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Abstract. Iterated local search (ILS) is a powerful meta-heuristic algo-
rithm applied to a large variety of combinatorial optimization problems.
Contrary to evolutionary algorithms (EAs) ILS focuses only on a sin-
gle solution during its search. EAs have shown however that there can
be a substantial gain in search quality when exploiting the information
present in a population of solutions. In this paper we propose the use of
a population for ILS. We define the general form of the resulting meta-
heuristic, called population-based iterated local search (PILS). PILS is
a minimal extension of ILS that uses previously generated solutions in
the neighborhood of the current solution to restrict the neighborhood
search by ILS. This neighborhood restriction is analogous to the way
crossover preserves common substructures between parents when gen-
erating offspring. To keep the discussion concrete, we discuss a specific
instantiation of the PILS algorithm on a binary trap function.

1 Introduction

In the field of meta-heuristics a large - and increasing - set of algorithms is studied
to tackle hard combinatorial optimization problems typically found in Artificial
Intelligence and Operational Research [11][13][16]. Most meta-heuristics try to
find better solutions by exploring the neighborhood of a single solution. Exam-
ples are tabu search, simulated annealing, variable neighborhood search, greedy
adaptive search procedure, and iterated local search. Other meta-heuristics bias
their search by exploiting the information contained in a multi-set of current
solutions. Examples of these population-based methods are evolutionary algo-
rithms, ant colony optimization, and scatter search. All these meta-heuristics
have their own view on how an efficient search process might be build. How-
ever, it is important to realize that their underlying philosophies are not nec-
essarily incompatible. This observation creates the opportunity to design new
meta-heuristics by combining the driving mechanism of two (or more) meta-
heuristics. In this paper we propose a meta-heuristic that combines the power
of iterated local search with the principle of extracting useful information about
the search space by keeping a population of solutions. We call the resulting al-
gorithm population-based iterated local search (PILS). As in ILS, PILS tries
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to improve on a single solution by running an iterated local search (ILS) algo-
rithm. In addition to ILS, PILS also keeps a small population of neighboring
solutions. These solutions are used to focus the iterated local search process to
the common subspace between the current solution and one of the population
members. The underlying assumption of PILS is that neighboring local optima
share common substructures that could be exploited to generate new solutions.
More specifically, PILS restricts the perturbation of ILS to the subspace where
the current solution and a population member disagree, thus preserving their
common substructure.

In the next section we formally describe the PILS meta-heuristic. This general
algorithmic framework has to be instantiated for a particular problem type.
In Section 3 we discuss such an instantiation for the trap function. Section 4
discusses related and future work. Finally, Section 5 concludes this preliminary
work on the PILS meta-heuristic.

2 Population-Based Iterated Local Search

PILS is a population-based extension of the ILS meta-heuristic. ILS applies a
local search procedure to explore the neighborhood of the current solution in
search for a local optimum [8]. When a local optimum is reached, ILS perturbs
this solution and continues the local search from this new solution. This pertur-
bation should be large enough such that the local search does not return to the
same local optimum in the next iteration. However the perturbation should not
be too large, otherwise the search characteristics will resemble those of a multi-
start local search algorithm. As long as the termination condition has not been
met ILS continues its search this way. The underlying design philosophy of ILS
- or in other words, its inductive bias - is to perform a stochastic neighborhood
search in the space of local optima. Naturally, we do not have an operator that
directly generates the neighborhood in this space, but the combination of the
perturbation operator and the local search operator, both working in the original
solution space, achieves this in an indirect way. The algorithmic description of
ILS is as follows:

Iterated Local Search()
1 S ← GenerateInitialSolution

2 S ← LocalSearch(S)
3 while NotTerminated?(S)
4 do S′ ← Perturbation(S, history)
5 S′ ← LocalSearch(S′)
6 S ← AcceptanceCriterion(S, S′, history)
7 return S

The goal of the population-based iterated local search meta-heuristic is to
improve upon the ILS algorithm by keeping a population of neighboring solu-
tions, and exploit this information to focus the ILS algorithm. PILS explores
the neighborhood of the current solution in two ways. With probability Pratio
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it simply applies the regular ILS procedure. In the other case, a random mem-
ber of the population is chosen and the Perturbation, and if meaningful for
the particular problem, the LocalSearch, are restricted to the search subspace
where the current solution and the population member disagree. The general
algorithmic description of PILS is as follows:

Population-based Iterated Local Search()
1 Pop← CreateInitialPop(PopSize)
2 Pop[0]← AcceptanceCriterion(Pop)
3 while NotTerminated?(Pop)
4 do if CoinFlip(Pratio)
5 then S′ ← Perturbation(Pop[0], history)
6 S′ ← LocalSearch(S′)
7 Pop← AcceptanceCriterion(Pop, S′, history)
8 else i← RandomInt(1, PopSize)
9 S′ ← Perturbation(Pop[0], Pop[i], history)

