
A Hybrid Genetic Approach for
Circuit Bipartitioning

Jong-Pil Kim1, Yong-Hyuk Kim2, and Byung-Ro Moon2

1 Electronics and Telecommunications Research Institute
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350 Korea

kimjp@etri.re.kr
2 School of Computer Science & Engineering, Seoul National University

Shillim-dong, Kwanak-gu, Seoul, 151-742 Korea
{yhdfly, moon}@soar.snu.ac.kr

Abstract. We propose a hybrid genetic algorithm for partitioning a
VLSI circuit graph into two disjoint graphs of minimum cut size. The al-
gorithm includes a local optimization heuristic which is a modification of
Fiduccia-Matheyses algorithm. Using well-known benchmarks (including
ACM/SIGDA benchmarks), the combination of genetic algorithm and
the local heuristic performed better than hMetis, a representative circuit
partitioning algorithm.

1 Introduction

Hypergraph partitioning is an important problem and has many applications
including design automation of VLSI chips and multi-chip systems. A hypergraph
H(V, E) consists of a set of nodes V and a set of nets E. Each net e ∈ E is a
subset of two or more nodes in V . The nodes associated with a net are called
pins. A bisection of H is dividing the set V into two disjoint subsets V1 and V2.
The cut size c(V1, V2) is defined as

c(V1, V2) = |{ e ∈ E | e ∩ V1 �= φ and e ∩ V2 �= φ }|.
In other words, the cut size is the number of nets whose end points are in
different subsets. The min-cut bisection problem minimizes the c(V1, V2) subject
to |V1| = |V2|. Since it is NP-hard problem [16], heuristic algorithms, which yield
approximate solutions in acceptable times, are generally used. These include
iterative improvement methods [12] [13] [14] [20] [23], meta-heuristic methods
such as simulated annealing (SA) [18] [22], large-step Markov chain (LSMC) [15]
[25], tabu search (TS) [3] [11] [27], and genetic algorithm (GA) [4] [7] [8] [17] [21]
[24] [28] [30]. An extensive survey of hypergraph partitioning appeared in [2].

The Kernighan-Lin algorithm (KL) [20] is a representative iterative improve-
ment algorithm for general graphs. KL starts with a random initial two sub-
sets and proceeds by iteratively swapping nodes. Subsequently, Schweikert and
Kernighan [29] modified the algorithm for hypergraphs. Fiduccia and Matthey-
ses algorithm (FM) [14] is a variation of KL, which reduces the time complexity

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 1054–1064, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

A Hybrid Genetic Approach for Circuit Bipartitioning 1055

cut line

gain = −1 gain = 1
lock−gain= 1

cut line

vu

lock−gain= ?

(a) A general graph (b) A hypergraph

: locked node : free node

Fig. 1. Gain vs. lock gain

of the algorithm to O(|P |) with effective data structures, where |P | is the num-
ber of pins in a hypergraph. Krishnamurthy [23] enhanced FM by introducing
the concept of level gains and obtained better results in small graphs. Dutt and
Deng proposed PROP [12] which uses a probabilistic gain computation, and
CLIP/CDIP [13] which uses a cluster-removal method.

Lock gain is a new measure which showed improvement over the traditional
gain for general graphs [21]. In this paper, we adapt the lock gain for hypergraphs
within the framework of FM [14]. We combine the lock-gain-based hypergraph
partitioning heuristic with a steady-state genetic algorithm.

The remainder of this paper is organized as follows. Section 2 summarizes
the FM algorithm and explains the lock gain. In Section 3, we describe the
local optimization heuristic for min-cut bisection problem. Details of the genetic
algorithm are provided in Section 4. We show the experimental results in Section
5 and summarize the study in Section 6.

2 Preliminaries

2.1 Fiduccia-Matheyses Algorithm

The FM algorithm [14] starts with two random initial subsets. It moves a node
at a time from one subset to the other in an attempt to minimize the cut size.
Each node v has a gain g(v) which represents the cut size reduction by moving
v to the opposite subset:

g(v) = |{e ∈ I(v)}| − |{e′ ∈ C(v)}|

where C(v) is the set of nets containing v in which all pins lie in the subset to
which v belongs; I(v) is the set of nets such that all the other pins except v

1056 J.-P. Kim, Y.-H. Kim, and B.-R. Moon

(b) Case 2

v v

+1

(a) Case 1

+1

...

