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Abstract. Factored Markov Decision Processes is the theoretical frame-
work underlying multi-step Learning Classifier Systems research. This
framework is mostly used in the context of Two-stage Bayes Networks, a
subset of Bayes Networks. In this paper, we compare the Learning Clas-
sifier Systems approach and the Bayes Networks approach to factored
Markov Decision Problems. More specifically, we focus on a comparison
between MACS, an Anticipatory Learning Classifier System, and Struc-
tured Policy Iteration, a general planning algorithm used in the context
of Two-stage Bayes Networks. From that comparison, we define a new
algorithm resulting from the adaptation of Structured Policy Iteration to
the context of MACS. We conclude by calling for a closer communication
between both research communities.

1 Introduction

As [Lan02] did show very clearly, Learning Classifier Systems (LCSs) are a family
of Reinforcement Learning (RL) systems endowed with a generalization property.
The usual formal representation of RL problems is a Markov Decision Process
(MDP), which is defined by a finite state space S, a finite set of actions A, a
transition function T and a reward function R.

In the LCS framework, the states consist of several independent attributes
whose value define a perceptual situation. Indeed, instead of the (state, action,
payoff) triples in the Q-Table of standard RL algorithms, a LCS contains rules
called “classifiers” organized into a [condition] part (or C part), an [action]
part (or A part) and a payoff. The C part specifies the value of a set of attributes.
It is satisfied only if all values specified match the corresponding values in the
current state.

In the LCS framework, finding a compact representation is seen as a general-
ization problem. The generalization capability of LCSs comes from their use of
don’t care symbols # in the C part of the classifiers. Indeed, a # matches any par-
ticular value of the considered attribute. Therefore, changing an attribute into
a # makes the corresponding C part more general (it matches more situations).
As a result, the representation is more compact.

The same framework is also used in a sub-part of the Bayes Networks (BNs)
community, under the name “factored MDP”. Indeed, a factored MDP is a MDP
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where each state is a collection of random variables. This representation takes ad-
vantage on local probabilistic conditional dependences among some variables to
build a more compact model of the underlying MDP by factoring the dependent
variables. More precisely, according to [BDH99], if the situation is composed of n
variables such that any of them only depends of the value of l other variables at
the previous time step, then the size of the factored representation is in O(n2l)
instead of O(2n).

Thus the intuition giving rise to the use of factored MDPs in BNs seem to
be exactly the same as the intuition underlying LCS research, particularly in
the multi-step context. In both cases, the goal is to solve MDPs with a compact
representation.

Given this identity, we present a comparison between both perspectives,
showing that 2TBN, a formalism devoted to solving factored MDPs in BNs,
is very similar to the one of MACS, an Anticipatory Learning Classifier System
(ALCS). Then, as a result of the comparison, we show how the Structured Policy
Iteration (SPI) algorithm designed in the 2TBN case can be adapted to MACS
and we discuss the improvements that result from this adaptation.

The paper is organized as follows. In section 2, we briefly present the formal-
ism used in MACS. In section 3, we present how 2TBNs tackle factored MDP
problems and we illustrate their formalism through an example used as a basis
for a comparison. In section 4, we compare the 2TBN formalism with the one
used in MACS, and in section 5, we show how to adapt SPI to MACS. We dis-
cuss in section 6 the insights that result from this adaptation both by the 2TBN
side and by the ALCS side. Finally, we conclude by calling for more exchanges
between both research communities.

2 Brief Overview of MACS

2.1 Anticipatory Learning Classifier Systems

As indicated in the introduction, among RL systems, LCSs are a family of sys-
tems designed to solve problems where the state consists of several attributes.
They take advantage of factored representations with respect to plain RL tech-
niques tabular Q-learning thanks to their generalization capability. As a con-
sequence, they can solve problems with fewer classifiers than a system dealing
with tabular representations.

