
System Level Hardware–Software
Design Exploration with XCS

Fabrizio Ferrandi, Pier Luca Lanzi, and Donatella Sciuto

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Piazza Leonardo da Vinci 32
I-20133 Milano, Italy

{ferrandi,lanzi,sciuto}@elet.polimi.it

Abstract. The current trend in Embedded Systems (ES) design is mov-
ing towards the integration of increasingly complex applications on a
single chip. An Embedded System has to satisfy both performance con-
straints and cost limits; it is composed of both dedicated elements,
i.e. hardware (HW) components, and programmable units, i.e. software
(SW) components, Hardware (HW) and software (SW) components have
to interact with each other for accomplishing a specific task. One of
the aims of codesign is to support the exploration of the most signifi-
cant architectural alternatives in terms of decomposition between hard-
ware (HW) and software (SW) components. In this paper, we propose a
novel approach to support the exploration of feasible hardware-software
(HW-SW) configurations. The approach exploits the learning classifier
system XCS both to identify existing relationships among the system
components and to support HW-SW partitioning decisions. We validate
the approach by applying it to the design of a Digital Sound Spatializer.

1 Introduction

Embedded Systems (ES) design has undergone several deep transformations dur-
ing the past few years. The most relevant concern is the raising of the abstraction
level of the system modeling, made possible by recent evolutions in the descrip-
tion languages. Another trend in the evolution of the design formalisms is the
use, as basis for the system design specification, of typical software languages
such as C and C++. The introduction of new description languages for the em-
bedded systems applications such as SystemC, poses new problems, mainly due
to their ability to express system models at levels of abstractions not possible
before. The choice of an architecture, is one of the important steps in design.
An architecture is defined by a collection of components which can be either
programmable (SW components), re-configurable or customized (HW compo-
nents), Hardware (HW) and software (SW) components have to interact with
each other for accomplishing a specific task. The aims of hardware-software
(HW-SW) codesign is to support the exploration of the most significant ar-
chitectural alternatives in terms of decomposition between hardware (HW) and
software (SW) components.

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 763–773, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

764 F. Ferrandi, P.L. Lanzi, and D. Sciuto

We present a new methodology based on the learning classifier system XCS [11]
to support the HW-SW codesign of embedded systems. The method we pro-
pose extract interesting design patterns from raw HW-SW codesign data. These
patterns are then exploited by designers to explore the space of the possible
partitionings. The method is based on a formal approach to the modeling of the
HW-SW codesign problem in which the embedded system is functionally decom-
posed at the highest possible (functional) level of abstraction. The formal model
is used to build a simulator which can be used to obtain an accurate estimate of
partitioning costs. The simulator is used to obtain data about the cost function
associated to the design of the embedded system. Finally, the learning classifier
system XCS is trained with the data obtained by simulator to extract interesting
design patterns expressed as condition-action rules which associate cost-patterns
to design decisions. While the focus of this paper is mainly the application of
XCS to the system level HW-SW design exploration, more details concerning
the formal model used to represent the HW-SW design problem can be found
in [9]; in addition [3] provides an analysis regarding the use of neural networks
to approximate the cost function so to speed up the mining of HW-SW codesign
data. The paper is organized as follows. In Section 2 we provide a brief overview
of the overall approach we propose. In Section 3 we present a case study involv-
ing the design of a Digital Sound Spatializer. In Section 4 we overview the results
produced by XCS from the design data. Section 6 ends the paper providing some
consideration regarding the results and the future research directions.

2 Proposed Approach

We now shortly overview the codesign approach, we introduced in [9], that we
use to generate the data used for the analysis in this paper. We refer the in-
terested reader to the original paper [9] for a detailed description of the overall
codesign approach. The Hardware-Software Codesign process is organized into

three main steps that lead to a final partitioning optimized with respect to the
given metrics [9]. First, the software performance of the different functional com-
ponents is estimated from a first description of the application which, nowadays,
is usually provided in terms of C-like programming languages. Then, the global
and local system performance are estimated in terms of hardware description,
communication interfaces, and mixed hardware-software architecture. In the fi-
nal step, the above information is used to guide the algorithm which will provide
the optimal partition.

