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Abstract. It has been shown empirically that the XCS classifier system
solves typical classification problems in a machine learning competitive
way. However, until now, no learning time estimate has been derived
analytically for the system. This paper introduces a time estimate that
bounds the learning time of XCS until maximally accurate classifiers are
found. We assume a domino convergence model in which each attribute
is successively specialized to the correct value. It is shown that learning
time in XCS scales polynomially in problem length and problem com-
plexity and thus in a machine learning competitive way.

1 Introduction

Although the learning classifier system framework was proposed more than thirty
years ago [1], the theoretical understanding is still rather sparse. Due to the
complex interaction of several adaptive mechanisms, including the evolutionary
learning method, the credit assignment mechanism, and the distributed problem
representation, the exact analysis of the systems is hard. Recently, two classi-
fier systems have reached most attention in the literature: the strength-based
classifier system ZCS [2,3] and the accuracy-based classifier system XCS [4,5].

The XCS classifier system has shown to solve typical classification problems
competitively to other machine learning algorithms [6,7]. Also the theoretic un-
derstanding is increasing [8,9,5,10]. In particular, problem bounds have been
found that bound the minimal population size in order to assure that the evolu-
tionary algorithm applies (the covering challenge), that necessary minimal order
schemata are available (the schema challenge), that the found subsolutions (or
schemata) have the chance to reproduce before being deleted (the reproductive
opportunity bound), and that the different subsolutions have enough support to
avoid the loss of a niche (the support challenge, in preparation). However, un-
til now, no estimate has been found that approximates the time until complete
knowledge is reached.

Specifically, we are interested in how many learning steps XCS needs to
evolve the intended accurate, maximally general model of the applied task. As-
suming that all the other challenges are met, we can estimate how long it takes
to discover successively better classifiers until the maximally general, accurate
classifiers are found. This paper focuses on mutation-driven evolution, taking
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into account time until reproduction and time until generation of the next best
classifier via mutation. The experimental study confirms that XCS learning time
is approximated by the derived time bound. The bound shows that learning time
scales polynomially in the problem length and exponentially in the order of the
problem (polynomially in problem complexity).

The next section gives an overview of the XCS classifier system and existing
theory. Given that all other bounds are met, we then derive the time bound
for XCS learning. The experimental study that follows shows that XCS learning
scales in the specified time bound. Moreover, several operator and parameter in-
fluences are identified. Concluding remarks put the derived bound into a broader
perspective of learning classifier system and machine learning research.

2 XCS Theory

The accuracy-based learning classifier system XCS was introduced elsewhere [4].
Due to the accuracy-based fitness approach, XCS learns not only the rules (or
classifiers) that denote the best classification possible, but rather a complete
situation-action-reward mapping. In short, XCS is designed to learn a complete,
accurate, and maximally general payoff map of an environment (out of which an
optimal behavioral/classification policy can be derived).

XCS knowledge is represented by a population of maximally N condition-
action-reward prediction classifiers. Each classifier essentially specifies the ex-
pected reward given the specified conditions and executing the specified action.
Rule evaluation is done via a credit assignment mechanism [11] with similarities
to algorithms in reinforcement learning [4,12]. Rule generation and evolution is
done via a steady-state, niched genetic algorithm [13,14]. If a GA is applied in
a particular learning iteration, two classifiers are reproduced using tournament
selection [15] with respect to their fitness in the current action set (the subset of
classifiers that contains all classifiers that specify the executed action and whose
conditions are satisfied by the current problem instance). To keep the popula-
tion size constant, two classifiers are deleted via proportionate selection from the
whole population.

The following XCS theory focuses on Boolean function problems in which
each problem instance is represented by l binary features and belongs to one
of n classes. The specificity of a classifier refers to the number of features that
the classifier condition specifies over the total number of features l (usually
unspecified features are represented by the don’t care symbol #).

2.1 Evolutionary Pressures in XCS

After Kovacs analyzed the problem of strong overgenerals that shows that any
strength-based learning classifier system (without fitness sharing techniques) suf-
fers from the tragedy of the common [16], recent analysis investigated the evolu-
tionary learning progress in XCS. In [9] five major evolutionary pressures in XCS,
(1) set pressure, (2) mutation pressure, (3) deletion pressure, (4) subsumption
pressure, and (5) fitness pressure, were identified.
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Intuitively, the set pressure formalizes the intrinsic generalization pressure in
XCS. Since the average specificity s[A] of classifiers in an action set [A] is lower
than the average specificity s[P ] in the population and classifiers are reproduced
in action sets but deleted in the population, the average offspring specificity is
lower than the specificity of the replaced classifiers.

