
Evolving En-Route Caching Strategies for the
Internet

Jürgen Branke1, Pablo Funes2, and Frederik Thiele1

1 Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany
branke@aifb.uni-karlsruhe.de

2 Icosystem Corp., 10 Fawcett ST. Cambridge MA 02138 USA
pablo@icosystem.com

Abstract. Nowadays, large distributed databases are commonplace.
Client applications increasingly rely on accessing objects from multiple
remote hosts. The Internet itself is a huge network of computers, send-
ing documents point-to-point by routing packetized data over multiple
intermediate relays. As hubs in the network become overutilized, slow-
downs and timeouts can disrupt the process. It is thus worth to think
about ways to minimize these effects. Caching, i.e. storing replicas of
previously-seen objects for later reuse, has the potential for generating
large bandwidth savings and in turn a significant decrease in response
time.
En-route caching is the concept that all nodes in a network are equipped
with a cache, and may opt to keep copies of some documents for fu-
ture reuse [18]. The rules used for such decisions are called “caching
strategies”. Designing such strategies is a challenging task, because the
different nodes interact, resulting in a complex, dynamic system. In this
paper, we use genetic programming to evolve good caching strategies,
both for specific networks and network classes. An important result is a
new innovative caching strategy that outperforms current state-of-the-
art methods.

1 Introduction

The Internet is a distributed, heterogeneous network of servers. Besides other
services, it can be regarded as a huge distributed database. Access to documents
on the net is mostly based on a strict client-server model: a client computer
generates a request, opens up a connection to a server host, and retrieves the
document from the server. This naturally creates a lot of network traffic and,
in case of congestions, sometimes causes significant response times or latencies.
Therefore, it is necessary to think about ways to minimize network traffic.

One starting point is the observation that some popular documents are re-
quested all the time, while others are almost never requested. Therefore, it makes
sense to store copies (replicas) of popular documents at several places in the net-
work. This phenomenon has prompted server companies (e.g., Akamai [1]), to
create forms of mirroring to save bandwidth by servicing requests from hosts
that are closer, in Internet topology terms, to the clients making the requests.

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 434–446, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Evolving En-Route Caching Strategies for the Internet 435

However, this solution obviously works only for long-term data access patterns
in which a commercial interest can be matched with monetary investments in
distributed regions of the globe.

For a broader perspective, observe that when two neighbors on a block re-
quest the same document, two independent channels to the remote server hosting
the document are created, even though both requesting computers are connected
to the same trunk line. The same data is sent over from the server twice, and
relayed by a common chain of routers in between. It would make sense, for any
of the intermediate hosts, to keep a copy of the document, allowing it to service
the second request directly, without having to contact the remote host at all.
Clearly, this would result in a dramatic reduction in network traffic and latency.

Proxy servers sometimes have this capability, being able to optimize Internet
access for a group of users in a closed environment, such as a corporate office
or a campus network. Much better savings and scalability are possible by using
this strategy at all levels: If the campus proxy fails to retrieve the page from the
cache, or even, if the two requests come from neighboring university campuses in
the same city, then a node further down the chain would have the opportunity of
utilizing its cache memory, for the same opportunity exists in every single router
on the Internet.

The difficult question is to decide which documents to store, and where to
store them. With finite memory, it is impossible for individual hosts to cache all
the documents they see.

A global policy control in which a centralized decision-making entity dis-
tributes replicas among servers optimally is impractical, for several reasons: the
tremendous complexity, because the Internet is dynamically changing all the
time, and because no global authority exists. Thus, each server has to decide
independently which documents it wants to keep a replica of. The rules used for
such decisions are also known as caching strategies.

Today, many routers with caching — such as a campus network proxy — use
the well-known LRU (Least Recently Utilized) strategy: objects are prioritized
by the last time they were requested. The document that has not been used
for the longest time is the first to be deleted. Although this makes sense for an
isolated router, it is easy to see why LRU is not an optimal policy for a network
of caching hosts. In our example above, all the intermediate hosts between the
two neighbors that requested the same document, and the server at the end of
the chain, will store a copy of the document because a new document has the
highest priority in LRU. However, it would be more efficient if only one, or a
few, but not all intermediate nodes kept a copy. In isolation, a caching host tries
to store all the documents with highest priority. In a network, a caching host
should try to cache only those documents that are not cached by its neighbors.

