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Abstract. This paper describes a genetic algorithm for the DNA se-
quencing problem. The algorithm allows the input spectrum to contain
both positive and negative errors as could be expected from a hybridiza-
tion experiment. The main features of the algorithm include a prepro-
cessing step that reduces the size of the input spectrum and an efficient
local optimization. In experimental tests, the algorithm performed very
well against existing algorithms. The algorithm also performed very well
on a large data set generated in this paper from real genomes data.

1 Introduction

Determining the genome of living organisms has been a major research initiative
world wide in the last few years. One of the principal steps in this endeavor is the
sequencing of DNA. Informally, DNA sequencing is the process of determining
the correct order of nucleotides in a DNA segment. Many techniques have been
developed for DNA sequencing. DNA sequencing experiments are typically per-
formed in two stages: shotgun sequencing and walking. In shotgun sequencing,
many short, randomly selected fragments of a DNA segment are sequenced. Due
to the stochastic nature of this process, there are parts of the DNA segment that
are left unsequenced or insufficiently covered. These parts are then covered by a
deterministic finishing process called walking [19].

The two most popular methods for DNA sequencing are the Sanger method
and the Sequencing by Hybridization (SBH) method [20]. In this paper we con-
sider only the SBH method. SBH follows the methodology known as “break, read
and assemble”. In this methodology a DNA sequence is partitioned into smaller
size fragments. The fragments are then read using a fluorescent light. The as-
semble phase tries to retrieve the original sequence from the shorter length frag-
ments, i.e., to determine the exact sequence of nucleotides of the DNA molecule.

From an algorithmic point of view the DNA sequencing problem is the prob-
lem of constructing a chromosome that most likely contain all the DNA frag-
ments in a given input set, called the spectrum. The spectrum is usually ob-
tained through some experiments such as a hybridization experiment. It should
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be noted that the fragments in a spectrum have overlaps and all fragments have
the same length. If a spectrum contains all possible fragments of length l of a
DNA sequence and there are no errors in the fragments then there exist efficient
algorithms for reconstructing the original DNA sequence from the spectrum. In
general, however, there are errors in the spectrum, e.g., missing fragments or
erroneous fragments, making the problem of reconstructing the original DNA
sequence an NP-hard problem [4].

In this paper we present a genetic algorithm for the DNA sequencing prob-
lem. Our algorithm differs from others in that it can efficiently handle different
types of errors in the input. Additionally, our algorithm includes a preprocessing
step that effectively reduces the size of the input, thereby helps reduce the run-
ning time of the algorithm. The idea of the preprocessing step can be extended
to create a hierarchical structure that enables our algorithm to deal with much
longer sequence. Experimental results show that our algorithm outperformed
other algorithms from [1] and [7]. We also performed extensive test of our algo-
rithm on data that we generated systematically from genomes obtained from the
GenBank (www.ncbi.nlm.nih.gov/Genbank/). To determine the quality of these
results we used the Smith-Waterman algorithm for sequence alignment [24]. The
results of these experiments show that our algorithm is very robust against a
large range of errors.

The rest of the paper is organized as follows. Section 2 describes some com-
mon terminologies, defines the problem formally and lists some current work on
the problem. The algorithm is described in Section 3. Experimental results com-
paring the performance of our algorithm against others are given in Section 4.
Section 4 also includes results showing the performance of our algorithm on a
large data set that we generated. The conclusion and future directions are given
in Section 5.

2 Preliminaries

In this section we describe some of the terminologies needed for the rest of the
paper, give a formal description of the DNA sequencing problem and list some of
the existing works that have been done on this problem. DNA (deoxyribonucleic
acid) consists of two strands, each of which contains nucleotides: adenine (A),
cytosine (C), guanine (G) and thymine (T). (Technically, there are other com-
ponents in a DNA strand such as phosphates.) The nucleotides in each strand
are connected together in series. The two strands of the DNA are twisted to-
gether into the famous double helix structure. Furthermore, each nucleotide in a
strand is connected to a complementary nucleotide in the other strand, where A
is paired with T and C is paired with G. Thus, each strand in a DNA completely
determines the other.

A fragment is a short sequence of nucleotides. It is also known as an oligonu-
cleotide. A hybridization experiment is an experiment that takes a DNA strand
and produces copy of fragments of that strand. These fragments usually have
overlap. The set of all fragments that result from a hybridization experiment is
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known as a spectrum. All fragments in a spectrum have the same length. In this
paper, we consider fragment lengths ranging from 10 to 50.