Most standard LCSs call upon a combination of a RL algorithm such as Q-
learning with a Genetic Algorithm (GA) [Gol89]. The RL algorithm estimates
the quality of actions in the situations specified by the different classifiers, while
the GA evolves the population of classifiers. Thus each classifier holds both an
estimated quality and a fitness. In strength-based LCSs such as ZCS [Wil94],
the fitness is equal to the estimated quality. As a result, only the classifiers
specifying actions with a high payoff are kept. In accuracy-based LCSs such as
XCS [Wil95], the fitness is equal to the capacity of the classifier to accurately
predict the payoff it will receive. This results in a more efficient coverage of the
(state, action) space, and XCS is now the most widely used LCS. For a general
overview of recent LCS research, see [LR00].
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Instead of directly learning a model of the quality function as standard
LCSs do, Anticipatory Learning Classifier Systems (ALCSs) such as ACS [Sto98,
BGS00], ACS2 [But02], YACS [GS01,GSS02] and MACS [GMS03,GS03] learn a
model of the transition function T . This model is then used to speed up the RL
process.

In ALCSs, the classifiers are organized into [condition] [action]
[effect] parts, denoted C-A-E. The E part represents the effects of action A
in situations matched by condition C. It records the perceived changes in the
environment. Different formalisms giving rise to generalization in this approach
are described hereafter.

2.2 From YACS to MACS

In ACS, ACS2 and YACS, a C part may contain don’t care symbols “#” or specific
values (like 0 or 1), as in XCS. An E part may contain either specific values or
don’t change symbols “= ”, meaning that the attribute remains unchanged when
the action is performed. A specific value in the E part means that the value of
the corresponding attribute changes to the value specified in that E part.

Unfortunately, such a formalism cannot represent regularities across different
attributes from one time step to another, though such regularities are common.

Table 1. During the integration process, MACS scans the E parts and selects classifiers
whose A part matches the action and whose C part matches the situation. The integra-
tion process builds all the possible anticipated situations with respect to the possible
values of every attribute. Here, MACS anticipates that using [01020100] as a current
situation should lead either to [11012000] or to [11011000]. If all the classifiers were
accurate, this process would generate only one possible anticipation.

[01020100] [Action] Anticipated situation
[0#######] [East] [???????0]
[#1######] [East] [1???????]
[##02####] [East] [????2???]
[###2####] [East] [????1???]
[####0###] [East] [?????0??]
[#####1##] [East] [?1??????]
[######0#] [East] [??0?????]
[#######0] [East] [???1????]
[########] [East] [??????0?]

Resulting anticipations → [11012000]
or [11011000]

In order to discover more regularities, our second ALCS, MACS [GMS03,
GS03], uses don’t know symbols “?” instead of don’t change symbols in the E part.
Thanks to that formalism, the overall system gains the opportunity to discover
regularities across different attributes in the C and the E parts. As a result of
this modification, we can split the model of transitions into modules predicting



Improving MACS Thanks to a Comparison with 2TBNs 813

the value of different attributes. The consequence is that the system needs an
additional mechanism which integrates the partial anticipations provided by the
modules and builds a whole anticipated situation, without any don’t know symbol
in its description, as shown in Table 1.

Fig. 1. MACS global architecture.

2.3 The Architecture of MACS

The MACS architecture is illustrated in figure 1. As shown in [GS03], it is
similar to a Dyna architecture in all respects, but it is additionally endowed
with a generalization capability. It consists of a model of transitions, which
models the dynamics of the agent-environment interactions, and a model of
the payoff, which models the payoffs that the agent can get from its actions.
The main processes in MACS are devoted to learning the model of transitions
thanks to dedicated generalization and specialization heuristics, and learning
the model of the payoff, according to different criteria that endow MACS with
an active exploration capability. These processes have already been presented
in detail in [GMS03]. We must just mention that MACS uses the model of
transitions to speed up the learning of the model of the payoff thanks to a Value
Iteration algorithm that is somewhat inefficient: the model of the payoff consists
in storing two values for each encountered state without generalization, and
Value Iteration requires a costly lookahead operation involving the anticipations
integration process described in section 2.2.

Experimental results presented in [GMS03] demonstrated that the new for-
malism used by MACS actually affords more powerful generalization capacities
than the former ones, without any cost in terms of learning speed.
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3 DBNs and 2TBNs

As we have said in the introduction, a factored MDP is a MDP where all states
are defined as collections of random variables Xi. The set of states can be denoted
S = (X1, ..., Xn). Each variable Xi takes its value xi in a domain: ∀i, xi ∈
Dom(Xi). Thus a given state s is defined by a vector of values of the random
variables: we have s = (x1, ..., xn) which defines the states exactly as in LCSs. A
Bayesian Network (BN) is a tool to deal with probabilistic dependencies among
these random variables.