Designing good caching strategies for a network is a non-trivial task, because
it involves trying to create global efficiency by means of local rules. Furthermore,
caching decisions at one node influence the optimal caching decisions of the other
nodes in the network. The problem of cache similarity of the above example
is one of symmetry breaking: when neighbors apply identical, local-information
based strategies, they are likely to store the same documents in their caches.

436 J. Branke, P. Funes, and F. Thiele

In this scenario, the network becomes saturated with replicas of the same few
documents, with the consequent degradation of performance.

In this paper, we attempt to design good caching strategies by means of
genetic programming (GP). As we will show, GP is able to evolve new innovative
caching strategies, outperforming other state-of-the-art caching strategies on a
variety of networks.

The paper is structured as follows: first, we will cover related work in Sec-
tion 2. Then, we describe our GP framework and the integrated network simu-
lator in Section 3. Section 4 goes over the results based on a number of different
scenarios. The paper concludes with a summary and some ideas for future work.

2 Related Work

There is a huge amount of literature on caching at the CPU level (see e.g., [17]).
Caching on a network, or web caching, has only recently received some attention.
For a survey see [20,7].

Generally, the literature on web caching can be grouped into two categories:

1. Centralized control: this is the idea of a central authority overseeing the
entire network, deciding globally which replicas should be stored on which
server. Thereby, it is usually assumed that the network structure and a
typical request pattern are known.

2. Decentralized control: in this group, decentralized caching strategies are pro-
posed, i.e., rules that allow each server to independently decide which re-
cently seen documents to keep. Since these rules are applied on-line, it is
important that they can be processed efficiently and that they do not cause
additional communication overhead.

The centralized control version is also known as the “file allocation prob-
lem”. For a classification of replica placement algorithms, see [10]. In [13], an
evolutionary algorithm is used to find a suitable allocation of replicas to servers.
Besides retrieval cost, [16, 15] additionally consider the aspect of maintaining
consistency in the case of changes to the original document, an aspect which we
deliberately ignore in our paper. In any case, while the centralized approach may
be valid for small networks, it becomes impracticable for larger networks, as the
data analysis, the administrative costs, and the conflict between local authorities
take over.

Given the difficulties with a centralized approach, in in this paper we focus
on decentralized control. We try to find simple strategies that can be applied
independently on a local level, thereby making a global control superfluous.
This approach is more or less independent of the network structure and request
pattern, and can thus much quicker adapt in a changing environment.

Early work on web caching has simply used or adapted traditional caching
strategies from the CPU level, such as LRU and LFU (Least Frequently Used),
see e.g. [21]. The disadvantages of these, namely that they lead to cache symme-
try, were described in the introduction. An example of a network-aware caching
strategy is GDSF (Greedy Dual Size Frequency), which considers the number of

Evolving En-Route Caching Strategies for the Internet 437

times a particular document has been accessed, its size and the cost to retrieve
that document from a remote server (in our case, the distance, measured in hops,
to the server holding the next replica).

GDSF’s cost-of-retrieval factor avoids the cache repetition problem by re-
ducing the priority of documents that can be found in nearby caches. It has
been shown to be among the best caching strategies for networks [6,9]. Another
comparison of several web caching strategies can be found in [2].

An interesting alternative has recently been suggested in [18]. There, a node
holding a document and receiving a request uses a dynamic programming based
method to determine where on the path to the requesting node replicas should
be stored. While this approach certainly holds great potential, it requires that all
nodes in the network cooperate, and the computation of the optimal allocation
of replicas to servers is time-consuming. Furthermore, request frequency infor-
mation must be stored not only for documents in the cache, but all documents
ever seen.