Fig. 2. Positive lock gain

belong to the opposite subset. To differentiate the gain with the lock gain of the
next section, we sometimes use the term “general gain.”

The node to move is chosen on the basis of its gain and the balance criterion.
If we do not consider the balance criterion, all nodes would eventually migrate
to one subset except a lowest-degreed node. After a node is moved, it is locked
to prevent further movements. Only unlocked nodes are allowed to move. A
pass stops when all nodes are locked. Then we undo the sequence of movements
beyond the point that maximizes the total gain. All the nodes are now marked
unlocked again and another pass starts. This process is repeated until no more
improvement is obtained.

2.2 Lock Gain

The general gain of a node only reflects the local information of a node. Hence,
it is hard to predict the future state of the node from the gain. FM improves
an initial solution through short-sighted moves based on the gain. Kim and
Moon [21] introduced lock gain as a primary measure for choosing the nodes to
move. It uses the history of search more efficiently. Lock gain showed excellent
performance for general graphs.

In general graphs, the lock gain l(v) of a node v is defined to be the gain of
the node v only with respect to the locked nodes. Let node v be in the subset
V1 without loss of generality. Formally,

l(v) = |{w | (v, w) ∈ E, and node w ∈ L(V2)}|
− |{w′ | (v, w′) ∈ E, and node w′ ∈ L(V1)}| (1)

where L(Vi) is the set of locked nodes in the subset Vi.
An example is given in Figure 1(a). In the figure, the gain of the node u

is −1. But when only locked nodes are considered, the lock gain of the node u
becomes 1.

3 Lock Gain in Hypergraphs

3.1 Lock Gain in Hypergraphs

To apply the lock gain to the hypergraph bisection, considerable modification is
necessary for the lock gain calculation method. In general graphs, nets cannot

A Hybrid Genetic Approach for Circuit Bipartitioning 1057

−1 −1

.........v v

(a) Case 3 (b) Case 4

Fig. 3. Negative lock gain

have degrees greater than two. But in hypergraphs, most nets have degrees
greater than two. A net may contain both locked nodes and unlocked nodes.
The above term (1) does not work for this case. For example, in Figure 1(b),
the gain of the node v is 1; but the lock gain of the node cannot be calculated
in the same method as in Figure 1(a).

We propose a new lock gain calculation method for the hypergraph bisection.
Let’s define le(v) to be the lock gain of a node v due to the net e ∈ E. le(v) is
obtained as the following.

We assume that the node v is on the left side without loss of generality. L,
R, and L′, R′ are defined to be the numbers of nodes on the left side and on
the right side and the numbers of locked nodes on the left side and on the right
side, respectively.

i) Positive Lock Gain
– Case 1 (e.g., Figure 2(a)) :

L > 0, L′ = 0, R = R′ > 0.

If all nodes on the right side are locked and there is no locked node on
the left side, then le(v) = 1.

– Case 2 (e.g., Figure 2(b)) :

L = 1, L′ = 0, R ≥ R′ > 0.

If there exist locked nodes on the right side and there is one free node
on the left side, then le(v) = 1.

ii) Negative Lock Gain
– Case 3 (e.g., Figure 3(a)) :

L > L′ > 0, R = R′ = 0.

If all nodes are on the left side and at least one node is locked, then
le(v) = −1.

– Case 4 (e.g., Figure 3(b)) :

L − L′ = 1, R > 0, R′ = 0.

If all nodes on the left side except v are locked and there is no locked
node on the right side, then le(v) = −1.