Also mutation pressure influences specificity. Generally, a random mutation
process causes a tendency towards an equal number of symbols in a population.
Thus, applying random mutations, the result will be a population with an ap-
proximately equal proportion of 0, 1, and # symbols in the condition parts of
classifiers in a binary LCS. Thus, mutation results in a pressure towards an equal
number and an equal distribution of symbols in classifier conditions.

Combining set and mutation pressure to a general specificity equation [10] a
general estimate of the change in the population’s specificity can be derived:

∆spes([P ]) = fga
2 (s([A]) + ∆mut − s([P ]))

N
. (1)

Parameter fga approximates the average frequency of GA application, s([X])
refers to the average specificity of the referred set X, ∆mut quantifies the speci-
ficity change due to mutation, and N specifies the population size. The formula
allows an accurate prediction of specificity change and convergence over time
given no fitness influence [9,10]. It was also shown that given no fitness influ-
ence, the converged specificity in the population can be roughly approximated
by twice the mutation rate.

The main part of the deletion pressure is already included in the set pressure.
In addition to deleting classifiers from the population while reproducing classi-
fiers in action sets, deletion is biased towards deleting classifiers that populate
large niches and classifiers with a fitness value which is significantly smaller than
the average value of the population [17].

Subsumption pressure is designed to decrease the population size boiling it
down to the accurate, maximally general classifiers. It applies only if the noise
in a problem is lower than the error threshold ε0 below which a classifier is
considered for subsumption. Subsumption must be applied with care. A too low
experience threshold θsub as well as a too-high value of ε0 can cause fundamen-
tal loss of information in the population (subsuming accurate classifiers by a
temporarily accurate, over-general classifier).

Fitness pressure is needed to generate a major drive towards accuracy from
the inaccurate (and thus mainly over-general) side. Essentially, fitness pressure
causes the reproduction of higher accurate classifiers. Thus, fitness is the major
pressure that guides the evolutionary process towards higher accuracy.

Over the last years it became clear that, given the problem provides appro-
priate fitness guidance, fitness pressure needs to be strong enough to overcome
the set pressure. Since the traditionally applied proportionate selection mecha-
nism is highly dependent on fitness scaling, a set-size proportionate tournament
selection mechanism was introduced to XCS [15] that results in a more robust
and more problem independent XCS learning system.
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2.2 Problem Bounds

In addition to the above evolutionary pressure in XCS, several problem bounds
have been identified. The following paragraphs give an overview over the derived
problem bounds.

Covering Challenge. The first bound was formulated in [8] requiring a minimal
population size to assure that the genetic algorithm actually applies and is not
blocked by a continuous covering-deletion cycle. Given a current specificity of
s[P ] in the population and assuming a problem in which any possible problem
instance is equiprobable, the covering probability is determined by

P(cover) = 1 −
[
1 −

(
2 − s([P ])

2

)l
]N

, (2)

where l specifies the number of binary features in the problem. In order to
keep the covering probability initially sufficiently high to ensure the start of
the evolutionary process, the initial specificity needs to be set sufficiently low
(controlled by the don’t care probability P#).

Schema Challenge. In addition to the assurance of input covering, it also needs
to be assured that classifiers represent particular schemata. To characterize such
a classifier, Holland’s schema notion is used [13]. A representative of a particular
schema of order o must have at least all o positions correctly specified. For
successful evolution, the presence of a representative of a schema of order o
needs to be highly probable. The probability of the existence of a representative
can be determined by

P (representative) = 1 −
[
1 − 1

n

(
s([P ])

2

)o]N

, (3)

assuming a binomial distribution of the specificity in the population. Parameter
n denotes the number of classes. While the previous specificity measure is mainly
relevant for the beginning of the run, the current specificity of the population
directly affects the probability of the availability of a representative.

Reproductive Opportunity. To ensure successful evolution, it is necessary to as-
sure gradual evolution ensuring reproductive opportunities for the better classi-
fiers. Existing or generated higher-accurate classifiers need to have reproductive
opportunities before being deleted. To ensure this, the expected time until a re-
productive opportunity should be shorter than the expected time until deletion.
This constraint effectively results in a population size bound since only a larger
population size can increase the time until deletion in XCS [5].