The BN framework [Pea88] includes a graphical formalism devoted to the
representation of conditional relations between variables. Graphically, variables
are represented as nodes in a Directed Acyclic Graph. A link between two nodes
represent a probabilistic dependency between the corresponding variable such
that the joint probability of all variables can be decomposed into a product of
conditional probabilities of each variable, given its parents in the graph. Hence
BNs provide an easy way to specify conditional independences between variables.
Moreover, they provide a compact parameterization of the model.

Dynamic Bayesian Networks (DBNs) [DK89] are BNs of stochastic processes,
representing (temporal) sequential data. They extend BNs by focusing on mod-
eling changes on stochastic variables (Xt+1 = f(Xt) ) over time with a BN.
Hence the sequence is infinite but the time slice is finite and (usually) static.
DBNs generalize Hidden Markov Models (HMMs), Linear Dynamical Systems
(LDSs) and Kalman filters, and represent (hidden and observed) states in terms
of probabilistic variables. Note that the assumption of time slice invariability
(relations do not change over time) may be relaxed for the parameters as well as
for the structure. Usually, a DBN is represented by 2 time slices, under the name
2TBN (2 Time (slices) Bayesian Network). The former slice represents the ini-
tial state of the model; the second one represents the generic state. The relations
between the two slices represent the stochastic process. In the following we will
consider restrictions of 2TBNs where there are no relations between variables in
the second time slice.

With respect to the standard BNs, this particular class is very restricted, but
it is nevertheless rich enough to adequately represent factored MDPs and give
rise to tractable algorithms, whereas more powerful representations are generally
untractable.

In order to show how 2TBNs are used to model a factored MDP, we will use
the example given in [BDG00]. In this example, a robot must go to a café to
buy some coffee and deliver it to its owner in her office. It may rain on the way,
in which case the robot may get wet, unless it has an umbrella. There are six
boolean propositions describing the state of the system:

– O: the robot is at the office (O means that it is at the café);
– R: it is raining; W : the robot is wet;
– U : the robot has its umbrella;
– HCR: the robot has coffee; HCO: the owner has coffee.

The robot can take four actions:
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– Go: move to the opposite location; GetU : get the umbrella.
– BuyC: buy coffee; DelC: deliver coffee to the user;

A 2TBN can be used to model the effect of each action on the state of the
problem. Such 2TBNs are called “action networks” [DG94]. In figure 2.a, we
show the action network corresponding to the action “DelC”.

W W

U U

R R

O

HCO

HCR

O

HCR

HCO

time T+1time T

(a)

Ot HCRt HCOt HCOt+1

t t t 1.0
f t t 1.0
t f t 1.0
f f t 1.0
t t f 0.8
f t f 0.0
t f f 0.0
f f f 0.0

(b)

O

HCR

HCO

0.0

0.8 0.0

1.0

(c)

Fig. 2. (a) The action network for DelC, represented as a 2TBN; (b) The CPT for
HCO/DelC; (c) The corresponding tree representation

From this network we can see for instance that, when the robot delivers
coffee, the fact that he is wet afterwards does only depend on whether he was wet
beforehand, since delivering coffee does not happen outdoors. On the contrary,
the fact that the owner finally gets some coffee depends on three propositions:
is the robot at the office? did the robot have coffee? did the owner have coffee?

There is one such network per action. But these networks do only indicate
whether there is a probabilistic dependency or not, they do not provide enough
information to determine the actual dynamics of the environment. The missing
information is represented in Conditional Probabilistic Tables (CPTs). An ex-
ample of CPT is shown in figure 2.b. This table gives the probability that HCO
will hold depending on O, HCR and HCO if the agent takes action DelC. Fi-
nally, the same information can be represented in a tree, as shown in figure 2.c.
One such table or tree must be given for each variable and for each action in
order to get a complete specification of the dynamics of the factored MDP.

HCO

W W

0.0 0.10.9 1.0

Fig. 3. The reward tree for the café example
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Finally, one can also represent the reward function of the problem with a
decision, tree, as shown in figure 3. Let us now compare this formalism with
the one used in MACS before comparing the processes used to deal with these
representations.

4 Comparison of Formalisms

First of all, at the level of the organization of data, the representations in 2TBNs
and MACS are slightly different.

In MACS, each module in the model of transitions tries to predict the value of
one particular attribute for all possible situations and all possible actions, while
in the standard BN representation, there is one 2TBN for each possible action
and then, for any such action, there is one CPT for each predicted attribute.