1058 J.-P. Kim, Y.-H. Kim, and B.-R. Moon

LFM (G, V1, V2)
// Vi: a given initial subset, V1 ∪ V2 = V and V1 ∩ V2 = φ

1. do {
2. compute g(v) for each v ∈ V ;
3. set l(v) to 0 for each v ∈ V ;
4. Q = φ;
5. for i = 1 to n {
6. if (V1 > V2)
7. choose vi ∈ V1 − Q such that l(v) is maximal over all choices of v ∈ V1;
8. else
9. choose vi ∈ V2 − Q such that l(v) is maximal over all choices of v ∈ V2;
10. Q = Q ∪ {vi};
11. for each v ∈ V − Q adjacent to vi

12. adjust l(v) and g(v) if affected by moving vi;
13. }
14. choose k ∈ {1, . . . , n} to maximize

∑k

i=1
g(vi);

15. move nodes in the subsets {v1, . . . , vk} to their opposite sides;
16. } until (there is no improvement)

Fig. 4. LFM algorithm

iii) Zero Lock Gain
In all the other cases, le(v) = 0.

Then, the lock gain l(v) of the node v is defined to be

l(v) =
∑

e∈N(v)

le(v)

where N(v) is a set of nets to which the node v is connected. If all nodes are
locked, l(v) is equal to g(v).

Our lock-gain based FM algorithm is given in Figure 4. In the algorithm, lines
2 through 4 compute the gains, set lock gains to 0 for all nodes, and initialize
Q (the set of locked nodes). Lines 6 through 12 choose a node, move and lock
it, and adjust general gains and lock gains which are affected by the movement.
In lines 14 and 15, we undo the sequence of movements beyond the point that
maximizes the total gain (i.e., minimizes the cut size). We call this algorithm
LFM.

3.2 Implementation

We use the bucket data structure to maintain lock gain lists. This data structure
allows constant-time selection of the most attractive node and fast gain update
after each move [14]. Since the lock gain is an integer in the range [−Dmax, Dmax]
where Dmax is the maximum node degree in the graph, the bucket structure
maintains the lock gain efficiently. When a tie occurs in max lock gain, general
gains are used for the tie-breaking. For the efficient implementation of this tie-
breaking strategy, we enlarge the number of buckets.

Kim and Moon [21] used (2Dmax+1)2 buckets for tie-breaking. In this paper,
we use (2�Dmax

2 �+1)2 buckets for speed up. In an examination, we observed that

A Hybrid Genetic Approach for Circuit Bipartitioning 1059

Table 1. The Comparison of Two Buckets (Using LFM)

(2�Dmax
2 �+ 1)2 (2Dmax + 1)2Circuits

Ave1 CPU2 Ave1 CPU2

Test03 80.40 0.046 81.36 0.072
Test04 77.03 0.060 78.23 0.108
Test05 107.20 0.117 106.95 0.169
Prim1 66.17 0.009 66.17 0.009

1. The average cut size of 1,000 runs
2. CPU seconds on Pentium III 1 GHz

the number of nodes with a degree greater than �Dmax

2 � is less than 20% of the
entire nodes. We set the range of the gain values to [−�Dmax

2 �, �Dmax

2 �]. If a gain
value is out of the range, we set it to one of the two bounds.

A node v with lock gain l(v) and gain g(v) is stored at the bucket indexed
by the value R(l(v))(2�Dmax

2 � + 1) + R(g(v)) where

R(k) =

−�Dmax

2 �, if k < −�Dmax

2 �
k, if −�Dmax

2 � ≤ k ≤ �Dmax

2 �
�Dmax

2 �, if k > �Dmax

2 � .

Table 1 compares the two strategies with (2�Dmax

2 � + 1)2 and (2Dmax + 1)2

buckets. One can observe that the former is faster than the latter without notable
impact on performance.

4 Genetic Algorithm

We devised a hybrid steady-state genetic algorithm for the problem. A hybrid
steady-state genetic algorithm is often called a memetic algorithm [26]. Figure
5 shows the template of the GA.

– Encoding:
A chromosome is defined to be an n-tuple 〈c1, c2, . . . , cn〉 where ci ∈ {0, 1}
for i = 1, 2, . . . , n. If the ith node belongs to the left side, the value of the
ith gene is 0; otherwise, it is 1.

– Initialization:
p chromosomes are created at random. Each chromosome undergoes a
balancing process. We set the population size p to be 50.

– Selection:
The roulette-wheel proportional selection scheme is used. The probability
that the best chromosome is chosen was set four times higher than the
probability that the worst chromosome is chosen.

