
K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 605–616, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Softening the Structural Difficulty in Genetic
Programming with TAG-Based Representation and

Insertion/Deletion Operators

Nguyen Xuan Hoai and R.I. McKay

School of IT & EE, Australian Defence Force academy, University of New South Wales,
ACT 2600, Australia.

x.nguyen@adfa.edu.au; rim@cs.adfa.edu.au

Abstract. In a series of papers [3-8], Daida et. al. highlighted the difficulties
posed to Genetic Programming (GP) by the complexity of the structural search
space, and attributed the problem to the expression tree representation in GP. In
this paper, we show how to transform a fixed-arity expression tree in GP to a
non fixed-arity tree (Catalan tree) using representation based on Tree Adjoining
Grammars (TAGs). This non fixed-arity property, which is called feasibility,
allows us to design many types of genetic operators (as in [16]). In particular,
insertion/deletion operators arising naturally from the representation play a role
as structural mutation operators. By using these dual operators on TAG-based
representation, we demonstrate how these operators can help to soften the
structural search difficulties in GP.

1 Introduction

Since its original proposal [1, 13], standard genetic programming (GP) has been using
expression tree as the representation for programs. In an expression tree, each node
has a fixed arity (fixed number of children). We argue that this fixed-arity property
makes it hard to design operators that can act on structure of the expression tree.
Moreover, in a series of papers [3-8], Daida et. al. have shown that structure search
alone can pose a great difficulty to standard GP (using expression tree representation
and sub-tree swapping as crossover operator). In particular, they pointed out that vast
majority of expression tree structures are essentially not searchable with GP,
attributing the problem to the expression tree representation itself.

In this paper, we show how to transform a fixed-arity expression tree in GP to a
non fixed-arity tree (Catalan tree) using a representation based on Tree Adjoining
Grammars (TAGs). This non fixed-arity property, which we call feasibility, allows us
to design many types of genetic operators (as in [16]). In particular, insertion/deletion
operators arising naturally from the representation play a role as structural mutation
operators. By using these dual operators on the TAG-based representation, we
demonstrate how these operators can help to soften the structural difficulty in GP.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 1800 dpi Downsampling für Bilder über: 2700 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: NeinSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages false /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Average /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Average /DetectBlends true /GrayImageDownsampleType /Average /PreserveEPSInfo true /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 1800 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

606 N.X. Hoai and R.I. McKay

The paper, therefore, proceeds as follows. In section 2, we introduce the idea of
TAG-based representation, whereby tree adjoining grammar derivation trees are used
as genotypes and the expression trees are phenotypes. We also show how this
genotype-to-phenotype map transforms fixed-arity trees to non-fixed-arity trees and
obtain deletion and insertion as structural mutation operators in a natural way. Section
3 contains a brief summary of structural difficulty in standard GP, based on work [3-
8] by Daida et. al. In section 4, experimental results using insertion/deletion in a hill-
climbing search on Daida’s LID problem [8] are given; they are discussed, and
compared with results of standard GP in [8]. We give a brief survey of related work in
section 5 and conclude the paper with section 6, containing some ideas for extending
the work.

2 TAG-Based Representation for GP

In this section, we first give the definitions of tree adjoining grammars (TAGs) and
their derivation trees. Next, we describe how TAG-derivation trees can be used for
genetic programming as in [14-16]. Finally, we describe insertion and deletion
operators used with TAG-based representation.

2.1 Tree Adjoining Grammars

Joshi and his colleagues in [11] proposed tree-adjunct grammars, the original form of
tree adjoining grammars (TAG). Adjunction was the only tree-rewriting operation.
Later, the substitution operation was added and the new formalism became known as
TAG. Although the addition of substitution did not change the strong and weak
generative power of tree adjunct grammars (their tree and string sets), it compacted
the formalism with fewer elementary trees [12].