10 S′ ← LocalSearch(S′, Pop[i])
11 Pop← AcceptanceCriterion(Pop, S′, history)
12 return Pop[0]

The acceptance criterion could be the requirement that new solutions should
have a better (or at least equal) fitness value than the current solution. Another
criterion - applied in simulated annealing - accepts new solutions with a proba-
bility depending on the fitness difference between the current and new solution.
The acceptance criterion might also keep a history list such that its decision
depends on previously visited solutions. This approach is the main mechanism
of tabu search.

When applying PILS to a particular class of problems the algorithmic frame-
work needs to be instantiated in accordance with the characteristics of the un-
derlying problem. To illustrate this we have applied the PILS meta-heuristic to
a trap function, which is a hard and well studied optimization problem in EA
research [1][3][15]. In the next section we specify one possible instantiation of
the PILS meta-heuristic for the trap functions.

3 Example

3.1 Instantiating PILS for Trap Functions

In the previous section we have described the general population-based iter-
ated local search algorithm. A specific instantiation of PILS requires the speci-
fication of the procedures GenerateInitialSolution (or CreateInitialPop),
LocalSearch, NotTerminated?, Perturbation, and AcceptanceCriterion. In
the remainder of this paper we will look at a specific PILS algorithm applied to a
hard optimization problem in a fixed-length binary search space. First, we specify
the ILS algorithm for this problem. GenerateInitialSolution simply generates
an initial fixed-length binary string at random. The NotTerminated? test ensures
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that we continue searching until we have reached the global maximum or we have
exceeded a maximum number of trials. The Perturbation operator flips the bits
with a fixed probability. The LocalSearch and the AcceptanceCriterion are
combined to create a first-improvement hill-climbing algorithm. Each bit in the
current string is flipped individually and the resulting fitness value is computed.
Whenever there is a fitness improvement, or when the new value equals the pre-
vious one, the bit change is accepted. The search continues flipping bits at the
current position in the string.

The PILS algorithm extends the ILS by exploiting information stored in
other solutions in the population. More specifically, we adapt the LocalSearch
and the Perturbation mechanisms by restricting the bits that they are al-
lowed to change. Perturbation and LocalSearch now take two solutions as
input: one is the current solution the search is focusing on, and the other is
a randomly chosen solution from the population, which acts as a mask. The
Perturbation operator flips with fixed probability only those bits that have a
different value in the current solution and the mask. The combined LocalSearch
and AcceptanceCriterion also restrict their first-improvement hill-climbing
search to those bits that have a different value in the current solution and the
mask. When a new solution is accepted it replaces the current solution which in
turn replaces the worst solution in the population. The algorithmic description
of the PILS meta-heuristic for the binary problem is given by:

Perturbation(BitString, MaskBitString, ProbMut)
1 for i← 1 to length(BitString)
2 do if BitString(i) �= MaskBitString(i)
3 then if CoinFliP(ProbMut)
4 then BitString ← FlipBit(Bitstring, i)
5 return BitString

FirstImprovementHillClimbing(BitString, MaskBitString)
1 for i← 1 to StringLength
2 do if BitString(i) �= MaskBitString(i)
3 then NewBitString ← FlipBit(Bitstring, i)
4 if Fitness(NewBitString) ≥ Fitness(BitString)
5 then BitString ← NewBitString
6 return BitString

The underlying assumption of the PILS algorithm is that neighboring local
optima have some common substructures. By matching the current solution and
a neighboring solution we try to identify these common substructures during
the search process. The adaptive restriction of the ILS to a neighborhood with
smaller dimension has two advantages. First, it ensures that the perturbation
mechanism does not destroy the possibly useful common substructures. Second,
the dimensionality reduction of the neighborhood to search might save consid-
erable computational cost.
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3.2 Fitness Function

To illustrate the use of the above PILS algorithm we measured its performance
on a trap function consisting of misleading subfunctions of different lengths.
Specifically, the fitness function F (X) is constructed by adding subfunctions of
length 1 (F1), 2 (F2), and 3 (F3). Each subfunction has two optima: the opti-
mal fitness value is obtained for an all-ones string, while the all-zeroes string
represents a local optimum. The fitness of all other string in the subfunction
is determined by the number of zeroes: the more zeroes the higher the fitness
value. This causes a large basin of attraction toward the local optimum when
applying the first-improvement hill-climber. The fitness values for the subfunc-
tions are specified in Table 1 where the columns indicate the number of ones in
the subfunctions F1, F2, and F3. The fitness function F (X) is composed of 4
subfunctions F3, 6 subfunctions F2, and 12 subfunctions F1. The overall string-
length of the problem is thus 36 (= 4 x 3 + 6 x 2 + 12 x 1). F (X) has 210 = 1024
optima of which only one is the global optimum: the string with all ones having
a fitness value of 220.