Thus in the 2TBN representation, the distinction between actions is prior to
the distinction between attributes, while it is the contrary in MACS. But this is
just a different organization for the same data.

At a lower level, the content of these data is similar. Indeed, for a given action,
CPTs convey the same information as a subset of possible modules dedicated to
predicting the same attribute for the same action in MACS, as shown in table 2.

Table 2. The CPT for HCO/DelC represented with the formalism of MACS

W U R O HCR HCO Action W U R O HCR HCO missing proba.
# # # # # 1 DelC ? ? ? ? ? 1 1.0
# # # 1 1 0 DelC ? ? ? ? ? 1 0.8
# # # # 0 0 DelC ? ? ? ? ? 0 1.0
# # # 0 # 0 DelC ? ? ? ? ? 0 1.0

Thus expressing a CPT as a set of MACS classifiers is straightforward: for
each leaf in the tree, add a new classifier with a # in front of all irrelevant
variables in the C part, the considered action in the A part, and an E part whose
only specialized attribute is the one predicted by the CPT.

When this is done, one obvious difference remains: the CPT conveys a prob-
ability that the attribute will take the predicted value, while MACS conveys
a deterministic information. Indeed, MACS was designed to solve deterministic
MDPs and should be extended in that direction if we want to reduce the distance
between both formalisms.

Another important difference comes from the way the payoff is modeled in
both approaches. In MACS we map the values to all situations encountered,
giving rise to a flat (situation, value) table. On the contrary, [BDG95] indicates
that the reward function can be represented as a tree whose nodes are variables,
as shown in figure 3. This gives rise both to a more compact representation and
to more efficient algorithms, as we will discuss now.
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5 Incorporating a 2TBN Planning Algorithm in MACS

The main difference between mechanisms in MACS and in 2TBNs comes from
the fact that MACS is designed to learn by itself a representation from its in-
teraction with the MDP thanks to a RL mechanism, while in most 2TBNs cases
the representation is considered as given by the user.

Thus MACS must solve both a learning problem and a planning problem
while most 2TBNs just solve the planning problem. Note however that some au-
thors are interested in learning the structure of DBNs [FMR98,HGC95,Gha97],
but in general they do so separately from tackling the planning problem, drawing
inspiration from algorithms developed for Hidden Markov Models [RJ86], and
they focus on more complex structures than 2TBNs.

As a consequence of this difference, in order to go further in the comparison,
we must focus on the way the planning problem is solved both in MACS and in
2TBNs.

5.1 Structured Policy Iteration

The algorithm we will present in order to build an optimal policy in 2TBNs
is Structured Policy Iteration (SPI) [BDG95,BDG00]. SPI is inspired from the
tabular Modified Policy Iteration (MPI) algorithm [How71,PS78] improved in
order to work exclusively on tree structures, which results in favorable cases in a
significant reduction of the computational cost of the algorithm with respect to
tabular MPI. For a more detailed presentation of SPI than the one given below,
read [BDG00].

The central operation common to all dynamic programming and reinforce-
ment learning algorithms is the propagation of values or qualities among the
states of the MDP 1, according to the Bellman equation:

∀si ∈ S, QV
a (si) = R(si, a) + β

∑

sj∈S

T (si, a, sj)V (sj) (1)

The key idea in SPI consists in achieving this propagation more efficiently
than in tabular representations by grouping together the states that share the
same values into tree-based representations. Indeed, all structures in SPI are
decision trees whose leaves correspond to groups of states sharing the same
values on the variables present in the parent nodes of these leaves.

In this tree-based representation, we note:

– QTreeV
a (s) the quality tree of action a given the value function V ;

– RTree(s, a) the tree of rewards obtained from performing action a in state
s;

– V Tree(s) the value tree of state s.
1 This process is called “Decision-Theoretic Regression” in [BDG00].
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As a consequence, the Bellman equation becomes:

∀si ∈ S, QTreeV
a (si) = RTree(si, a) + β

∑

sj∈S

T (si, a, sj)V Tree(sj) (2)

The value propagation algorithm in the tree-based case strictly follows the
standard algorithm for the tabular case:

– It starts with an initial value function V Tree0(s) = RTree(s, a).
– Then, in order to update QTreeV

a (s), it looks for the term T (si, a, sj), i.e.
for transitions from one state to the next through actions, so as to propagate
the values along these transitions. Instead of looking for these transitions in
a (st, at, st+1) table, the tree-based algorithm uses the CPT s of all actions,
which directly give a tree-based representation of the same information.