TAGs are tree-rewriting systems, defined in [12] as a 5-tuple (T, V, I, A, S), where
T is a finite set of terminal symbols; V is a finite set of non-terminal symbols (T ∩ V
= ∅); S ∈ V is a distinguished symbol called the start symbol; and E = I ∪ A is a set
of elementary trees (initial and auxiliary respectively). In an elementary tree, interior
nodes are labeled by non-terminal symbols, while nodes on the frontier are labeled
either by terminal or non-terminal symbols. The frontier of an auxiliary tree must
contain a distinguished node, the foot node, labeled by the same non-terminal as the
root. The convention in [12] of marking the foot node with an asterisk (*) is followed
here. With the exception of the foot node, all non-terminal symbols on the frontier of
an elementary tree are terminal or marked as ↓ for substitution. Initial and auxiliary
trees are denoted α and β respectively. A tree whose root is labeled by X is called an
X-type tree. Figure 1 shows some examples of initial and auxiliary trees.

The key operations used with tree-adjoining grammars are the adjunction and
substitution of trees. Adjunction builds a new (derived) tree γ from an auxiliary tree β
and a tree α (initial, auxiliary or derived). If tree α has an interior node labeled A, and
β is an A-type tree, the adjunction of β into α to produce γ is as follows: Firstly, the
sub-tree α1 rooted at A is temporarily disconnected from α. Next, β is attached to α to

Softening the Structural Difficulty in Genetic Programming 607

replace the sub-tree. Finally, α1 is attached back to the foot node of β. γ is the final
derived tree achieved from this process. Adjunction is illustrated in Figure 2.

Fig. 1. Some examples of initial and auxiliary trees.

 A

 A A

 A*

 A

Fig. 2. Adjunction.

In substitution, a non-terminal node on the frontier of an elementary tree is
substituted with another initial tree with a root labelled with the same non-terminal
symbol. Substitution is illustrated in Figure 3.

The tree set of a TAG can be defined as follows [12]:
TG = {all tree t: t is completed and t is derived from some initial S-trees through

adjunctions and substitutions}.
Where a tree t is completed, if t is an initial tree and all of the leaf nodes of t are

labelled by terminal symbols. The language generated by the TAG G is defined as
 LG = {w ∈ T*: w is the yield of some tree t ∈ TG}.
In TAG, there is a distinction between derivation and derived trees. A derivation

tree in TAG [12, 19, 23, 26] is a tree-structure, which encodes the history of
derivation (substitutions and adjunctions) to produce the derived tree. Each node is
labelled by an elementary tree name: the root must be labelled by an α tree name, and
the other nodes with either an α or β tree. The links between a node and its offspring
are marked by addresses for adjunctions and substitutions. Figure 4 illustrates the
derivation and derived trees in TAGs (the discontinuous lines mean substitutions).

The set of languages generated by TAGs (called TAL) is a superset of the context-
free languages generated by CFGs; and is properly included in indexed languages
[12]. More properties of TAL can be found in [12].

 One special class of TAGs is lexicalized TAGs (LTAGs) [12, 20, 21], in which
each elementary tree of an LTAG must have at least one terminal node. It has been
proven that there is an algorithm, which for any context-free grammar G, generates a
corresponding LTAG Glex that generates the same language and tree set as G (Glex is
then said to strongly lexicalize G) [12, 20, 21]. The derivation trees in G are the
derived trees of Glex.

608 N.X. Hoai and R.I. McKay

Fig. 3. Substitution.

Fig. 4. Examples of a derivation tree and derived tree in TAGs.