As has already been noted in the introduction, in this paper we attempt to
evolve such a decentralized caching strategy by means of GP. A previous example
of using GP for the design of caching strategies was demonstrated by Paterson
and Livesey [14] for the case of the instruction cache of a microprocessor. Some
of their fundamental ideas are similar to ours: GP is a tool that can be used
to explore a space of strategies, or algorithms for caching. However, the nature
of the CPU cache is different from the problem of distributed network caching
because it does not involve multiple interconnected caches.

3 A Genetic Programming Approach to the Evolution of
Caching Strategies

In this section, we will describe the different parts of our approach to evolve
caching strategies suitable for networks. We will start with a more precise de-
scription of the assumed environment and the network simulator used, followed
by the GP implementation.

3.1 Network Simulator

The overall goal of our study was to evolve caching strategies for complex data
networks like the Internet. However, for testing purposes, we had to design a
simplified model of the network.

Edges and Nodes. Our network consists of a set of servers (nodes), connected
through links (edges). Each server has a number of original documents (which
are never deleted), some excess storage space that can be used for caching, and a
request pattern. We assume that the shortest paths from each server to all other
servers as well as the original locations of all documents are known. Thereby, we
are obviating the problem of routing and focusing only on caching decisions.

438 J. Branke, P. Funes, and F. Thiele

j

k

m

i

Fig. 1. If node i requests a document from server j, the request is sent along the
shortest path (bold), and the first replica found on this path is sent back (say from
node k). Other possible replicas not on the path are ignored (e.g., a replica on node
m)

When a server requests a document from a remote server, it sends out out
this request along the route (shortest path) to the remote server that is known
to keep the original copy of the document. All nodes in between check whether
they have a cached replica of the requested document. If not, the request is
passed through. When either a cached replica or the original document has been
found, the document is sent back to the requesting server, following the inverse
route. All the intermediate nodes receive the document’s packets and pass them
along the path to the next node, until the document arrives at its destination.
An example is depicted in Figure 1.

Bandwidth, Queuing and Packetizing. When a document travels through
the network, it is divided into many small packets. Each link has an associated
bandwidth, being able to deliver a limited number of bytes per second. Excess
packets wait in an infinite FIFO queue until they can be serviced. We simplified
the network operation somewhat by ignoring timeouts.

Efficiency. The main goal is to minimize the average latency of the requests,
which is defined as the average time from a request until the arrival of (the last
packet of) the document.

3.2 Evolving Caching Strategies

Caching as Deletion. It is easy to see that servers which have not yet filled up
their memories, should store every single document they see. Even if an oracle
was able to tell that a particular object will never be accessed again, there would

Evolving En-Route Caching Strategies for the Internet 439

Table 1. Functions used for GP

Function Meaning Function Meaning
add(a,b) a + b sin(a) sin(a)
sub(a,b) a − b cos(a) cos(a)
mul(a,b) a · b exp(a) ea, a ∈ [−100, 100]

div(a,b)

{
a
b

: (b �= 0)
1 : (b = 0) iflte(a,b,c,d)

{
c : (a < b)
d : (a ≥ b)

be no harm in storing it. The problem comes when the caching memory fills up,
and a storage action requires the deletion of some other previously cached object.
Cache machines have finite disk space and so they must eventually discard old
copies to make room for new requests.

In order to evolve caching strategies we thus focused on the problem of dele-
tion. The nodes in our simulated networks store all the documents they receive,
until their caches are filled up. If, however, there is not enough memory available
to fit the next incoming one, some space must be freed up. All cached objects
are sorted according to a priority function, and the document with the lowest
priority is trashed. The operation is repeated until enough documents have been
deleted so that there is enough space to save the newcomer. In the remainder of
this paper we shall define caching strategy as the priority rule used for deletion.

Genetic Programming. Given the difficulties to define a restricted search
space for caching strategies, we decided to use genetic programming [11, 12],
which allows an open-ended search of a space of more or less arbitrary priority
functions.