This algorithm can infer the tree-based representation of the quality of all actions
from a tree-based representation of the current value function and back, so as to
perform a tree-based value iteration, that we will call Structured Value Iteration
(SVI) hereafter. The details of this algorithm can be found in [BDG00].

Taking SVI as a basic component, SPI can be decomposed into two stages
as for all Policy Iteration algorithms: a Structured Policy Evaluation 2 stage,
and a Structured Policy Improvement stage. The former consists in evaluating
the long term reward that an agent can expect from a given policy. It is based
on the estimation of the value function explained above. The latter consists in
improving the current policy according to the new value function calculated by
the former. It can be seen as a variant of the former where, instead of labelling
the leaves of V Tree(s) with the maximum estimated values, the algorithm labels
them with the actions that deliver these maximum values.

5.2 CbVI, a Classifier-Based SVI

As we briefly mentioned in section 2.3, in MACS, determining the reachable
situations is an expensive process, since it implies the partial anticipations in-
tegration process described in section 2.2. This process is used both when the
agent controlled by MACS chooses the next action and when the model of the
payoff is improved thanks to a Value Iteration algorithm. Thus it would be in-
teresting to improve this part of MACS by drawing inspiration from the way
SVI is performed in 2TBNs.

In order to do so, we must distinguish two different sub-problems:

– The planning problem: Given a perfect model of transitions under the
form of a list of classifiers and a perfect knowledge of the reward function,
adapt SVI to work with classifiers. We deal with that sub-problem below.

– The learning problem: Adapt SVI or its classifier-based version to the case
where the model of transitions is learned simultaneously with looking for an
optimal policy. We keep this second sub-problem for the final discussion.

2 called Structured Successive Approximation (or SSA) in [BDG00].
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One way to integrate the insights from the SVI algorithm into MACS would
be to derive from the classifier-based representation of the model of transitions
a tree-based representation and then apply SVI as such.

In this section we rather present our adaptation of SVI to work directly with
a classifier-based representation.

Let us call “token” the specification of a value or a # for one attribute, and
let us call “message” a set of k tokens, where k is the number of attributes that
define a state. In particular, the C part of classifiers are messages.

Our algorithm, called CbVI, heavily relies on an associative and commutative
intersection operator ∩ between two messages. The intersection between two
tokens Ta and Tb is defined as follows (we note xa the value of token a):

Ta ∩ Tb =






xa if xa = xb or xb = #
xb if xa = #
∅ otherwise

Now, if we note Message = {Ti(Message)}i∈[1,m] the fact that the message
contains the tokens Ti for each attribute i, then we have:

Mess1 ∩ Mess2 =
{∅ if ∃i ∈ [1, m] such that Ti(Mess1) ∩ Ti(Mess2) = ∅

{Ti(Mess1) ∩ Ti(Mess2)}i∈[1,m] otherwise

With this operator, we can give the classifier-based version of SVI.
Let {PreL(A, Ti)} be the list of C parts of classifiers in the model of transi-

tions specifying action A and predicting Ti in their E part.
The current value function Vn is a list of p messages (Mn)n∈[1,p] with one

reward value for each message. To compute Vn+1, we do the following:

1. For each action A
a) For each message Mn,

i. For each value xi of token Ti(Mn) such that xi �= #, retrieve
{PreL(A, xi)}.

ii. Compute the list L(A, Mn) of all the non-empty intersections
between each possible combination of C parts from the differ-
ent {PreL(A, Ti(Mn))}, taking one message in each list per i ∈
{1, ..., m}.

iii. If some messages of L(A, Mn) overlap, specialize them so as to get
non-overlapping messages.

iv. For each element M ′ in L(A, Mn), compute the contribution of Mn

to the value of M ′. The attributes being considered independent,
the probability of reaching Mn from M ′ is equal to the product
of the probabilities given by each classifier implied in the intersec-
tion. We note Πproba this product. Thus the contribution of Mn is
contribV (Mn, M ′) = ΠprobaV (Mn).

b) If some messages M ′
j and M ′

k among the different L(A, Mn), n ∈ [1, p]
strictly overlap, specialize them so as to get non-overlapping messages
M ′′ 3.