F (x0 . . . x35) =
3∑

i=0

F3(x3ix3i+1x3i+2) +
5∑

i=0

F2(x12+2ix12+2i+1) +
11∑

i=0

F1(x24+i)

Table 1. The fitness values of the subfunctions Fi of length i; the columns represent
the number of bits in the subfunction that are equal to one.

0 1 2 3
F3 4 2 0 10
F2 5 0 10
F1 0 10

3.3 Analysis

It is shown in [10] that the most difficult part for a local search algorithm when
optimizing trap functions is the last step where a single, largest suboptimal
subfunction needs to be changed in the optimal substring while preserving all
the other optimal subfunctions. It is instructive to compute the probability this
will take place with ILS and the PILS. Call Pmut the probability that a single
bit is flipped by the Perturbation procedure. If we assume - without loss of
generality - that the first-improvement hill-climber (FIHC) visits all bits from
left to right then the basins of attraction of the two optima are:

111 111 011
000 000 100 010 001 110 101

The probability Pr[xxx→ yyy] that the substring xxx is changed into yyy by
the perturbation and local search (FIHC) algorithm is given by:
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Pr[111→ 111] (1− pmut)2

Pr[111→ 000] 1− (1− pmut)2

Pr[000→ 000] 1− p2
mut

Pr[000→ 111] p2
mut

Pr[11→ 11] 1− pmut

Pr[11→ 00] pmut

Pr[00→ 00] 1− pmut

Pr[00→ 11] pmut

Pr[1→ 1] 1
Pr[1→ 0] 0
Pr[0→ 0] 0
Pr[0→ 1] 1

The probability that the ILS algorithm generates the optimal string when only
one order-3 subfunction is incorrect is given by the probability that changes the
suboptimal substring, while preserving the other optimal substrings:

Pr(success) = Pr[000→ 111](Pr[111→ 111])3(Pr[11→ 11])6

= p2
mut(1− pmut)12.

The PILS algorithm can only generate the optimal string from the current solu-
tion with one suboptimal subfunction if the chosen solution from the population
has the optimal substring at the corresponding position. Assuming the chosen
population member has only one other suboptimal subfunction the probability
that the PILS algorithm now generates the optimal solution is given by:

Pr(success) = Pr[000→ 111]Pr[111→ 111]
= p2

mut(1− pmut)2.

Naturally, the solution picked from the population will quite often not have the
optimal subfunction at the required position but this will be compensated by
the much higher probability of generating the global optimal string in case the
condition is fulfilled. Figure 1 shows the difference between the probabilities of
generating the optimal string for both ILS and PILS in the above circumstances.

3.4 Experimental Results

To see how PILS performs for the above trap function and to investigate its
sensitivity to certain parameter choices, we have performed some experiments
and measured the number of function evaluations needed to generate the optimal
string for the first time. The parameters studied are the population size N , the
perturbation strength Pmut, the perturbation strength in the reduced subspace
Pmaskmut, and the ratio Pratio between the ILS and the dimensionality reduced
ILS. All results are reported by plotting the experimental cumulative distribution
function of the probability of generating the global optimal solution as a function
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Fig. 1. Probability optima string generated from 000111...111 by ILS and PILS

of the number of function evaluations which is limited to a maximum of 100, 000.
Every experimental CDF is calculated by running 1000 independent runs of the
algorithm for a particular set of parameters.

1. Figure 2 shows the success probability as a function of the number of fitness
function evaluation for ILS with varying perturbation strength. It can be
observed that if the perturbation is too low the probability of finding a new
local optimum is too low and the performance drops. If on the other hand the
perturbation is too high the ILS becomes too destructive and its performance
also degrades. Note that when Pmut = 0.5 ILS becomes a multi-start local
search. From the size of the basins of attraction it is easy to calculate the
success probability of generating the optimal string in this case, which is
only 1 out of 214 !
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2. In Figure 3 we have plotted the results of PILS for varying perturba-
tion strengths when applying ILS to the entire - this is, the unrestricted
- search space. The other parameters are fixed (N = 5, Pratio = 0.5,
Pmaskmut = 0.25). Compared to the previous figure it is clear that PILS
requires less function evaluations to reach a given performance level. In ad-
dition, PILS also seems to be more robust to the choice of parameter value
of the perturbation strength.
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Fig. 3. PILS for varying perturbation strengths Pmut of the unrestricted perturbation
with N = 5, Pratio = 0.5, Pmaskmut = 0.25

3. The previous experiments showed the sensitivity of ILS (either as stand-
alone or within PILS) for the perturbation strength Pmut. Figure 4 shows
that PILS is rather insensitive to the perturbation strength in the reduced
search space when applying the dimensionality restricted ILS. Even when all
bits in the restricted subspace are fully randomized (Pmaskmut = 0.5), the
performance stays good.