In order to explore the space of caching policies, we employed a generic set of
GP functions (Table 1), combined with a set of terminals representing the local
information available about each document (Table 2). Each node collects this
observable information that can be gathered from the objects themselves as they
are sent, received and forwarded. That is, for example, why the distance we use
is the number of hops a document traveled before reaching the host (observed
distance) as opposed to the true distance to the nearest replica, which could only
be determined through additional communication.

Another important decision was to avoid measures that need to be recom-
puted before each usage. This allows a host to maintain its cache sorted rather
than re-computing and re-sorting before each deletion. Access frequency, there-
fore, is calculated as one over the average mean time between accesses, at the
time of the last access (see [2]).

Since our focus was more on the application than the search for optimal
parameter settings, we used rather standard settings for the test runs reported
below: GP has been run with a population size of 60 for 100 generations, the
initial population has been generated randomly with depth of at most 6. Tour-
nament selection with tournament size of 2 was used, and a new population was
generated in the following way:

440 J. Branke, P. Funes, and F. Thiele

Table 2. Terminals used for GP

Variable Long name Meaning
A timeCreated Time when replica was stored in cache
B size Size of document in kilobytes
C accessCount Number of times the document has been accessed
D lastTimeAccessed Time of last access to document
E distance Distance from node that sent the document (in number

of hops)
F frequency Observed frequency of access (in accesses per second)
� Random constant

1/3 of the individuals were simply transferred to the next generation
1/3 of the individuals were generated by crossover
1/3 of the individuals were generated by mutation only.

Crossover was the usual swapping of sub-trees, mutation replaced a sub-tree
by a new random tree.

3.3 Evaluating Caching Strategies

Evaluating caching strategies analytically is difficult. Instead, we tested them,
using the simulation environment described in Section 3.1. There are two possible
scenarios: if the network topology, and the location and request patterns of
all documents are known, GP can be used to tailor a caching strategy exactly
to the situation at hand. Evaluation is deterministic, as we can simulate the
environment exactly and simply test the performance of a particular caching
strategy in that environment. We made preliminary tests with fixed networks and
obtained excellent results (not included in this paper due to space restrictions).

On the other hand, such topology and patterns may be known only approxi-
mately (e.g., “the document request frequencies follow a scale-free distribution”).
We would like to evolve caching strategies that perform well in a whole class of
possible scenarios. In other words, we are looking for a solution that applies in
general to all networks within the range of characteristics we expect to find in
the real world. Since it is impossible to test a caching strategy against all possible
networks, we defined classes of scenarios and tested each caching strategy against
a random representative from that class. Of course, that made the evaluation
function stochastic. Following observations from other evolutionary algorithms
used for searching robust solutions [4], we decided to evaluate all individuals
within one generation by the same network/request pattern, changing the sce-
nario from generation to generation. Naturally, elite individuals transferred from
one generation to the next have to be re-evaluated.

Note that using a simulation for evaluation is rather time consuming. A single
simulation run for the larger networks used in our experiments takes about 6
minutes. Thus, even though we used a cluster of 6 Linux workstations with 2
GHz each, and even though we used a relatively small population size and only
100 generations, a typical GP run took about 5 days.

Evolving En-Route Caching Strategies for the Internet 441

10 98765432

0 1 2 3 4 5 6 7 8 9
5 6 7 8 9 0 1 2 3 4

Node

Original
Replica

Fig. 2. Optimal distribution of replicas on a simple linear network

0

5

10

15

20

25

30

35

40

0 7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

Generation

F
it
n
e
s
s

(a) Fitness of best individual per
generation

0

10

20

30

40

50

60

0 6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

Generation

F
it
n
e
s
s

(b) Performance of best individual
on 10 other request patterns

Fig. 3. Exemplary GP-run on linear network

4 Results

4.1 Linear Networks

First, we tested our approach by evolving strategies for linear networks, for which
we were able to determine the optimal placement of replicas, analytically.