2.2 TAG-Based Representation for Genetic Programming

The algorithm in [12, 20, 21] to find an LTAG to strongly lexicalize a CFG is based
on the ideas of separation between the recursive part (structure) and non-recursive
part (lexicon) of the CFG. In [21], the only operation necessary in the resultant LTAG
is adjunction. However, substitution can be added to make the elementary set more
compact [12]. Moreover, it is possible to encode the non-recursive parts of the
grammar purely as substitution trees. In so doing, the initial tree used for substitution
cannot be adjoined by other auxiliary trees: a process that simplifies the structure of
derivation trees in LTAGs while maintaining their generative powers. Consequently,
on the structure of LTAG derivation trees, substitution becomes an in-node operation
and can be ignored to simplify the discussion of this paper (in fact, one can choose to
entirely ignore substitution in implementing a TAG-based representation, at the cost
of increasing the number of elementary trees). Figure 5 depicts this type of LTAG
derivation tree (supposing each elementary tree has two adjoining addresses – i.e. the
maximum arity is 2).

In [16], the derivation tree in LTAG was used as genotype structure for Tree-
Adjoining Grammar-Guided Genetic Programming (TAG3P). TAG3P uses a
genotype-to -phenotype map and can handle problems with context-sensitive
syntactical constraints, context-free syntactical constraints, or (as in standard GP) no
syntactical constraints. In the first case, an LTAG grammar Glex is used on its own as
the formalism for language bias declaration. The phenotype is the derived tree of Glex.
In the second case, the context-free grammar (CFG) G is used to generate the strongly
lexicalised LTAG Glex. The derivation trees of Glex is used as the genotype, and the
phenotype in that case is the derivation tree of G (derived tree of Glex). In the final
case a set of GP functions and terminals is used to create a context-free

Softening the Structural Difficulty in Genetic Programming 609

Fig. 5. Derivation tree structure for TAG-based representation. The squares means there is no
tree adjoining to that address (a NULL node). Lexemes are values for the lexicons in each
node.

grammar in the manner described in [29] (page 130). It was proven in [29] that there
is a one to one map between the derivation trees of G and the expression trees in GP.
The mapping schema can be summarized in figure 6 as follows where the second
phase of the map is optional.

Fig. 6. Scheme for Genotype-to-Phenotype map in TAG-based Representation.

 The derivation tree structure in LTAG has an important property: when growing it,
one can stop at any time, and the derivation tree and the corresponding derived tree
are still valid. In other words, the derivation tree in LTAG is a non-fix-arity tree
structure (Catalan tree [22]). The maximal arity (number of children) of a node is the
number of adjoining addresses that are present in the elementary tree of that node. If
this arity is n, the node can have 0, 1,..., or n children.

In [16], this property was called feasibility. Feasibility allows us to design and
implement many new search operators which would not be possible in standard GP
systems, including bio-inspired ones. In particular, insertion and deletion operators
arise naturally from this TAG-based representation. In insertion, a random NULL
node in the LTAG-derivation tree is replaced by a new node that can adjoin to the
adjoining address of the corresponding parent node. Conversely, deletion randomly
deletes a node that has all NULL children in the LTAG-derivation tree (i.e. a leaf
node). Insertion and deletion simulate the growth and shrinkage of a natural tree. The
change in genotype structure (and consequently in phenotype structure) is small.
Figure 7 illustrates how insertion and deletion work.

Fig. 7. Examples of insertion (on the left) and deletion (on the right).

610 N.X. Hoai and R.I. McKay

3 Structural Difficulty in GP

In a series of works [3-8], Daida et. al. showed that structure alone can pose great
difficulty to standard GP search (using expression tree representation and sub-tree
swapping crossover). In particular, they delineated 4 regions of the space tree
structure [6, figure 3]. Region 1 is where most of standard GP solutions lie, i.e. it is
easy for GP to find a solution in that area; region 2 is increasingly difficult for GP to
search; region 3, including fuller trees and thinner trees, is almost impossible for GP
to search; and, region 4 is out of bounds (i.e. infeasible tree structures). Moreover
regions 2 and 3 account for the majority of tree structures, even when, as is usual in
practical GP, a relatively small search space bound (in terms of size or depth) is used
(see [6, figure 3]).

To further validate this discovery, in their latest paper [8], Daida et al. specified a
test problem known as LID. In the LID problem for GP, there is only one function of
arity 2 named join, and one terminal named leaf. The raw fitness of one individual tr
depends purely on its structural difference from the target solution. It is defined as
follows [8].