2.1 Software Performance Estimation

This first step aims at giving both a characterization of the timing behavior of
the system when specified in some programming language (nowadays C and C++
are the most widely used) and a mean to dynamically determine, via simula-
tion, the best granularity at which the partitioning process is to be faced. The
choice of the best granularity, is of paramount importance, as it defines how to

System Level Hardware–Software Design Exploration with XCS 765

decompose the system into sub-parts, which will then be the units over which
the final partitioning phase will reason for defining the final system architec-
ture. According to the approach we introduced in [9] this problem is tackled
by starting at the process level of granularity, which is a sort of meeting in the
middle, between the whole system and the operation level. To accomplish this,
the target micro-processor is selected and the executable code of the applica-
tion is produced. Then a parsing tool identifies in the code, by creating a Data
Flow Graph (DFG), all the data dependencies to be used for classifying the code
fragments, based on which to dynamically identify the mathematical relations
that describe execution time as a function of the input data. After having found
these mathematical relations, for all the processes involved in the system, the
designer, according to the timing system constraints, is able to understand if
some of these processes are time critical for the application. For such processes,
a finer grain granularity is obtained, by decomposing them in smaller sub-parts,
which will be computationally manageable. The outputs of this phase are (i)
the identification of the granularity for analyzing the system, based on which all
the subsequent phases will be carried on, and, (ii) a characterization in terms of
execution time of all the system subparts seen as software modules. This char-
acterization is employed in the final simulation of the system seen as a mixed
hardware-software architecture.

2.2 Hardware and Communication Performance Estimation

Given the software performance characterization of the system, and the selected
granularity, in this second step we estimate both local and global system perfor-
mance taking into account the possibility of realizing the different components
both in hardware and in software. For gaining a fast estimation on hardware
timing, the approach we introduced in [9] relies on the information collected by
the parsing tool at the beginning of the software estimation phase. By consid-
ering the Data Flow Graph (DFG) of each system component identified by the
dynamically determined granularity, we apply to each of them an unoptimized
version of an unconstrained scheduling algorithm [6], which gives a character-
ization of hardware performance. The same approach is applied to model the
communication among different classes of components (see [9] for details).

2.3 The Simulator

After having characterized all the components and all the possible communi-
cation channels a simulator is built. This is used to simulate several instances
of the embedded system architecture, which differ one from the other on the
hardware or software characterization of the single sub-parts. Each instance also
carries the correct model of communication according to its specific mix of hard-
ware and software parts. The simulator is written in SystemC and it is the exact
translation of the formal model used to describe the target embedded system.
It exploits both the local characterizations given by the previous software and
hardware estimation phases and the communication model to compute global

766 F. Ferrandi, P.L. Lanzi, and D. Sciuto

system performance when instantiating different possible combinations of hard-
ware and software modules. At a very high level of abstraction, the simulator
takes as input a binary string representing a partitioning and returns a cost. This
mapping is used in [9] to support the search for the final partitioning and in [3]
we show how we can successfully approximate the whole map by means of neural
networks. In contrast, in the work presented here, we use XCS to analyze the
input-output mapping obtained from the simulator so as to identify interesting
patterns which characterize the embedded system.

2.4 Exploration of the Partitioning Space with XCS

The simulator can then be used (i) to extract some data regarding the cost of
HW-SW configurations and (ii) to mine such data in search of interesting in-
formation regarding the system’s criticalies for a given class of ES’s. For this
purpose, we view the ES model, implemented by the simulator, as a black box
with inputs x, representing a certain partitioning and an output y, representing
the cost of the (input) partitioning. The model can be applied to an example to
obtain a cost; but we basically assume that the model is unknown in that we do
not know what is the target function ft which the model implement. For a cer-
tain problem a set of examples E is collected from the simulator; each example
is a pair 〈xj , yj〉, where xj is a possible input configuration (i.e., partitioning),
yj is the cost (performance) that the model predicts for the partitioning xj .
Starting from the set of examples E, we can apply statistical and data mining
techniques to extract interesting relations among input-output configurations.
For instance, in [9] we have applied Principal Component Analysis (PCA) and
Linear Regression (LR) to extract basic linear relations among the different sys-
tem components; in [3] we focused on the use of neural networks to approximate
the cost function from a limited number of examples. Here, we employ a different

approach in which the learning classifier system XCS [11] is applied for mining
interesting, highly non-linear patterns, from the data obtained from the simu-
lator. For this purpose, XCS is applied as usually done in any other single-step
problem. An experiment consists of a number of problems that XCS must solve.
For each problem, an input partitioning, represented by a binary string (like
those in Table 2) is presented to XCS. Classifier conditions are represented as
strings (one for each component) over the ternary alphabet {0,1,#}; the don’t
care symbol # means that the corresponding position in the classifier condition
can either either 0 and 1, i.e., the corresponding component can be implemented
either in hardware or software. There is one action for each component iden-
tified by the system-level description; for instance, in the example discussed in
the previous section, there are nine possible actions, since there are nine possible
components. Based on the current input partitioning, XCS suggests an action
which identifies a possible modification to the current partitioning through the
flip of a bit in the current hardware-software configuration. The action is per-
formed, and the current partitioning is modified. As a result, XCS receives a
reward computed as the difference between (i) the cost of the current partition-
ing and (ii) the cost of the new partitioning obtained through the suggested