The first test involved a purely linear network with 10 nodes connected in a
line (i.e. the first and last node have exactly one neighbor, all other nodes have
exactly two neighbors). Every node has one original document, each document
has the same size, and each node has excess memory to store exactly one addi-
tional document. The request pattern is uniform, i.e. each document is requested
equally often (on average). Then, the optimal distribution of replicas is depicted
in Figure 2 (for a proof see [19]).

A typical test run is shown in Figure 3, where part (a) shows the observed
average latency of the best individual in each generation, as observed by GP,
and part (b) shows the performance of these individuals on 10 additional ran-
dom request patterns to test how the solution generalizes. The caching strategy
evolved is rather complex and difficult to understand. Its performance, however,
was excellent.

Table 3 compares the latency of different caching strategies over 30 additional
tests with different random request patterns. Note that GP is a randomized
method, and starting with different seeds is likely to result in different caching

442 J. Branke, P. Funes, and F. Thiele

Table 3. Average latency of different caching strategies on the linear network ± stan-
dard error.

Caching Strategy Ø latency
OPTIMAL 31.58 ± 0.03
BESTGP 31.98 ± 0.06
GDSF 47.67 ±1.17
DISTANCE 50.40 ± 1.24
RANDOM 61.65 ± 0.14
LRU 74.77 ± 0.19

strategies. Therefore, we run GP 5 times, and used the average performance
over the resulting 5 caching strategies as result for each test case. OPTIMAL
is the latency observed with the optimal distribution of replicas on this linear
network, which is a lower bound. As can be seen, the strategy evolved by GP
(BESTGP) was able to find a solution that performs very close to the lower
bound. Other standard caching strategies as GDSF or LRU, perform poorly,
LRU even worse than RANDOM,1 where it is randomly decided whether to
keep or delete a particular document. Looking at distance only (DISTANCE) is
better than looking at the last time accessed only (LRU), but also much worse
than the evolved strategy.

4.2 Scale-Free Networks

The Internet has a scale-free structure, with a few servers being highly con-
nected, and many servers having only few connections [8, 22, 3]. The tests in
this subsection are obtained using a scale-free network with 100 nodes. We used
the method described in [5] to generate random scale-free networks with similar
characteristics as the Internet. There are 100 original documents with document
size between 0.1 and 2 MB. In each of 1000 simulated seconds, an average of
1100 requests are generated in a simulated Poisson process. Request frequencies
are also scale-free: some documents are requested much more often than others.

With the characteristics of the network defined only as distributions, we
searched for individual strategies that could perform well over a wide range of
networks in the class. As explained in Section 3.3, this was achieved by using a
different random network in each generation.

As it turned out, the observed latencies varied dramatically from one simula-
tion to another, the reason being that large latencies are generated when one or
more edges receive more requests than their bandwidth allows them to service.
As predicted by queuing theory, a link can be either underutilized (bandwidth
> request load) or overutilized (bandwidth < request load). In the first case,
latency remains close to zero, and in the second it grows to infinity. We have
deliberately set the parameters in our simulation so as to generate networks close
1 A random strategy, in spite of being completely blind, has the advantage of breaking

symmetry (cf. page 435) because all hosts use different random number seeds, thus
their caches tend to complement each other

Evolving En-Route Caching Strategies for the Internet 443

Table 4. Comparison of different caching strategies on the class of scale-free networks
with 100 nodes. Table shows average rank according to latency ± standard error.

Caching Strategy Ø rank(latency)
RUDF 1.13 ± 0.06
GDSF 2.80 ± 0.15
DISTANCE 3.10 ± 0.28
LRU 3.70 ± 0.16
RANDOM 4.27 ± 0.14

to the saturation point. Depending on the random topology and request pattern,
a network can be underutilized, leading to latencies in the order of milliseconds,
or overutilized, leading to latencies of of several seconds.