 Fitnessraw(tr) = Metricdepth+Metricterminal (1)
Where Metricdepth and Metricterminal are defined as:

 Metricdepth= Wdepth×

−

−

etargt

actualetargt

d

dd
1 (2)

 Metricterminal=

−× =

−

otherwise,0

WMetricif
t

tt
1W depthdepth

etargt

actualetargt
alminter

 (3)

dtarget, and ttarget are the depth and number of leaves of the target solution, and dactual and
tactual are the depth and number of leaves of individual tr. In [8], Wdepth and Wterminal are
two weighted numbers satisfying Wdepth + Wterminal=100. It is noted that the size s of a
tree in LID problem is related to its ttarget by the equation: s=2×ttartget-1.

In [8], two families of LID problem instances were used to probe the search space
of tree structure: ‘horizontal cut’ and ‘vertical cut’. In the first family, the ttarget was
fixed as 256 and the dtarget was varied from 8 to 255. In the second, dtarget was fixed as
15 while ttarget was varied from 16 to 32768. For a GP system using either size or depth
as the chromosome complexity measure, these bounds on size and depth (256 and 15)
are quite typical.

Surprisingly, the results in [8, figure 3 and 4] show that standard GP, using
expression tree representation and sub-tree swapping crossover, performed extremely
poorly on the two families of problem instances, especially for those vertical and
horizontal cut regions that lie in regions 3 and 4. The results thus support the
hypothesis that there is great structural difficulty in GP. Daida et. Al. [8, figures 6 and
7] went further, in showing that the results cannot be fully explained by the sparsity of
tree structures in regions 3 and 4 (i.e. they are not an equilibrium problem). Their
explanation pointed to the expression tree representation itself as the main cause of
the structural difficulty.

Softening the Structural Difficulty in Genetic Programming 611

Our further work on this problem has identified the lack of appropriate structural
edit operators, resulting from the fixed-arity expression tree representation in standard
GP, as the culprit. Using TAG-based representation we have been able to solve the
problem of fixed-arity and design structural mutation operators, namely, insertion and
deletion. In the next section, we investigate how the TAG-based representation,
coupled with insertion/deletion operators, softens the structural difficulty in GP.

4 Experiments and Results

To investigate how well TAG-based representation and insertion/deletion operators
handle the structural difficulty, we tried a hill-climbing (greedy) search using
insertion/deletion as operators (TAG-HILL) on the same families of LID problem
instances as in [8], namely the horizontal cut and the vertical cuts. The grammar for
the LID problem is as follow:

G={N={S}, T={Join, Leaf },P,{S}} where the rule set P is defined as follows:
S → S Join S
S → Leaf
The corresponding LTAG (as found in [21]) is Glex= {V={S}, T={Join, Leaf}, I, A)

where I∪ A is as in Figure 8.

Fig. 8. Elementary trees of Glex for LID problem.

It is noted in [12] that the map between derivation tree of Glex and derivation tree of
G (and therefore to expression tree of GP) is one-to-one. However, while the GP
expression tree for LID is a fixed-arity (binary) tree, the derivation tree in Glex is a
non-fixed-arity (Catalan binary) tree.

In our experiments, the maximal number of steps in TAG-HILL is set to 100000 for
each instance. This gives the same number of evaluations as in [8], where the size of
population and the number of generations are set to 500 and 200 respectively.
Consequently, the maximal allowed number of fitness evaluation in TAG-HILL is the
same as in the GP experiments in [8]. For the horizontal cut, ttarget was fixed as 256
while dtarget was varied from 8 to 255. For each varied dtarget, 100 runs were allocated.
Similarly, in the vertical cut, the dtarget was fixed as 15 while target was varied from 16 to
32768. For each ttarget in [16..1024], we carried out 100 runs, while in [1025..32768],
we run 100 trials for each point of the 118 equi-sampled points in that interval.
Although the setting of Wdepth and Wterminal do not affect TAG-HILL search, we still set
them the same as in [8], i.e. as 30 and 70 respectively. The size of the initial
individuals is randomly chosen between 2 and 10. Both operators have equal chance
of being chosen. Figures 9 and 10 depict the results on the frequency of success for
TAG-HILL compared with the GP results reported in [8]. The results for TAG-HILL

612 N.X. Hoai and R.I. McKay

are based on total 137600 runs. The graphs of GP results are adapted from figures 3
and 4 in [8] (based on 90000 runs).