The DNA sequencing problem is the problem of determining a DNA strand
based on a given spectrum. We can model this problem as follows. Let Σ =
{A, C, T, G} be an alphabet. Here we consider a spectrum as a set of distinct
strings of length l over Σ. We refer to each string in a spectrum as a fragment.
A spectrum is said to be ideal if the following condition is true for all but one
fragment in the spectrum: the suffix of length l − 1 in a fragment is a prefix
of exactly one other fragment in the spectrum. The DNA sequencing problem
can then be stated as the problem of constructing a string over Σ from a given
spectrum (not necessarily an ideal spectrum), so that the resulting string is
the shortest string that contains as many of the fragments in the spectrum as
possible.

In general the input spectrum is not an ideal one. The errors appearing in a
spectrum are usually due to errors in the hybridization experiment. Errors can
be classified as positive or negative. The spectrum has positive errors when it
contains fragments that are not part of the original sequence. It has negative
errors when it fails to contain some oligonucleotides. Certain errors are random,
meaning that they may disappear when the experiment is repeated. However,
many hybridization errors are systematic, meaning that they are likely to repeat
each time the experiment is run [22][23].

If there are no errors, the problem of DNA sequencing is similar to the Short-
est Superstring problem [20], which is defined as the problem of reconstructing
a string given a collection of overlapped substrings. The Shortest Superstring
problem is NP-hard, but it is known that greedy algorithms work well for this
problem [12]. There exists an approximation algorithm with an approximation
factor of three, i.e., the superstring it produces is at most three times as long as
the optimal shortest superstring [8]. However, compared to the DNA Sequencing
problem, the Shortest Superstring problem seems to be easier.

The existence of errors in the input spectrum makes the problem of recon-
structing the original sequence an NP-hard problem [4]. Missing fragments from
the experiment turn the problem into the problem of finding the Most-Likely se-
quence [4]. The most likely sequence is the shortest one containing almost each
fragment as a substring. Some fragments might be excluded from the final result.
Those excluded fragments are the ones that represent the positive errors in the
experiment. Also, fragments might not be completely overlapped. Under normal
situations, two fragments of length l intersect in l − 1 positions. However, be-
cause of negative errors the longest overlap might not be of length l−1. Another
source of difficulty exists when the spectrum contains repeated fragments. Most
existing algorithms that allow for errors in the input spectrum put restrictions
on the error model [5][10][11]. There are few algorithms that do not have any
restriction on the input error model. Two such algorithms are in [1] and [7], and
our algorithm is compared against them.

Algorithms solving the DNA Sequencing problem take as input the spectrum
of all fragments. The output is a DNA sequence that is the most-likely one that
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includes all fragments. In the case of an ideal spectrum, the result sequence would
be of length n + l − 1, where n is the number of fragments in the spectrum, l is
the length of the fragments. However, because of errors this may not be always
the case. The algorithm presented here deals with errors. So the output sequence
would not necessarily be of length n+l−1. Negative errors may cause the output
sequence to be shorter in length. Positive errors may cause it to be longer. In
some other cases, those types of errors would mistakenly cause the algorithm to
converge to a sequence that does not necessarily represent the optimal solution.

3 Algorithm

In this section we describe a genetic algorithm for solving the DNA sequencing
problem when the input may have both positive and negative errors. We do not
require that the starting fragment of the sequence be known as it is done in
[6]. We use a steady state genetic algorithm together with a local optimization
procedure to help improve the performance of the algorithm. Additionally, we
have a preprocessing step that helps improve the algorithm even further. The
overall algorithm is given in Figure 1. In the following subsections we give more
details of the algorithm.

Fig. 1. The Enhanced Genetic Algorithm for DNA sequencing

Preprocessing. In general, the fewer fragments and longer fragments there
are in the spectrum the easier the problem is. The idea of the preprocessing is
to merge certain fragments together, thereby creating a new spectrum that has
fewer and longer fragments. In this step we create long chains of fragments of the
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form F1 . . . Fk, where Fi’s are fragments, and the last l − 1 elements of Fi match
the first l − 1 elements of Fi+1. Our objective is to make k as large as possible.
The optimal case would be when k = n, where n is the cardinality of spectrum S.
However, because of negative errors, that’s not always the case. Each such chain
of fragments is merged into one fragment in the new spectrum. The algorithm
then works with this spectrum which has variable length fragments and a smaller
number of fragments than the original spectrum.