N > n2kd+(l−kd)s([P ])+1 (4)

This bound ensures that classifiers necessary in a problem of order of minimal
schema order kd get reproductive opportunities. Once the bound is satisfied,
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existing representatives of an order kd schema have a high probability of re-
production. Thus, with a high probability, XCS will evolve a more accurate
population.

Note that this population size bound is actually exponential in minimal
schema order kd and in string length times specificity ls([P ]). However, it was
shown that the necessary specificity in [P ] decreases with larger population sizes
[5]. In particular, requiring that a representative of a particular schema order kd

exists, it can be shown that the required minimal specificity is bounded by

O(
( n

N

) 1
kd ). (5)

Considering this, a general reproductive opportunity bound (ROP-bound) can be
derived that shows that population size grows as

O(lkd). (6)

The bound essentially determines that the populations size grows polynomially
in the problem length l and exponentially in the problem difficulty. Thus, the
computational complexity grows similar to any inductive machine learning al-
gorithm such as for example the inductive decision tree learner C4.5 [18]. The
specificity bound and population size bound will also be relevant for the following
derivation of the learning time.

3 Bounding Learning Time in XCS

To derive our learning time bound, we estimate the time until reproduction of
the current best classifier as well as the time until creation of the next best
classifier via mutation given a reproductive event of the current best classifier.
The model assumes a completely general initial population. First specializations
are randomly introduced via mutation. Problem-specific initialization techniques
or a higher initial specificity in the population may speed-up learning time (as
long as the covering challenge is not violated). Further assumptions are that
the current best classifier is not lost (assured by the ROP-bound) and that it is
selected as the offspring when it is part of an action set (assured by the selection
mechanism). The time model assumes domino convergence [19] in which each
attribute is successively specified. This means that only once the first attribute
is correctly specified in a classifier, then the second attribute influences fitness
and so forth.

With the above assumptions, we can bound the learning time in the following
way. First, we estimate the probability that mutation correctly specifies the next
attribute

P (perfect mutation) = µ(1 − µ)l−1 (7)

where l specifies the number of attributes in a problem instance (i.e. condition
length). This probability can be relaxed in that we only require that the k already
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correctly set features are not unset (changed to don’t care), the next feature is
set, and we do not care about the others:

P (good mutation) = µ(1 − µ)k (8)

Equation 7 specifies the lower bound on the probability that the next best clas-
sifier is generated whereas Equation 8 specifies an optimistic bound.

The probability of reproduction of a classifier is mainly influenced by the
probability of being part of an action set. The probability of being part of an
action set again, is determined by the current specificity of a classifier. Given a
classifier which specifies k attributes, the probability of reproduction is

P (reproduction) =
1
n

1
2

k

(9)

where n denotes the number of actions in a problem. The best classifier has a min-
imal specificity of k/l. With respect to the current specificity in the population
s([P ]), the specificity of the best classifier may be expected to be k+s([P ])(l−k)
assuming a uniform specificity distribution in the other l − k attributes. Taking
this expected specificity into account, the probability of reproduction is

P (reproduction in [P]) =
1
n

1
2

k+s([P ])(l−k)

. (10)

Since the probability of a successful mutation assumes a reproductive event, the
probability of generating a better offspring than the current best is determined
by

P (generation of next best cl.) = P (reproduction in [P]) P (good mutation) =

1
n

1
2

k+s([P ])(l−k)

µ(1 − µ)l−1. (11)

Since this is a geometric distribution (memoryless property, each trial has an
independent and equally probable distribution), the expected time til the gen-
eration of the next best classifier is

E(time until generation of next best cl.) = 1/P (generation of next best cl.) =

1
1
n

1
2

k+s([P ])(l−k)
µ(1 − µ)l−1

=
n2k+s([P ])(l−k)

µ(1 − µ)l−1 ≤ n2k+s([P ])l

µ(1 − µ)l−1 . (12)

Given now a problem in which o features need to be specified and given
further the domino convergence property in the problem, the expected time
until the generation of the next best classifier can be summed to derive the time
until the generation of the global best classifier:

E(time until generation of maximally accurate cl) =
o−1∑
k=0

n2k+s([P ])l

µ(1 − µ)l−1 =
n2s([P ])l

µ(1 − µ)l−1

o−1∑
k=0

2k <
n2o+s([P ])l

µ(1 − µ)l−1 . (13)
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This time bound shows that XCS needs an exponential number of evaluations
in the problem difficulty o. As argued above, the specificity and consequently
also mutation needs to be decreased indirect proportional to the string length
l. In particular, since specificity s([P ]) grows as O(( n

N )
1

kd ) (Equation 5) and
population size grows as O(lkd) (Equation 6), specificity essentially grows as
O(n

l ). Using the O-notation and plugging this behavior into Equation 13 we
derive the following adjusted time bound.