The results show that TAG-HILL outperforms GP on the two families of LID
problem instances by an extremely wide margin. For the horizontal cut family, TAG-
HILL solved all except the three rightmost points (where the frequencies of success
were 98%, 80%, 72% respectively) with 100% reliability, while GP could not reliably
find solutions for the whole range of problems with dtarget <12 and dtarget> 70; with dtarget

> 100 and dtarget = 8 or 9, GP failed to find any solutions. For the vertical cut family,
GP runs were unreliable in finding solutions for ttarget > 500, and failed to find any
solutions with ttarget > 1024. By contrast, TAG-HILL can solve the problem with 100%
success for ttarget up to 13400, and only failed to find solutions when ttarget > 16000.
Figures 11 and 12 show the average number of search steps for TAG-HILL to find
solutions. The almost linear scale suggests that, except for some extreme points, the
landscape of the two families of LID problem instances is quite smooth for TAG-
HILL. This is no trivial matter, since when ttarget (dtarget) approach their extreme values,
the tree structure become exponentially sparse [23]. To see just how sparse, take the
example of the leftmost point on the horizontal cut where ttarget = 256 and dtarget= 8.

There is only one tree with that combination of (ttarget, dtarget) out of
3

255

255

4

π
 ~ 2497

trees with ttarget of 256 [23].

Fig. 9. Frequency of success for the ‘horizontal cut’.

The results show that TAG-based representation, equipped with insertion/deletion,
can soften the structural difficulties in GP. Of course, except for specially tailored
problems (like LID) it may be difficult to determine whether a problem has inherent
structural difficulty and hence whether to apply insertion and deletion. Further
investigation of this issue will be deferred to our future work. In other recent work
[17], we have investigated the role of insertion and deletion as structural mutation
and/or local search operators in the context of Tree Adjoining Grammar Guided
Genetic Programming (TAG3P). The results show that, on some standard GP
problems, insertion and deletion help TAG3P to improve the performance
significantly, even with very small population sizes.

Softening the Structural Difficulty in Genetic Programming 613

Fig. 10. Frequency of success for the ‘Vertical cut’.

Fig. 11. Average number of Evaluations (TAG-HILL) for the ‘horizontal cut’.

Fig. 12. Average number of Evaluations (TAG-HILL) for the ‘vertical cut’.

5 Related Works

To the best of our knowledge, in the field of grammar guided genetic programming
(GGGP) [9, 10, 18, 27-30], structural mutation and the problem of structural difficulty
have not yet been studied. We believe that the structural difficulty problem also

614 N.X. Hoai and R.I. McKay

affects the derivation tree structure of (context-free, logic) grammars (at least when
solving non-syntactical constraints like in GP). However, it would be extremely
difficult in GGGP to solve the problem using structural mutations like our TAG-based
insertion and deletion, because of the complexity of defining them through syntactical
(string-rewriting) rules.

Recently, Vanneschi et al. [24, 25] designed new GP structural mutation operators,
called inflate mutation and deflate mutation, for studying fitness-distance correlation.
They formally proved that their structural mutation operators are consistent with the
alignment-tree metric. This means, if the alignment metric between to tree t1 and t2 is
D, there is a sequence of inflate and deflate mutations with length D/2 to transform t1
into t2. However, it is not yet known whether this optimal sequence can be obtained
in real time. Being based on the arity incremental ranking of nodes, their operators
become meaningless when all the functions in GP have the same arity (as in LID),
and it is hard to imagine how these operators can be extended to handling
syntactically constrained domains. Moreover, their structural mutation operators are
complicated in implementation and unnatural in definition.