System Level Hardware–Software Design Exploration with XCS 767

modification. Thus XCS will receive a positive reward if the suggested action
corresponds to a decrease in the cost of the partitioning, a negative reward if
the suggested action corresponds to an increase in the cost of the partitioning.
The performance is measured as the error between the actual reward received
as effect of the proposed action, and the reward that XCS estimated. Therefore
XCS learns to predict how the modifications of the input partitioning will influ-
ence the target cost function. More precisely, since our cost function is simply
the estimated execution time, XCS learns to prediction how the modifications
of the input partitioning will influence the overall execution time. Note that,
according to this settings, XCS is used as a step-wise function approximator as
firstly done by Wilson [12] instead of being used to learn an optimal behavior
like in [11].

3 Case Study

The application chosen as a case study is a Digital Sound Spatializer, which is
significant as it encompasses all the characteristics of a typical embedded system
and it is simple enough to allow a straightforward illustration of the methodol-
ogy. A sound spatializer is a machine, be it analog, digital or hybrid, which takes
as its input a sound which is acquired by one or more sound sources: e.g., from
a musical instrument or a singer, which is usually recorded with high–quality
noise–reduction microphones. Its output is the input sound as it would be per-
ceived by someone in a room, in which the sound is supposed to be played. The
code of the application has been written in C++ for giving its software charac-
terization needed for performance estimation and because C++ made it easy to
convert it in SystemC, which is the language used for the global simulation. The
choice of SystemC is due to its suitable characteristics both of supporting chan-
nels description at a high level of abstraction and because it is undoubtedly the
leading specification language for Embedded System design. The target micro-
processor we choose for testing the software behavior is the Xilinx MicroBlaze,
which is a 32 bit RISC soft-processor. The choice of this specific processor is due
to its great suitability for being integrated with the Xilinx Virtex II Pro FPGA,
which is the final target architecture for the deployed version of the application.
For simulating the acquisition phase of the audio stream and the output of the
reverberated sound we used an audio file and sampled it at 44.1 KHz extracting
a 16 bits sample; once the sample has been processed by the application we
wrote the resulting sample on an output file. The code describing the applica-
tion is composed of 9 processes, which describe all the different components of
the Digital Audio Spatializer: the Multitap Delay line, which simulates both the
direct sound and the discrete echoes, the Multitap Delay mixer which scales the
output of the Multitap Delay line, the Sound Source, which is one of the pro-
cesses modeling the room where the sound is diffused, the Walls (which for the
final partitioning are considered as 4 different processes), the Listener, who re-
ceives the audio sample modified by the four walls, reassembles and scales it and
the Output Mixer process, which receives the processed samples from the delay

768 F. Ferrandi, P.L. Lanzi, and D. Sciuto

line and from the listener and reassembles it applying to it the final distortion
according to the given parameters. The analysis performed on this code shows
that, as far as the data dependencies are concerned, the only one involved is the
simplest, that is the execution time is linear in the number of samples, which
is easily understandable if one thinks that the emulation of the room effects on
the sound practically are applying a delay and scaling it according to a disper-
sion factor. According to the results of this phase and the performance needs of
the application, which has to process one audio sample per sampling interval,
we can state that the granularity of processes is suitable for the overall system,
so that we can carry on the subsequent analysis keeping it unchanged. After
having found the local information on the software behavior of each process, we
turned to the more complex issue of adapting the code to fit in a model allowing
the channel insertion with the proper delays and the possibility of instantiating
all the possible mixed HW-SW configurations taking into account the previous
information on the software performance. To compute the communication de-
lays we referred to a microprocessor frequency fsw of 50 MHz and a hardware
frequency of the target FPGA of 100 MHz. We considered a HW-HW commu-
nication via dedicated parallel lines. Considering the hardware frequency of 100
MHz and the fact that a complete data exchange operation takes 1 clock cycle to
execute, we get: thh1 = 10 ns. For the HW-SW communication model, we can-
not derive a single value, as from instance to instance the number of processes
communicating via DMA can change; we then inserted the mathematical equa-
tion relative to the computation of tbus and tdma in the simulator, so that, once
the single instance was given and the corresponding transition labels identified
accordingly, we could compute the true delay value. As for the queue parame-
ters other than the N number of customers, we used for their derivation a bus
bandwidth of 1 Mb

s , obtaining,

µ =
#bits

B
=

16b

106b/s
= 160 ms.