1060 J.-P. Kim, Y.-H. Kim, and B.-R. Moon

create initial population of fixed size;
do {

choose parent1 and parent2 from population;
offspring ← crossover (parent1, parent2);
local-improvement(offspring); // LFM algorithm
replace (population, offspring);

} until (stopping condition);
return the best member of the population;

Fig. 5. A hybrid genetic algorithm for hypergraph partitioning

– Crossover and Mutation:
We used five-point crossover. After crossover, chromosomes are usually
not balanced. We start at a random point on the chromosome and adjust
the gene values to the right until the balance is satisfied. This has some
mutation effect, so we do not add any explicit mutation.

– Replacement:
We combine preselection [6] and Genitor-style replacement [31]. If it is
superior to the closer parent in Hamming distance, the offspring replaces
the closer parent, if not, the inferior parent is replaced if the offspring is
better. If not again, the worst in the population is replaced.

– Stopping condition:
If 70 percent of the population converges with the same cut size as the best
solution, we stop the GA.

5 Experimental Results

5.1 Test Set and Test Environment

Before showing the experimental results, we introduce the benchmarks used
in this experiment. We tested the proposed algorithm on 9 benchmark circuit
graphs, including seven ACM/SIGDA benchmarks [1]. Table 2 shows the num-
bers of nodes, nets, and pins for each circuit graph. All cut size results are from
the strict 50:50% balance criterion. Although some flexibility is allowed in the
balancing in real-world circuit partitioning, this bisection model has a strong
indication to the performance in other partitioning models.

We first examine the performance of the suggested local optimization heuris-
tic (LFM) against the original FM and a well-known partitioner hMetis [19].
Metis (hMetis) is a recent representative partitioning algorithm which has been
a standard for comparison in a number of papers [5] [9] [10]. Then we show the

A Hybrid Genetic Approach for Circuit Bipartitioning 1061

Table 2. Specification of Circuit Graphs

Circuits #nodes #nets #pins
Test02 1663 1721 6134
Test03 1607 1618 5807
Test04 1515 1658 5975
Test05 2595 2751 10076
Test06 1752 1674 6638
Prim1 833 902 2908
Prim2 3014 3029 11219
19ks 2844 3282 10547

Industry2 12142 12949 47193

experimental results of the hybrid GA. Since the hybrid GA uses the local opti-
mization heuristic as an engine, it is obvious that the hybrid GA would perform
better than the local optimization heuristic. We thus examine the effectiveness
of the genetic search by comparison with the multi-start local optimization with
comparable time budgets.

C language was used on a Pentium III 1 GHz PC with Linux operating
system. It was compiled with GNU’s gcc compiler.

5.2 Experimental Results

We first examine the performance of the local optimization heuristic (LFM) in
Table 3. FM, hMetis, and LFM are compared. The statistics of the three algo-
rithms are from 1,000 independent runs. So the average results are fairly stable.
The bold-faced numbers indicate the best result among the three algorithms.
LFM significantly improved the performance of the original FM at the cost of a
bit more CPU time. However, LFM was not comparable to hMetis as its own.

Table 4 shows the performance of the suggested GA. The genetic algorithm
(GA) significantly improved the performance of LFM. Because the GA took
roughly 200 times more than a single run of LFM, it is not clear how critical
the genetic search is to the performance improvement. Thus, we compared the
GA with the multi-start version (LFM200) that runs LFM on 200 random initial
solutions and returns the best out of them. For the same reason, hMetis200, that
is a multi-start version of hMetis with 200 runs, was compared. On the aver-
age, the proposed GA performed best in six graphs among nine. The difference
between LFM200 and GA is evidently owing to the genetic process.

As mentioned, hMetis outperformed LFM. It constructs a multi-level hierar-
chy and performs complex declustering and reclustering process called V-cycle.
We want to emphasize that LFM, which simply changed the measure for finding
nodes to move, obtained high quality performances and the genetic algorithm
boosted up the LFM’s quality so that it performed better than hMetis.