6 Conclusion

In this paper, we have reintroduced a representation for genetic programming, based
on the use of tree adjoining grammars. We described in detail how this representation
transforms the fixed-arity expression tree representation in GP into a non-fixed-arity
tree structure in LTAG. From this property of TAG-based representation (it was
named feasibility in [16]), insertion and deletion arise naturally as structural mutation
operators. The results on two families of LID problem instances, using stochastic hill-
climbing search, show that the TAG-based representation significantly softens the
structural difficulty previously found in standard GP using expression tree
representation and sub-tree swapping crossover [8].

In future, we are planning to analyze the run time behaviour of TAG-HILL and GP
(using sub-stree swapping crossover) on the LID problem, aiming at prediction of the
convergence time. We are developing a way to measure the structural difficulty of
problems, aiming to predict the usefulness of insertion and deletion for those
problems.

References

1. Banzhaf W., Nordin P., Keller R.E., and Francone F.D.: Genetic Programming: An
Introduction. Morgan Kaufmann Pub (1998).

2. Daida J.M., Ross S.J., McClain J.J., Ampy D.S., and Holczer M.: Challenges with
Verification, Repeatability, and Meaningful Comparisons in Genetic Programming. In
Genetic Programming 1997: Proceedings of the Second Annual Conference, Koza J.
etal.(Eds), Morgan Kaufmann, (1997) 64-69.

3. Daida J.M., Bertram J.A., Polito 2 J.A., and Stanhope S.A.: Analysis of Single-Node
(Building) Blocks in Genetic Programming. In Advances in Genetic Programming 3,
Spector L., Langdon W.B., O’Reilly, and Angeline P.J. (Eds), the MIT Press (1999) 217-
241.

Softening the Structural Difficulty in Genetic Programming 615

4. Chaudri O.A., et al.: Characterizing a Tunably Difficult Problem in Genetic Programming.
In Proceedings of GECCO 2000, Witley L.D., et al. (Eds), Morgan Kaufmann Publisher
(2000) 395-402.

5. Daida J.M., Polito 2 J.A., Stanhope S.A., Bertram R.R., Khoo, J.C., Chaudhary S.A., and
Chaudhri O.: What Makes a Problem GP-Hard? Analysis of a Tunably Difficult Problem in
Genetic Programming. Journal of Genetic Programming and Evolvable Machines, vol. 2
(2001) 165-191.

6. Daida J.M.: Limit to Expression in Genetic Programming: Lattice-Aggregate Modeling. In
Proceedings of the 2002 Congress on Evolutionary Computation, IEEE Press (2002) 273-
278.

7. Daida J.M. and Hilss. Identifying Structural Mechanism in Standard GP. In Proceedings of
GECCO 2003, LNCS, Springer-Verlag (2003) 1639-1651.

8. Daida J.M., Li H., Tang R., and Hilss A.M.: What Makes a Problem GP-Hard? Validating a
Hypothesis of Structural Causes. In Proceedings of GECCO 2003, LNCS, Springer-Verlag
(2003) 1665-1677.

9. Gruau F.: On Using Syntactic Constraints with Genetic Programming. In: Advances in
Genetic Programming II, The MIT Press, (1996) 377-394.

10. Geyer-Schulz A.: Fuzzy Rule-Based Expert Systems and Genetic Machine Learning.
Physica-Verlag, Germany, (1995).

11. Joshi A. K., Levy L. S., and Takahashi M.: Tree Adjunct Grammars. Journal of Computer
and System Sciences, 10 (1), (1975) 136-163.

12. Joshi, A. K. and Schabes, Y.: Tree Adjoining Grammars. In: Handbook of Formal
Languages, Rozenberg G. and Saloma A. (Eds.) Springer-Verlag, (1997) 69-123.