Considering the sample rate of 44.1 KHz, we computed λ (the average interarrival
time of the customers), as:

λ =
1

44.1KHz
= 227 ms.

Finally, the numerical value of ρ, the traffic intensity, is given by:

ρ =
λ

µ
=

227
160

= 1.42.

The same reasoning applies to the SW-SW communication, as also here the num-
ber of processes accessing the shared memory area changes instance by instance,
so we inserted in the simulator the mathematical relation for computing tlock,
where all the parameters are computed as shown before, with the only differ-
ence that, according to the slower frequency of the microprocessor, we used as
bandwidth B = 500 Kb

s , so µ = 320 ms and ρ = 0.71. We show in Table 1 the

System Level Hardware–Software Design Exploration with XCS 769

Table 1. Local Characterization of the Processes Behavior

Process: Delay Del. Mixer Source Wall Listener Out Mixer
HW ex-time 2.15 ∗ 108 5.864 ∗ 108 2.552 ∗ 108 1.82 ∗ 108 7.197 ∗ 107 6.642 ∗ 106

SW ex-time 1.0736 ∗ 109 1.076 ∗ 109 1.042 ∗ 109 3.79 ∗ 108 8.605 ∗ 107 5.845 ∗ 107

results of the local behavior of the modules both as HW and as SW, where the
execution time is expressed in ns per KB of samples.

After having completed the local characterization, we run a complete simu-
lation of all the possible system instances, which are, according to the 9 different
processes we consider, 29 = 512. This simulation took 3 hours and half to com-
plete on an Intel, PIV, 1.7 GHz, 1 GB RAM. This simulation takes into account
the proper communication delays by inserting, instance by instance, the correct
values in the WAIT instructions inserted in the system channels by the simulator.
We show a sample output of the simulator in Table 2, where the global execution
time is expressed in ns per KB of samples.

Table 2. Global Characterization of the Application Behavior

System Instance Global Execution Time
1 1 1 1 0 0 0 1 1 4449011566
1 1 1 1 0 0 1 0 0 4585806280
1 1 1 1 0 0 1 0 1 4634142896
1 1 1 1 0 0 1 1 0 4597492768
1 1 1 1 0 0 1 1 1 4645829384
1 1 1 1 0 1 0 0 0 4585806280
1 1 1 1 0 1 0 0 1 4634142896
1 1 1 1 0 1 0 1 0 4633614640

In Table 2, each entry represents one HW-SW configuration, a one indicates
that the process is implemented in software, a zero indicates that the process is
implemented in hardware; the order of the processes is: sound source, multitap
delay line, delay mixer, wall 1, wall 2, wall 3, wall 4, listener and output mixer.

4 The Results Produced by XCS

We apply the XCS classifier systems to mine interesting patterns from the cost
function obtained by applying the codesign approach we described in Section 2
to the Digital Sound Spatializer we illustrated in Section 3. Classifier conditions
are strings of 9 symbols (one for each component) over the ternary alphabet
{0,1,#}; There are 9 possible classifier actions, numbered from 0 to 8, that

770 F. Ferrandi, P.L. Lanzi, and D. Sciuto

represent the change of the corresponding bit in the current input partitioning.
The performance of XCS is measured as the error between the actual reward
received as effect of the proposed action, and the reward that XCS estimated.

Fig. 1. XCS applied to the cost function for the Digital Sound Spatializer: (a) error
on the prediction of the cost; (b) percentage of classifiers in the population. Curves are
averages over 10 experiments.