O

(
l2o+n

(1 − n
l )l−1

)
= O

(
l2o+n

e−n

)
= O

(
l2o+n

)
(14)

Thus, learning time in XCS is bound mainly by the order of problem difficulty
o and the number of problem classes n. It is linear in the problem length l. This
derivation essentially also validates Wilson’s hypothesis that XCS learning time
grows polynomially in problem complexity as well as problem length [20]. The
next section experimentally validates the derived learning bound.

4 Experimental Validation

In order to validate the derived bound, we evaluate XCS performance on an
artificial problem in which domino convergence is forced to take place. Similar
results are expected in typical Boolean function problems in which similar fitness
guidance is available, such as in the layered multiplexer problem [4,5]. In other
problems, additional learning influences may need to be considered such as the
influence of crossover or the different fitness guidance in the problem [5].

To force domino convergence, instead of using the usual Widrow-Hoff delta
rule to update classifier estimates, we set the reward prediction error directly to
a fixed value according to the current specificity of the classifier. Given a problem
of problem difficulty o, the prediction error of a classifier is set to 500(o − k)/o
where k denotes the number of successive relevant attributes specified in the
classifier. Thus, given a problem of length l = 6 and o = 3 (and assuming a left-
to-right order with the first three features being relevant), the classifier 1#1111
would be assigned an error of 333 whereas classifier 011#1# would be assigned
an error of 0.

If not stated differently, the XCS classifier system is applied with a GA
threshold θGA = 0 (the GA is always applied), error instead of fitness-based se-
lection, tournament selection with a action-set proportionate tournament size of
τ = 0.4, niche mutation, no action mutation, no crossover, an initial completely
general population (P# = 1.0) and GA subsumption (θsub = 0, ε0 = 1). The
results are averaged over 20 experiments. The error-based selection approach
eliminates the additional evolutionary influence due to fitness sharing.

4.1 Time Bound Validation

To validate the time bound, we monitor the specificity of the relevant attributes.
According to the domino convergence theory, the system should successively de-
tect the necessary specialization of each relevant attribute eventually converging
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Fig. 1. The theory comparison shows that the time until the specificity of the succes-
sive attributes has reached 50% is approximated by the theoretical bound. Maximum
population size N is set to 32000.

to a specificity of nearly 100%. The time bound estimates the expected time
until all relevant attributes are detected. To evaluate the bound, we record the
number of steps until the specificity of a particular attribute reaches 50%. This
criterion indicates that the necessary specificity is correctly detected but it does
not require full convergence.

Figure 1 shows the time until 50% specificity is reached in the successive
attributes in the setting with l = 10 and o = 9. The comparison with the the-
oretical bounds matches approximating the specificity in the population s([P ])
with 2µ which has been shown to be approximately correct [5]. As predicted by
the theory, decreasing the mutation rate (Figure 1, right-hand side) increases
the time until the required specificity is reached. Although nearly all interac-
tions between the different niches are prevented by disallowing the mutation
of the action part and by applying niche mutation only, the specificity in the
later attributes still is learned slightly faster than predicted by the theory. Two-
stage interactions might occur in which mutation first overgeneralizes a highly
accurate classifier and then specializes it in another niche.

The second concern is the influence of the number of irrelevant attributes.
Figure 2 shows that also in this case the theory closely matches the empirical
results. Since a higher mutation rate results in a higher specificity, the influence
of the number of irrelevant attributes is more significant in the setting with a
mutation rate of µ = 0.01. In the low mutation case, the bound is approximated
in the settings with larger string length. Hereby, the specificity is approximated
by twice the mutation rate. Using a smaller population size can delay or stall
the evolutionary process due to the reproductive opportunity bound.