13. Koza, J. : Genetic Programming. The MIT Press (1992).
14. Nguyen Xuan Hoai and McKay R.I.: A Framework for Tree Adjunct Grammar Guided

Genetic Programming. In: Proceedings of Post Graduate ADFA Conference on Computer
Science (PACCS’01), H.A. Abbass and M. Barlow (Eds), (2001) 93-99.

15. Nguyen Xuan Hoai, McKay R.I., Essam D., and Chau R.: Solving the Symbolic Regression
Problem with Tree Adjunct Grammar Guided Genetic Programming: The Comparative
Result. In Proceedings of Congress on Evolutionary Computation (CEC’2002) (2002)
1326-1331.

16. Nguyen Xuan Hoai, McKay R.I., and Abbass H.A.: Tree Adjoining Grammars, Language
Bias, and Genetic Programming. In Proceedings of EuroGP 2003, Ryan C. et al (Eds),
LNCS 2610, Springer Verlag (2003) 335-344.

17. Nguyen Xuan Hoai and McKay R.I: An Investigation on the Roles of Insertion and
Deletion Operators in Tree Adjoining Grammar Guided Genetic Programming. To appear
in The Proceedings of Congress on Evolutionary Computation (CEC’2004) (2004).

18. O’Neil M. and Ryan C.: Grammatical Evolution. IEEE Trans on Evolutionary
Computation, 4 (4), (2000) 349-357.

19. Schabes Y. and Shieber S.: An Alternative Conception of Tree-Adjoining Derivation.
Computational Linguistics, 20 (1), (1994) 91-124.

20. Schabes Y. and Waters R. C.: Tree Insertion Grammar: A Cubic-Time Parsable Formalism
that Lexicalizes Context-Free Grammar without Changing the Trees Produced.
Computational Linguistics, 21 (4), (1995) 479-514.

21. Schabes Y.: Mathemantical and Computational Aspects of Lexicalized Grammars, Ph.D.
Thesis, University of Pennsylvania, USA, (1990).

22. Sedgewick R. and Flajolet P: An Introduction to the Analysis of Algorithms. Addison-
Wesley (1996).

23. Shanker V.: A Study of Tree Adjoining Grammars. PhD. Thesis, University of
Pennsylvania, USA, 1987.

616 N.X. Hoai and R.I. McKay

24. Vanneschi L., Tomassini M, Collard P., and Clergue M: Fitness Distance Correlation in
Structural Mutation Genetic Programming. In Proceedings of EuroGP 2003, Ryan C. et al
(Eds), LNCS 2610, Springer Verlag, (2003) 455-464.

25. Vanneschi L., Tomassini M, Collard P., and Clergue M: Fitness Distance Correlation in
Genetic Programming: a Constructive Counterexample In Proceedings of Congress on
Evolutionary Computation (CEC’2003), IEEE Press (2003) 289-296.

26. Weir D. J.: Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD. Thesis,
University of Pennsylvania, USA, (1988).

27. Whigham P. A.: Grammatical Bias for Evolutionary Learning. Ph.D Thesis, University of
New South Wales, Australia, (1996).

28. Whigham P. A.: Grammatically-based Genetic Programming. In: Proceedings of the
Workshop on Genetic Programming: From Theory to Real-World Applications, Morgan
Kaufmann Pub (1995) 33-41.

29. Whigham P. A.: Search Bias, Language Bias and Genetic Programming. In: Genetic
Programming 1996, The MIT Press, USA, (1996) 230-237.

30. Wong M. L. and Leung K. S.: Evolutionary Program Induction Directed by Logic
Grammars. Evolutionary Computation, 5 (1997) 143-180.

	1 Introduction
	2 TAG-Based Representation for GP
	2.1 Tree Adjoining Grammars
	2.2 TAG-Based Representation for Genetic Programming

	3 Structural Difficulty in GP
	4 Experiments and Results
	5 Related Works
	6 Conclusion