Figure 1a reports the error over XCS prediction for the data derived for the Dig-
ital Sound Spatializer; population size N is 5000 classifiers and ε0 = 10−4, while
all the other parameters are set as usual (e.g., [11]). As the figure shows, XCS
learns to predict quite accurately how the modifications in the current partition-
ing will affect the cost, i.e., the execution time. Figure 1b reports the percentage
of classifiers in the population. Initially, the population rapidly grows while XCS
is starting to learn, as the learning proceeds the population size shrinks and
the number of classifiers in the population decreases showing that XCS is con-
verging toward a minimal set of classifiers that represent some accurate piece of
knowledge extracted from the cost function.
Table 3 reports some classifiers evolved during one of the runs depicted in Fig-
ure 1. The first classifier indicates that if component c2 and component c3 are
implemented in software, then changing component c2 to hardware (action is 2)
will cause a reduction p in the cost (i.e., in the execution time) equal to 0.61,
and that this prediction is affected by an absolute error (ε) of 1.384 × 10−4.
Note that the second and the third classifiers provide complementary informa-
tion. The second classifier suggests that if component c0 and c1 are implemented
in hardware, then changing component c1 to software will cause an increase of
0.76 in the cost (we remind the reader that a negative prediction means that
the resulting partitioning has an higher cost). Conversely, the third classifier
suggests that if component c0 is implemented in hardware and component c1 is
implemented in software, the changing component c1 to hardware (so to obtain
a partitioning matched by the first classifier), will cause a decrease of 0.76 in
the cost. Note that the classifiers reported in Table 3 represent high level and
accurate information about the cost function; all the classifiers in table 3 are

System Level Hardware–Software Design Exploration with XCS 771

Table 3. Examples of classifiers evolved by XCS from the data obtained for the Digital
Sound Spatializer: Condition identifies the classifier condition; Action identifies the
classifier action; p is the classifier prediction which estimates how the partitioning cost
will be modified by the corresponding action; ε is the prediction error which estimate
how much accurate is the prediction p.

Condition action p ε

##11########## 2 0.61 1.384e-04
00############ 1 -0.76 5.520e-03
01############ 1 0.76 5.292e-03
11############ 1 0.72 6.658e-05
0###010####### 4 -0.15 4.481e-03
1###100####### 4 0.16 4.335e-03
0###110####### 4 0.16 4.410e-03
######1#100### 8 0.15 4.563e-03
########0#101# 10 0.16 5.407e-03
######0#101### 8 1.52 3.923e-03
.

very general in that they apply to many partitioning (i.e., they have many don’t
care symbols); in addition they are very accurate since their prediction error ε
is very small if compared to the prediction value. The evolved classifiers can be
used to improve the designer understanding of the existing interactions among
different system components, either as an effective support to the search of the
best partitioning.

5 Related Work

The first significant work dates back to 1993 [4] and it represents one of the first
approaches tackling the complete design of embedded applications. The system
is described at the behavioral level by means of an appropriate specification lan-
guage, whose underlying formal model is a Control Data Flow Graph (CDFG)
and the chosen granularity is the operation. The operation delays (needed for
performance estimation) are provided separately for hardware and software im-
plementations, based on the type of hardware to be used and on the proces-
sor used to run the software. The partitioning algorithm focuses the atten-
tion on minimizing communication delays and measuring the partition effects
on system performance, trying to devise a partition cost function that cap-
tures these properties by means of iterative heuristics. In [10] the problem of
HW-SW partitioning is tackled by defining closeness metrics, that is a measure
of the likelihood that two pieces of the specification should be implemented on
the same system component. The objects are addressed at the procedural level
of granularity, and the metrics also have been developed with this granularity
in mind. The final algorithm used for finding the final partitioned architecture
is based on N-way clustering. There are works (e.g., [2]) focused on solving the

772 F. Ferrandi, P.L. Lanzi, and D. Sciuto

partitioning problem according to iterative improvement heuristics, basically ex-
ploiting the Simulated Annealing and Tabu Search algorithms. In these works
partitioning is performed at the loop level of granularity, with the aim of minimiz-
ing communication costs and enhancing parallelism. The partitioning algorithm
takes into account simulation statistics, information from static analysis of the
source specification and cost estimations, focusing on two main statistics: com-
putational load and communication intensity. In [8], a hierarchical evolutionary
approach to HW-SW partitioning is presented. The main characteristic of this
work is to apply a hierarchical structure and dynamically determine the granu-
larity of tasks and hardware modules to adaptively optimize the solution while
keeping the search space as small as possible. Another work managing a flexible
granularity in the partitioning phase is [5]. Recently, several approaches per-
form design exploration based on Genetic Algorithms (GAs) [1], [7], which seem
particularly promising when dealing with parametrized systems to be tuned for
final deployment. The approach is a combination of two phases: globally the au-
thors use a parameter dependency model of the target parametrized specification
to pre-prune non-optimal subspaces, while locally GAs are applied to discover
Pareto-optimal configurations representing the range of performance trade-offs
obtainable with parameters tuning.