GP had some difficulties with this high variance, which led us to evaluate
each individual three times per generation, and take the average as fitness. Even
then, the randomness was substantial, as can be seen in the oscillations in per-
formance of the best solution in Figure 4 (again, part (a) shows the fitness of
the best individual as observed by GP, while part (b) shows the performance of
that individual on 20 additional tests). Nevertheless, the results obtained were
convincing. Although GP again generated some rather good but complicated
caching strategies, in one run it came up with a surprisingly simple strategy
that could be further simplified to the following:

priority = lastT imeAccessed · (distance + accessCount)

This result is quite astonishing as it adds two totally different parameters, the
distance the document has traveled and the number of times it has been accessed.
But the combination has meaning: it keeps the documents that have either a very
high access count, or a very high distance, but only if they have been accessed
recently (otherwise lastTimeAccessed would be small). We call this newly evolved
strategy RUDF for “Recently Used Distance plus Frequency”. This rule performs
very well in comparison to all other caching strategies tested (see Table 4), and
thus sets a new benchmark. Again, we used 30 test runs to evaluate a strategy,
with a new random network and request pattern generated for each test instance.
Due to the large variance between test instances, a comparison based on mean
latency has only limited explanatory power. We therefore used a non-parametric
measure, the average rank the caching strategy achieved when compared to the
other strategies tested (with 1 being the best rank, and 5 being the worst rank).
The results show that RUDF works well over the randomly generated range of
networks in the considered class of scale-free networks.

In order to test how RUDF would perform on completely different networks,
we additionally tested it on the linear network from above, and on two scale-free
network classes with 30 and 300 nodes, respectively. On the linear network, it
resulted in a latency of 35.8 ± 0.42, i.e. worse than the caching strategy evolved
particularly for the linear network, but still better than all other tested strategies.
The results on the two scale-free network classes are shown in Tables 5 and 6. As

444 J. Branke, P. Funes, and F. Thiele

0

50

100

150

200

250

300

350

400

450

0 7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

Generation

F
it
n
e
s
s

(a) Fitness of best individual per
generation

0

50

100

150

200

250

300

350

0 7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

Generation

F
it
n
e
s
s

(b) Performance of best individual
on 20 other instances

Fig. 4. Exemplary GP-run on the class of scale-free networks

Table 5. Comparison of different
caching strategies on the class of scale-
free networks with 30 nodes. Table
shows average rank according to la-
tency ± standard error.

Caching Strategy Ø rank(latency)
RUDF 1.03 ± 0.03
GDSF 1.97 ± 0.03
LRU 3.03 ± 0.03
RANDOM 4.20 ± 0.07
DISTANCE 4.70 ± 0.10

Table 6. Comparison of different
caching strategies on the class of scale-
free networks with 300 nodes. Table
shows average rank according to la-
tency ± standard error.

Caching Strategy Ø rank(latency)
RUDF 1.03 ± 0.03
DISTANCE 2.23 ± 0.16
GDSF 3.20 ± 0.11
RANDOM 4.20 ± 0.16
LRU 4.33 ± 0.13

can be seen, RUDF significantly outperforms all other strategies independent of
the network size. DISTANCE seems to be very dependent on the network size, it
performs second on large networks, but worse than RANDOM on smaller ones.

5 Conclusions and Future Work

A key inefficiency of the Internet is the tendency to retransmit a single blob of
data millions of times over identical trunk routes. Web caches are an attempt to
reduce this waste by storing replicas of recently accessed documents at suitable
locations. Caching reduces network traffic as well as experienced latency.

The challenge is to design caching strategies which, when applied locally in
every network router, exhibit a good performance from a global point of view.
One of the appeals of GP is that it can be used to explore a space of algorithms.
Here, we have used GP to search for caching strategies in networks that resemble
the Internet, with the aim to find strategies that minimize latency. A new rule
called RUDF was evolved, which is very simple yet outperformed all other tested
caching strategies on the scenarios examined.

Evolving En-Route Caching Strategies for the Internet 445

An important obstacle we faced was measuring fitness, because fitness could
only be determined indirectly through simulation, and different random seeds
resulted in a high variance in latency (the criterion we used as fitness). Never-
theless, averaging and multiple-seed evaluation techniques allowed us to evolve
robust strategies that are efficient in a wide variety of conditions.

