1,000. The maximum number of recommended customers was set to
be a half the total number of customers. The minimum number of recommenda-
tions was set to 0. The CAA was much faster than the dynamic programming
algorithm while its results reached fairly close to the optimal solutions. This
implies that CAA is an attractive practical heuristic.

Table 2 shows the performance of the independent campaign and various
multi-campaign algorithms in the multi-campaign formulation. We use all the
48,559 customers and 10 campaigns here. The figures in the table represent the
fitness values F (M) described in Section 2. The results of “Independent” cam-
paign are from K independent campaigns without considering their relationships
with others. Although the independent campaign was better than the “Random”
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Table 2. Comparison of Algorithms

Method K = 7 K = 8 K = 9 K = 10
Independent 38546.25 36779.68 30259.65 26452.75

Random 32487.36 29385.14 27187.26 25951.19
CAA 85565.05 79885.40 71863.76 66473.63

LM-Random† 45401.90 53638.58 52351.99 46990.46
LM-GA† 86474.30 80287.72 72518.22 66932.79

LM Upper Bound∗ 87776.38 81428.48 73446.60 67654.77

† Average over 10 runs.
∗ Upper bound by Proposition 3 and the results of LM-GA.
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Fig. 7. An example of optimized Lagrange multipliers

assignment in multi-campaign formulation, it was not comparable to the other
multi-campaign algorithms. The results of Random assignment are the average
over 100 runs. The solution fitnesses of CAA heuristic were overall more than
two times higher than those of the independent campaign.

Next, we compare the proposed heuristic algorithm with the Lagrange multi-
plier method. Table 2 shows their performance, too. LM-Random means the best
result among randomly generated 15,000 Lagrange multiplier vectors. Even in
the best result, there were constraints violations for some campaigns. However,
when Lagrange multipliers are optimized by a genetic algorithm (LM-GA), we
always found the best-quality solutions satisfying all constraints. Moreover, LM-
GA performed better than the proposed deterministic heuristic, CAA. Figure 7
shows an example of optimized 10 Lagrange multipliers. For a typical randomly
generated Lagrange multiplier vector, we can observe that excessive constraints
violations for some campaigns (the left figure of Fig. 7). However, with the La-
grange multipliers optimized by GA, we can see that all constraints were satisfied
(the right figure of Fig. 7).

As a final solution of the GA with K = 10 and fitness 66980.76, we got
the following constraint vector: p = {7254, 7269, 6238, 6982, 2422, 7284, 7237,
7282, 4675, 7260} (on the right side of Fig. 7). When the vector p is used as the
upper bound constraint vector p∗ of the MCAP, CAA produced the campaign
assignment matrix with a fitness value 65819.80. This gives another usage of the
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Lagrange multiplier method. The suboptimality of heuristic algorithms can be
measured by using the optimality of the Lagrange multiplier method.

7 Conclusions

The representative contributions of this paper are as follows. First, we proposed
and formulated the multi-campaign assignment problem (MCAP). Second, we
presented a dynamic programming algorithm and a constructive heuristic al-
gorithm for MCAP. Finally, we proposed Lagrange multiplier method for the
MCAP and optimized it using a genetic algorithm. Their performance was ex-
amined with experiments.

Our Lagrange multiplier method is fast and outputs optimal solutions. But, it
is not easy to find Lagrange multipliers satisfying all constraints. When combined
with the genetic algorithm, we could find high-quality Lagrange multipliers. The
Lagrange multiplier method may be combined with other metaheuristics as well
such as evolutionary strategy, simulated annealing, tabu search, and large-step
Markov chains. Experimentation with respect to these methods is left for future
study.
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