6 Summary and Future Research Directions

We have presented a novel approach to face the design exploration of the archi-
tectural solutions of an embedded system specification based on Wilson’s XCS.
Our approach is based on the system-level decomposition of the target embed-
ded system. The high-level description is exploited to develop a simulator to
estimate the performance of possible hardware-software partitionings. The sim-
ulator is used to produce data, associating HW-SW partitionings to cost, which
can be analyzed either using basic statistical techniques, as done in [9], either
using learning classifier systems, as proposed here. In particular, in this paper
we have applied XCS to the mining of HW-SW data from a Digital Sound Spa-
tializer. Although the application is limited in complexity it is significant as (i)
it encompasses all the characteristics of a typical embedded system and, most
important, (ii) it is a real-world problem provided by a major company inter-
ested in the design of embedded system. The results reported here show that
XCS can extract accurate rules which identify interesting design information.
The results reported here have also been presented to researchers involved in
the design of embedded systems for a main company. The comments we received
so far are promising. Generally speaking, the rule-based representation of de-
sign patterns provided by learning classifier systems appear to be more intuitive
than the information provided by the statistical techniques we discussed in [9].
For instance, from our interactions with field experts, we noted that the con-
cept of generalization is more easily conveyed by means of rules than it is by
using linear models. At the moment, we are applying the same approach on an-

System Level Hardware–Software Design Exploration with XCS 773

other real-world application involving the design of an embedded mpeg codec
component.

References

1. G. Ascia, V. Catania, and M. Palesi. Parameterized system design based on ge-
netic algorithms. In Proceedings of the Ninth International Workshop on Hard-
ware/Software Codesign, April 2001.

2. P. Eles, K. Kuchcinski, Z. Peng, and A. Doboli. System level hardware/software
partitioning based on simulated annealing and tabu search. Journal on Design
Automation for Embedded Systems, 2:5–32, 1997.

3. Fabrizio Ferrandi, Pier Luca Lanzi, and Donatella Sciuto. Mining Interesting Pat-
terns from Hardware-Software Codesign Data with the Learning Classifier System
XCS. In Proceedings of the 2003 Congress on Evolutionary Computation (CEC
2003), pages 1486–1492, Canberra, Australia, 9-12 December 2003. IEEE.

4. R.K. Gupta and G. De Micheli. Hardware-software cosynthesis for digital systems.
Design & Test of Computers, IEEE, 10:29–41, 1993.

5. J. Henkel and R. Ernst. An approach to automated hardware/software partitioning
using a flexible granularity that is driven by high-level estimation techniques. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 9:273–289, 2001.

6. G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw Hill, 1994.
7. M. Palesi and T. Givargis. Multi-objective design space exploration using ge-

netic algorithms. In Proceedings of the Tenth International Workshop on Hard-
ware/Software Codesign, pages 67–72, May 2002.

8. G. Quan, X. Hu, and G. Greenwood. Preference-driven hierarchical hard-
ware/software partitioning. In International Conference on Computer Design
(ICCD ’99), pages 652–657, 1999.

9. Donatella Sciuto, Fabrizio Ferrandi, Pier Luca Lanzi, and Mara Tanelli. System-
level metrics for hardware/software architectural mapping. In Proceedings of the
2nd IEEE International Workshop on Electronics Design, Test and Applications
(DELTA 2004), Burswood Resort, Perth, Australia, January 2004.

10. F. Vahid and D.D. Gajski. Closeness metrics for system-level functional partition-
ing. In Proceedings EURO-DAC ’95 Design Automation Conference with EURO-
VHDL, pages 328–333, September 1995.

11. Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Compu-
tation, 3(2):149–175, 1995. http://prediction-dynamics.com/.

12. Stewart W. Wilson. Function approximation with a classifier system. In Lee Spec-
tor, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael Voigt, Mitsuo
Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund
Burke, editors, Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO-2001), pages 974–981, San Francisco, California, USA, 7-11 July
2001. Morgan Kaufmann.

	Introduction
	Proposed Approach
	Software Performance Estimation
	Hardware and Communication Performance Estimation
	The Simulator
	Exploration of the Partitioning Space with XCS

	Case Study
	The Results Produced by XCS
	Related Work
	Summary and Future Research Directions