There are ample opportunities to extend our research: first of all, it would
be necessary to test the newly evolved caching strategy on a larger variety of
networks. Then, the caching strategies could be made dependent on node char-
acteristics (e.g., location in network, number of connections), moving away from
the assumption that all nodes should apply identical caching strategies. Finally,
we could have independent GPs running on every node, so that the caching
strategies on the different nodes would coevolve.

References

1. http://www.akamai.com/en/html/services/edgesuite.html.
2. H. Bahn, S. H. Noh, S. L. Min, and K. Koh. Efficient replacement of nonuniform

objects in web caches. IEEE Computer, 35(6):65–73, 2002.
3. A.L. Barabasi, R. Albert, and H. Heong. Scale-free characteristics of random

networks: the topology of the world-wide web,. Physica A, 281:2115, 2000.
4. J. Branke. Reducing the sampling variance when searching for robust solutions.

In L. Spector et al., editor, Genetic and Evolutionary Computation Conference
(GECCO’01), pages 235–242. Morgan Kaufmann, 2001.

5. T. Bu and D. Towsley. On distinguishin between internet power law topology gen-
erators. Technical report, Depatrment of Computer Science, University of Mas-
sachusetts, 2002.

6. L. Cherkasova and G. Ciardo. Role of aging, frequency, and size in web cache
replacement policies. In B. Hertzberger, A. Hoekstra, and R. Williams, editors,
High-Performance Computing and Networking, volume 2110 of LNCS, pages 114–
123. Springer, 2001.

7. B. D. Davison. A web caching primer. IEEE Internet Computing, 5(4):38–45, 2001.
8. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the

internet topology. In Proceedings of the ACM SIGCOMM, Sept 1999., 1999.
9. S. Jin and A. Bestavros. Greedydual* web caching algorithm. Computer Commu-

nications, 24(2):174–183, 2001.
10. M. Karlsson, C. Karamanolis, and M. Mahalingam. A framework for evaluating

replica placement algorithms. Technical Report HPL-2002-219, Hewlett-Packard,
2002.

11. J. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, 1992.

12. J. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge, 1994.

13. T. Loukopoulos and I. Ahmad. Static and adaptive data replication algorithms for
fast information access in large distributed systems. In International Conference
on Distributed Computing Systems, pages 385–392, 2000.

14. N. Paterson and M. Livesey. Evolving caching algorithms in C by GP. In Genetic
Programming: Proceedings of the Second Annual Conference. Morgan Kaufmann,
1997.

446 J. Branke, P. Funes, and F. Thiele

15. G. Pierre, M. Van Teen, and A. Tanenbaum. Dynamically selecting optimal distri-
bution strategies for web documents. IEEE Transactions on Computers, 51(6):637–
651, 2002.

16. S. Sen. File placement over a network using simulated annealing. ACM, 1994.
17. A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, 1982.
18. X. Tang and S. T. Chanson. Coordinated en-route web caching. IEEE Transactions

on Computers, 51(6):595–607, 2002.
19. F. Thiele. Evolutionäre Optimierung von Caching Strategien für das Internet. Mas-

ter’s thesis, Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany,
2004.

20. J. Wang. A survey of web caching schemes for the internet. ACM SIGCOMM
Computer Comm. Rev., 29(5):36–46, 2001.

21. S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and E. A. Fox. Removal
policies in network caches for World-Wide Web documents. In Procedings of the
ACM SIGCOMM ’96 Conference, Stanford University, CA, 1996.

22. S. Yook, H. Jeong, and A. Barabasi. Modeling the internet s large-scale topology.
PNAS October 15, 2002 vol. 99 no. 21, 2002.

	Introduction
	Related Work
	A Genetic Programming Approach to the Evolution of Caching Strategies
	Network Simulator
	Evolving Caching Strategies
	Evaluating Caching Strategies

	Results
	Linear Networks
	Scale-Free Networks

	Conclusions and Future Work