Figure 3 shows the behavior of the specificities of the six relevant positions
and several of the other positions (that all behave similarly). It can be seen that
complete convergence is delayed if population size is set not high enough. The
reproductive opportunity bound slowly comes into play. With a string length
of more than 150, evolution partially stalls completely since the overspecialized
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size is set too low.
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Fig. 3. Increasing the problem length further, the reproductive opportunity bound
increasingly affects convergence stalling learning by preventing the reproduction of
more-accurate classifiers. Increasing the population size remedies the reproductive op-
portunity bound giving more-accurate classifiers more time for reproduction.

irrelevant attributes prevent sufficient reproductive opportunities (see Section 2.2
and [5]). With a higher population size, the reproductive opportunity bound
vanishes and all six specificities converge to one without delay. Similar behavior
is found for the case with a lower mutation rate and larger string length as
indicated in Figure 2 (right-hand side).

4.2 Parameter Influences

In addition to the above bound, we investigate the effects of several parameters
and additional mechanisms in XCS. Figure 4 reveals dependences on several XCS
mechanisms in the setting with a string length l = 10 and the number of relevant
attributes o = 4 (left-hand side) and o = 8 (right-hand side). In the setting with
four relevant attributes, we can see that the disallowance of action mutation as
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Fig. 4. Several mechanisms influence the learning speed: action mutation and free mu-
tation facilitate the additional knowledge exchange between different problem niches
and subsolutions. A higher GA threshold delays evolution especially given a more gen-
eralized population. Fitness-based selection slightly speeds-up learning. More relevant
attributes and thus a more specialized population show similar performance influences
(right-hand side).

well as the restriction to niche mutation decreases performance. Allowing action
mutation or free mutation, subsolutions in one problem niche can propagate
much easier to another niche (by mutating action 1 to 0 or specified attribute
1 to 0 or vice versa). Increasing the GA threshold θGA delays the evolutionary
process. Uniform crossover has an additional beneficial effect enhancing the pos-
sibility of knowledge exchange between different niches. Fitness-based selection
also slightly speeds-up learning. Due to the fitness decrease in offspring (fitness
is set to 10% of the parental fitness), a slight generalization pressure [21] is gen-
erated that decreases specificity (in particular the specificity of the irrelevant
attributes) and thus facilitates learning. In the setting with eight relevant at-
tributes (right-hand side), the performance decrease due to restricted mutation
overshadows the decrease due to a higher GA threshold.

5 Summary and Conclusions

This paper introduced a first learning time bound to the XCS classifier system.
Assuming a domino convergence model in which each relevant attribute con-
verges successively, we showed that learning time grows polynomially in prob-
lem complexity and linearly in the problem length. The provided experiments
validated the basic assumptions in the derivations hold. The results confirm Wil-
son’s original learning time estimation [20]. Additional learning mechanisms were
shown to improve learning speed enabling a better knowledge exchange between
different subsolutions or niches such as free mutation or crossover. Satisfying
all problem bounds in XCS and given a problem structure that allows domino
convergence, we can now assure that XCS learns a problem in time polynomial
in problem complexity and problem length.
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The research points out the strong dependence of successful learning on the
underlying problem structure. Several problem difficulty measures were detected.
The most trivial one is the problem length in which XCS scales polynomially.
The second one is the order of the problem, which specifies the minimal number
of attributes that need to be specified to be maximally accurate. We showed that
XCS learning time scales exponentially in the problem order and thus polyno-
mially in problem complexity. Finally, previously we showed that the minimal
number of attributes that need to be specified to reach higher accuracy is a third
problem bound (discussed in Section 2.2). Given a problem with a particular or-
der of problem difficulty, we are now able to estimate the required population
size and estimate the required learning time to solve the problem successfully.

The current time bound is applied in problems in which the domino con-
vergence property holds. That is, each attribute progressively reduces the error
estimate of a classifier and thus increases its accuracy and fitness. In problems
in which this property does not hold, the convergence time may vary and other
operators may be necessary to achieve successful learning. In particular, different
substructures of accurate subsolutions may need to be recombined in a proper
way applying intelligent recombination operators. Also, fitness guidance may be
violated and a bilateral fitness approach may be necessary, as investigated in
[5]. Nonetheless, this learning time bound shows that XCS is able to learn in a
machine-learning competitive way. Future research will show the ways the bound
can be modified and enhanced to account for recombinatory events as well as
for other problem types.
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