1062 J.-P. Kim, Y.-H. Kim, and B.-R. Moon

Table 3. Bipartition Cut Sizes of FM, hMetis, and LFM

FM LFM hMetisCircuits
Ave1 CPU2 Best3 Ave1 CPU2 Best3 Ave1 CPU2 Best3

Test02 172.88 0.016 114 109.03 0.059 91 101.87 0.061 88
Test03 118.72 0.078 64 80.40 0.046 58 63.94 0.059 59
Test04 140.22 0.014 70 77.63 0.060 51 58.81 0.050 54
Test05 181.47 0.039 98 107.20 0.117 75 80.24 0.096 71
Test06 92.09 0.017 67 75.57 0.026 63 68.50 0.061 64
Prim1 80.17 0.007 54 66.17 0.009 54 56.79 0.032 53
Prim2 296.96 0.068 176 230.46 0.115 147 197.00 0.172 148
19ks 190.88 0.059 136 154.30 0.089 112 127.52 0.130 111

Industry2 839.25 0.475 342 311.84 0.757 199 228.21 1.159 180

1. The average cut size of 1,000 runs
2. CPU seconds on Pentium III 1 GHz
3. The best cut size of 1,000 runs

Table 4. Bipartition Cut Sizes of LFM200, hMetis200, and GA

LFM200 GA hMetis200Circuits
Ave1 CPU2 Best3 Ave4 CPU2 Best5 Ave6 CPU2 Best7

Test02 92.08 11.58 89 88.16 17.20 88 89.81 12.12 88
Test03 58.93 9.07 58 58.00 5.59 58 59.90 11.74 58
Test04 52.41 11.98 51 51.15 8.90 51 54.77 10.02 54
Test05 77.37 20.83 72 72.05 27.85 71 71.33 19.22 71
Test06 63.53 5.10 63 63.12 4.89 63 64.05 12.30 64
Prim1 53.82 1.86 53 53.87 1.14 53 53.00 6.33 53
Prim2 152.76 24.78 146 149.02 19.45 146 177.76 34.39 146
19ks 116.50 19.72 112 110.22 21.44 110 110.81 25.89 110

Industry2 210.48 130.50 195 186.97 211.25 183 181.15 233.35 180

1. The average cut size of 100 runs, each of which is the best of 200 runs of LFM
2. CPU seconds on Pentium III 1 GHz
3. The best cut size of 20,000 runs
4. The average cut size of 100 runs
5. The best cut size of 100 runs
6. The average cut size of 100 runs, each of which is the best of 200 runs of hMetis
7. The best cut size of 20,000 runs

6 Conclusions

We proposed a hybrid genetic algorithm for the hypergraph min-cut bisection
problem. In order to design a good hybrid GA, we devised a new local optimiza-
tion heuristic. The suggested local heuristic is a variation of FM algorithm that
uses lock gain for the choice of moving nodes.

The hybrid genetic algorithm with the new local search heuristic synergeti-
cally achieved good performance. The experimental results showed the effective-
ness of the suggested genetic algorithm.

There are stochastic methods such as tabu search [27] [11] [3] and large-
step Markov chain [25] [15] that are known to have effective search capabilities.
Combination of our suggested local heuristic and other stochastic methods is
considered to be a promising topic for further studies.

A Hybrid Genetic Approach for Circuit Bipartitioning 1063

Acknowledgments. This study was supported by Brain Korea 21 Project. The
ICT at Seoul National University provided research facilities for this study.

References

1. Benchmark. http://vlsicad.cs.ucla.edu/˜cheese/benchmarks.html.
2. C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A survey.

Integration: the VLSI Journal, 19(1-2):1–81, 1995.
3. R. Battiti and A. Bertossi. Greedy, prohibition, and reative heuristics for graph

partitioning. IEEE Trans. on Computers, 48(4):361–385, 1999.
4. T. N. Bui and B. R. Moon. Genetic algorithm and graph partitioning. IEEE Trans.

on Computers, 45(7):841–855, 1996.
5. A. E. Caldwell, A. B. Kahng, and I. L. Markov. Improved algorithms for hyper-

graph bipartitioning. In Asia and South Pacific Design Automation Conference,
pages 661–666, 2000.

6. D. Cavicchio. Adaptive Search Using Simulated Evolution. PhD thesis, University
of Michigan, Ann Arbor, MI, 1970.

7. J. P. Cohoon, W. N. Martin, and D. S. Richards. A multi-population genetic algo-
rithm for solving the k-part on hyper-cubes. In Fourth International Conference
on Genetic Algorithms, pages 244–248, 1991.