4. Figure 5 shows that PILS is also rather insensitive to the size of the popula-
tion of which the neighboring solutions are chosen to compute the restricted
subspace to explore.

5. Finally in Figure 6 we have plotted the results for different values of the
probability of applying unrestricted ILS or the restricted ILS. Pratio = 1.00
is actually the standard ILS algorithm: clearly PILS improves on this in each
case. Note that Pratio = 0.00 makes no sense because parts of the search
space would become unaccessible to the search algorithm.

4 Discussion

PILS tries to improve the performance of ILS by keeping a population of neigh-
boring solutions to reduce the dimensionality of the neighborhood to be explored
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by ILS. By shielding off the common subspace between the current solution and
a neighboring solution, PILS reduces the probability that common substructures
found in good solutions are destroyed by the perturbation operator. Obviously,
this mechanism is not unlike crossover in genetic algorithms. Although Hol-
land [6] and Goldberg [4] consider crossover to be an operator that recombines
or juxtaposes different substructures of two parent solutions, some crossover
operators described in the literature could better be viewed as a perturbation
operator in the search subspace defined by those variables where the two parent
solutions have no common values. A good example in the binary search space is
parameterized uniform crossover (PUX) where allele values between two strings
are flipped with a fixed probability [14]. In fact because flipping equal bit values
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Fig. 6. PILS for varying probabilities Pratio between unrestricted and restricted per-
turbation and local search with N = 5, Pmut = 0.15, Pmaskmut = 0.25

does not produce a change, PUX is actually generating the same strings as the
restricted perturbation operator we have applied in PILS.

The combination of local search with a population of solutions is also found
in hybrid genetic algorithms, or memetic algorithms [2][9]. Memetic algorithms
are basically genetic algorithms that search in the space of local optima. There-
fore, the recombination operator will in general try to juxtapose different sub-
structures from the two parents. Also, selection is applied to let all solutions
in the population compete for their survival. When using selection the popu-
lation should not be too small to avoid the premature loss of diversity which
would lead to unsatisfying search results. In many combinatorial optimization
tasks the local search operator is a computationally expensive procedure, and
memetic algorithms often need to limit their use of the local search operator due
to the high computational cost. In PILS the search is only focused on a single
- for instance, the current best - solution as in ILS. No selection between mem-
bers of a population is taking place, other than replacing the current solution
by a new neighboring solution. The population in PILS are highly fit solutions
encountered during the search, and are only used to help define a reduced neigh-
borhood around the current solution.

Recently, it has been brought to our attention that Reeves also recognized
the role crossover might play as a neighborhood restricting operator [12]. Reeves
focused on the description of the working of a GA in terms of a generalized
neighborhood search algorithm. He also noted that even the restricted neighbor-
hood would in general be too large to search exhaustively, and while a traditional
GA can be viewed as taking a random sample from that neighborhood, Reeves
advocated the use of a more systematic local search. In PILS the restricted
neighborhood is searched by ILS, which is a very efficient neighborhood search
algorithm.
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5 Conclusions

We have proposed the population-based iterative local search (PILS) algorithm.
PILS aims to extend the efficiency of the iterative local search algorithm by
exploiting information contained in a population of neighboring solutions. By
using a population PILS restricts the ILS algorithm to explore only lower di-
mensional neighborhoods. The gain in efficiency is obtained at two levels. First,
the perturbation operator is restricted to explore only the subspace where the
current solution and a neighboring solution from the population disagree. This
way promising, partial solutions remain untouched. Second, the local search op-
erator only needs to search a neighborhood of smaller size. We have analyzed
and tested PILS on trap functions, showing how and why PILS can be more
efficient than ILS. A key assumption of the PILS algorithm is that local optimal
solutions possess common substructures that can be exploited to increase the
efficiency of the ILS. In future work we will investigate the use of PILS on other
combinatorial optimization problems.

Acknowledgments. I would like to thank Ken De Jong, Colin Reeves, and
Peter Merz for the valuable discussion at the Dagstuhl-seminar 04081 ’Theory
of Evolutionary Algorithms’.
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