3 If the messages defining Vn do not overlap, if the problem is markov and deterministic
and if the C parts in the model of transitions do not overlap, there will not be any
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c) For all M ′′ in all L(A, Mn), sum the contributions from all states Mn

computing their value according to the Bellman equation :

V (M ′′) = R(M ′′, A) + β
∑

Mn

contribV (Mn, M ′′) (3)

where R(M ′′, A) is the immediate reward (if any) for performing action
A in situations matched by M ′′ and β the discount factor. We obtain a
unique list L(A), corresponding to the quality function of the action A
for any situation, according to the previous value function 4.

2. Finally, in order to compute Vn+1, find the maximum value for each M ′′′

among the different L(A) given by the different actions A. This implies the
same merging process as in step 1c, taking the greatest value when two M ′′′

overlap.

In step 2, we can record both the value of each situation and the action that
gave rise to that value. By doing so, we record the policy giving the best action
in any situation.

6 Discussion and Future Work

CbVI is very similar to SVI, apart from the fact that the basic operator in CbVI
consists of an intersection between messages while SVI relies on merging trees,
appending trees and tree simplifications. Though we did not measure that yet,
we suspect that our version is much simpler to code, though computationally
more expensive than the original SVI. Furthermore, CbVI overcomes two main
drawbacks of MACS:

– it makes it possible to build a compact representation of the value function,
where MACS previously had to store a value for each encountered state
separately;

– as a side effect, it makes it possible to store a compact representation of the
policy with very little extra cost, where MACS had to perform an expensive
lookahead operation at each time step to select the best action.

Nevertheless, before incorporating CbVI into MACS, one must consider care-
fully the fact that MACS is a latent learning system building its own model of
transitions while we made in the previous section the assumption that we had
a perfect model of transitions and a perfect knowledge of the immediate reward
function at hand.

To face the case where this assumption does not hold, there are four solutions:

overlapping between the L(A, Mn) lists, so this step can be simplified. But in a
context where we learn the model of transitions and where new sources of rewards
can be discovered, it is necessary to use this more secure version.

4 In the deterministic case to which MACS was restricted so far, Πproba is always
1.0 for one particular Mn and 0 for any other, thus this sum does not need to be
computed.



Improving MACS Thanks to a Comparison with 2TBNs 821

– First build a perfect model of transitions and of immediate reward through
random or active exploration before starting to perform value iteration loops.
This is not satisfactory in the context of large problems.

– Reinitialize the value function to the immediate reward classifier-based repre-
sentation each time the model of transitions or of immediate reward changes.

– Try to repair locally the current value function in case of model changes.
– Consider that CbVI will be robust and do nothing special. This is more or

less what previous versions of MACS were doing, and it seems to work, so it
must be investigated.

The third solution seems to be the most appealing. On a more theoretical line
of research, we believe that a formal functional equivalence between the SVI
and CbVI can be proven, which would result in the possibility to import all the
theoretical results from [BDG00] in our framework. This must be investigated
soon.

7 Conclusions

As designers of MACS, we have drawn some interesting ideas about a way to
make our system computationally more efficient by adapting the SVI algorithm
to a classifier-based representation. But we feel that the reader can draw some
more general lessons from the work presented in that paper.

Indeed, we believe that a closer communication between the LCS community
and the BN community can result in a significant mutual enrichment, since both
approaches come with a different perspective on the same framework, namely
factored MDPs, and have developed different technical and theoretical tools to
deal with that framework.

We feel that coming from one perspective to the other can raise interesting
questions. For instance, since DBNs are just 2TBNs where some probabilistic
dependencies between variables within the same time step (called “synchronic
arcs”) might hold, could such dependencies be integrated in the LCS framework
without deeply reconsidering the classifier-based representation?

From a more global perspective, LCS researchers seem more focused on the
learning problem than BN researchers, who are more interested in the plan-
ning/inference problem. It seems also that BN research is often more mathe-
matically formalized than LCS research and that this formalization could be
imported into the LCS framework.

Conversely, a greater knowledge of the LCS framework in the BN community
would probably result in more interest in the 2TBN case, often disregarded as
too simple by BN researchers. And, above all, the RL approach used in LCSs
should probably be imported into the 2TBN context, since learning the structure
of a problem is becoming an important research topic in the BN community.
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