The preprocessing algorithm creates a chain by selecting an unused fragment
in the spectrum and adding it to the chain. The fragment is then marked used.
The algorithm extends the chain by selecting an unused fragment that has an
overlap of l − 1 with the last fragment in the chain. If such a fragment exists,
it is added to the chain and marked used, and the process is repeated. If there
is no such fragment the chain is terminated. The algorithm then starts a new
chain. The algorithm terminates when all fragments in the original spectrum
have been used. The algorithm then merges the fragments in each chain to create
a fragment for the new spectrum. This algorithm can be efficiently implemented
using dynamic programming technique.

As an example, suppose we have a DNA sequence CTAGACGTTC of length
10. An ideal spectrum would consist of the following six fragments: CTAGA,
TAGAC, AGACG, GACGT, ACGTT and CGTTC, where we have assumed
that the fragment length is 5. However, because of errors from the hybridiza-
tion experiment an input spectrum in this case may consists of the following six
fragments: CTAGA, TAGAC, AGACG, TATCC, ACGTT, CGTTC. This spec-
trum differs from the ideal spectrum in that it does not contain the fragment
GACGT (a negative error), instead it contains the fragment TATCC which is
not a substring of the original DNA sequence (a positive error). Thus, this spec-
trum has one negative error and one positive error. Using this spectrum as the
input, the preprocessing algorithm would produce the following chains [CTAGA,
TAGAC, AGAC], [TATCC], and [ACGTT, CGTTC], which yields the spectrum
consisting of the following three fragments: CTAGACG, TATCC, ACGTTC.

Encoding and Initialization. We assume that fragments in the spectrum ob-
tained from the preprocessing step are indexed in some order. Each member of
the population is a vector of fragment indexes representing a possible solution
sequence to the problem. Given a vector u[1 . . . m] of fragment indexes, the cor-
responding sequence is obtained by merging the fragments Fu[1], Fu[2], . . . , Fu[m]
in that order, where Fi is the ith fragment in the spectrum. Here, two adja-
cent fragments are put together by overlapping them as much as possible. We
also maintain the constraint that each fragment index appears at most once in
the encoding of a sequence. The vectors in the population can be of variable
length. In what follows, we refer to each member of the population as a vector
or sequence.

An initial population of size 120 is generated at random. The size of the
population remains constant throughout the algorithm. The vectors in the initial
population all have the same size, i.e., each vector has the same number of
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fragment indexes. However, since the fragments are of variable length after the
preprocessing step, the corresponding sequences have different lengths. Suppose
the spectrum obtained after preprocessing contains the fragments CTAGACG,
TATCC, ACGTT, and the fragments are indexed in that ordered from 1 to 3.
Then, the vector (1, 3) yields the sequence CTAGACGTT, and the vector (2, 1)
yields the sequence TATCCTAGACG.

Fitness. The fitness of each sequence is calculated based on two factors: (i)
the amount of overlap between adjacent fragments in the sequence, and (ii) the
length of the sequence. The idea here is that the more overlap there are between
adjacent fragments the shorter the sequence is. Also, if the length of the sequence
is equal to n+ l−1, where n is the cardinality of the spectrum and l is the length
of each fragment, a bonus value is added to the value of the fitness. Note that
n + l − 1 is the optimal length for a sequence that includes all fragments in the
spectrum. More formally, let u[1 . . . k] be a vector representing a sequence U in
the population. The fitness of U is defined as follows.

f(U) =
k−1∑

i=1

|Fu[i] ∩ Fu[i+1]| + z

where z is the bonus value defined by

z =
{

s, if |U | = n + l − 1,
s/||U | − (n + l − 1)|, otherwise.

For our experiment, s was set to 100. The fitness can be computed efficiently
using dynamic programming technique.

Parent Selection. The parents are selected using the standard proportional
selection method where sequences that have higher fitness have a better chance
of being selected. The standard roulette wheel scheme is used in our algorithm
[13].