8. R. Collins and D. Jefferson. Selection in massively parallel genetic algorithms. In
Fourth International Conference on Genetic Algorithms, pages 249–256, 1991.

9. J. Cong and S. K. Lim. Edge separability based circuit clustering with application
to circuit partitioning. In Asia and South Pacific Design Automation Conference,
pages 429–434, 2000.

10. J. Cong, S. K. Lim, and C. Wu. Performance driven multi-level and multiway
partitioning with retiming. In ACM/IEEE-CAS/EDAC Design Automation Con-
ference, pages 274–279, 2000.

11. M. Dell’Amico and F. Maffioli. A new tabu search approach to the 0-1 equicut
problem. In Meta-Heuristics 1995: The State of the Art, pages 361–377. Kluwer
Academic Publishers, 1996.

12. S. Dutt and W. Deng. A probability-based approach to VLSI circuit partitioning.
In Proc. Design Automation Conference, pages 100–105, 1996.

13. S. Dutt and W. Deng. VLSI circuit partitioning by cluster-removal using iterative
improvement techniques. In Proc. International Conference on Computer-Aided
Design, pages 194–200, 1996.

14. C. Fiduccia and R. Mattheyses. A linear time heuristics for improving network
partitions. In 19th IEEE/ACM Design Automation Conference, pages 175–181,
1982.

15. A. S. Fukunaga, J. H. Huang, and A. B. Kahng. On clustered kick moves for
iterated-descent netlist partitioning. In IEEE International Symposium on Circuits
and Systems, volume 4, pages 496–499, 1996.

16. M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, 1979.

17. M. Harpal, M. Kishan, M. Chilukuri, and R. Sanjay. Genetic algorithms for graph
partitioning and incremental graph partitioning. In IEEE Proceedings of the Su-
percomputing, pages 449–457, 1994.

18. D. S. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by simulated
annealing: An experimental evaluation. Operations Research, 37:865–892, 1989.

1064 J.-P. Kim, Y.-H. Kim, and B.-R. Moon

19. G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph par-
titioning: Application in VLSI domain. In Proc. Design Automation Conference,
pages 526–529, 1997.

20. B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell Systems Technical Journal, 49:291–307, 1970.

21. Y. H. Kim and B. R. Moon. Lock-gain based graph partitioning. Journal of
Heuristics, 10(1):37–57, 2004.

22. S. Kirkpatrick, Gelatt C. D. Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, May 1983.

23. B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI networks.
IEEE Trans. on Computers, 33:438–446, 1984.

24. G. Laszewski. Intelligent structural operators for the k-way graph partitioning
problem. In Fourth International Conference on Genetic Algorithms, pages 45–52,
1991.

25. O. Martin, S. W. Otto, and E. W. Felten. Large-step markov chains for the trav-
eling salesman problem. Complex Systems, 5:299–326, 1991.

26. Pablo Moscato. On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report C3P 826, Caltech Concurrent
Computation Program, 1989.

27. E. Rolland, H. Pirkul, and F. Glover. A tabu search for graph partitioning. Annals
of Operations Research, 63, 1996.

28. Y. Saab and V. Rao. Stochastic evolution: A fast effective heuristic for some genetic
layout problems. In 27th IEEE/ACM Design Automation Conference, pages 26–31,
1990.

29. D. G. Schweikert and B. W. Kernighan. A proper model for the partitioning of
electrical circuits. In Proc. 9th Design Automation Workshop, pages 57–62, 1972.

30. A. G. Steenbeek, E. Marchiori, and A. E. Eiben. Finding balanced graph bi-
partitions using a hybrid genetic algorithm. In IEEE Conference on Evolutionary
Computation, pages 90–95, 1998.

31. D. Whitley and J. Kauth. Genitor: A different genetic algorithm. In Proceedings
of Rocky Mountain Conference on Artificial Intelligence, pages 118–130, 1988.

	Introduction
	Preliminaries
	Fiduccia-Matheyses Algorithm
	Lock Gain

	Lock Gain in Hypergraphs
	Lock Gain in Hypergraphs
	Implementation

	Genetic Algorithm
	Experimental Results
	Test Set and Test Environment
	Experimental Results

	Conclusions