Crossover. We use a 3-point crossover in our algorithm. The offspring is con-
structed by selecting alternately from each parent after 3 cutpoints have been
determined. Note that the members of the population are vectors of fragment
indexes. This process may create offsprings that contain duplicated fragment
indexes. A repair algorithm is used to get rid of any repeated fragments and to
ensure that each fragment appears at most once within the offspring. The repair
algorithm works by replacing the repeated fragments with fragments from the
spectrum that are not currently in use by the sequence.

Mutation. The mutation is performed on each newly created offspring sequence
as follows. With a probability of 10% each fragment index in the offspring is
swapped with another randomly selected fragment index.
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Local Optimization. The local optimization algorithm has two steps. The
first step is to scan the sequence sequentially and identify a pair of adjacent
fragments, say x and y, that has the smallest overlap. Find the fragment, say
z, that has the highest overlap with x. Replace y with z. The vector is then
repaired, if needed, to eliminate duplicated fragments.

The second step is to rearrange the fragments in the sequence in the hope of
improving its fitness value. This is done by first finding the two pairs of adjacent
fragments that have the two smallest overlaps. Let s, t be the first pair and x, y be
the second pair. That is, assume that the vector u = (a, . . . , s, t, . . . , x, y, . . . z).
We then construct a new vector u′ by swapping the fragments between t and x
with the fragments from y to the end of u. Thus, u′ = (a, . . . , s, y, . . . , z, t, . . . , x).
If the fitness of u′ is better than that of u, we replace u by u′. Otherwise,
we keep u and discard u′. By using dynamic programming technique the local
optimization algorithm and the repair algorithm can be efficiently implemented.

Replacement Scheme. If the fitness of the new offspring is larger than the
fitness of the worse of the two parents, then we replace that parent with the new
offspring. Otherwise, we discard the new offspring.

Stopping Condition. The algorithm terminates if there is no improvement
in the total fitness of the population in 400 consecutive generations, or if the
number of generations exceeds 50,000.

4 Experimental Results

In this section we first describe the performance of our algorithm in comparison
with some existing algorithms for the DNA sequencing problem. We then show
the result of our algorithm on an extensive set of data generated by us using
genome sequences from the GenBank (www.ncbi.nlm.nih.gov/Genbank/). Our
algorithm was implemented in C++ and was run on a PC with Pentium IV
2.4GHz Intel processor with 512MB of RAM.

Our first set of test data is from [7][15]. We used it to compare our algorithm
against the Hybrid Genetic Algorithm of [7] and the Tabu Search algorithm in
[1]. The data from this set consists of spectra having 100, 200, 300, 400 and 500
fragments. There are 40 spectra for each size, for a total of 200 instances. The
fragment length in all of these instances is 10. In each instance there are 20%
positive errors and 20% negative errors.

To determine the quality of the solution we follow [7] and use the classical
pairwise Smith-Waterman sequence alignment algorithm to compare the solution
output by the algorithm with the known sequence from which the spectrum was
derived. We use two values from the output of the Smith-Waterman algorithm:
the match percentage and the similarity score. In addition, as in [7], for each
instance tested we include the number of times the algorithm finds the optimal
answer. This number is called the optimum number. Table 1 and Figure 2 sum-
marize the results of the comparison. It can be seen that our algorithm performs
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significantly better than the other algorithms as the sequence length gets larger.
More details can be seen in Figures 2 (a), (b) and (c).

Even though the running times are available for all algorithms, we cannot
compare the running times, since different machines were used. For our algo-
rithm, the average running time was from 0.6 second for the smallest problem
size to 15.1 seconds for the largest problem size tested. The Hybrid GA and Tabu
Search algorithms were run on a PC with a Pentium II 300MHz processor and
256MB of RAM. The average running times range from 13.5 seconds to 437.9
seconds for the Hybrid GA and from 14.1 seconds to 471.5 seconds for the Tabu
Search algorithm. More details can be found in Table 1.

(a) (b) (c)

Fig. 2. Comparison between our algorithm Enhanced GA, Hybrid GA and Tabu
Search: (a) Match Percentage, (b) Optimum Number, and (c) Similarity Score

The second set of test data we used was generated by us using three genomes
obtained from the GenBank. Table 2 shows the details of the genomes that we
used. For each of the three genomes we generated 10 sequences of each length in
the set {100, 200, 300, 400, 500, 1000, 2000}. That is, for each genome we gener-
ated 70 sequences. From each of these sequences we generated spectra with frag-
ments of length 10 and 20. For each fragment length, we generated spectra with
13 different combinations of positive and negative errors, ranging from 0 to 20%
errors. Hence, for all three genomes we generated a total of 3×70×2×13 = 5, 460
spectra. For each input spectrum the algorithm was run 50 times. We used the
Mersenne Twister random number generator of [17] in our algorithm.

We have also generated a similar set of spectra with fragments of length
50. The algorithm was tested on all spectra of three different lengths: 10, 20,
and 50. We observe that the longer the fragments are, the better the results
are. In fact, with fragment length of 50, our algorithm almost always found the
optimal answers, and thus, we do not include the data for fragments of length 50
here. We used different fragment lengths since in practice different hybridization
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Table 1. Summary of results by Enhanced GA, Hybrid GA and Tabu Search

Algorithm 100 200 300 400 500
Enhanced GA Average Similarity Score (pt) 106.7 200.6 291.6 352.2 451.6
(Pentium IV, Average Similarity Score (%) 98.9 97.6 96.7 92.9 92.0
2.4GHz, Running time (sec) 0.6 1.5 3.6 8.6 15.1
512MB RAM) Optimum no. 29 26 22 13 13
HGA Average Similarity Score (pt) 108.4 199.3 274.1 301.7 326.0
(Pentium II, Average Similarity Score (%) 99.7 97.7 94.3 86.9 82.0
300MHz, Running time (sec) 13.5 63.4 154.9 263.4 437.9
256MB RAM) Optimum no. 40 31 20 9 5
Tabu Search Average Similarity Score (pt) 108.4 184.1 196.6 229.5 235.1
(Pentium II, Average Similarity Score (%) 99.7 94.0 81.8 78.1 73.1
300MHz, Running time (sec) 14.1 60.8 177.7 258.3 471.5
256MB RAM) Optimum no. 40 24 11 6 2

Table 2. Genomes from the GenBank used in testing the Genetic Algorithm

Sequence Length(bp)

Human immunodeficiency virus 2 10,359
Drosophila melanogaster DNA sequence of white locus 14,245
Canis familiaris clone RP81-60B6 165,116

techniques may require different fragment lengths. Normally, hybridization rate
is better if the fragment length is larger. However, for in situ hybridization small
fragment length is required [18].

As in the case of the first data set, we use the Smith-Waterman sequence
alignment algorithm to determine the quality of the solutions returned by the
algorithm. We used an implementation of the Smith-Waterman algorithm pro-
vided by Jie Li of the Iowa State University [16]. Figures 3 and 4 show the
performance and running time of our algorithm on the second set of data. In
Figure 3, the left graph shows the match percentage for spectra with fragment
length 10, and the right graph is for spectra with fragment length 20. The x-axis
shows the various error combinations in the input spectrum. The notation -a+b
indicates spectra with a% negative error and %b positive error. For each error
combination, the match percentage shown is the average of the match percent-
ages taken from all spectra generated from the three genomes and with 50 runs
for each such spectrum. In all cases, the match percentage is over 85%. It can
be observed that spectra with longer fragment length seem to be easier to solve
than ones with smaller fragment length. The same machine that we used to test
the algorithm on the first data set was used for the second data set. Figure 4
shows that spectra with higher error percentage seem to take longer than spectra
with smaller error percentage.
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Fig. 3. Plot of match percentage of Enhanced GA against error combination for spectra
with fragment length of 10 (left) and 20 (right). The label -a+b indicates spectra with
a% negative error and %b positive error.

Fig. 4. Plot of running time of Enhanced GA against error combination for spectra
with fragment length of 10 (left) and 20 (right). The label -a+b indicates spectra with
a% negative error and %b positive error.

Experimental results from the two data sets suggest that our algorithm per-
forms very well against existing algorithms. It is also very robust against different
combinations of errors.

5 Conclusion

This paper introduced a new enhanced genetic algorithm for the DNA Sequenc-
ing problem. The results produced by the algorithm were very good and in many
cases were optimal or close to optimal and were frequently better than existing
algorithms. Taking into account the difference in speed of the machines on which
the various algorithms were run, our algorithm seems to be comparable if not
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faster than existing algorithms. This paper did not look at the case when the
input spectrum contains repeated fragments. Repeated fragments can cause the
algorithm not to be able to find optimal answers even when there are no other
types of errors in the spectrum. This type of error diminishes if the fragment
length increases. We plan to look into the problem of dealing with repeated
fragments.
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