
K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 210–221, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Effective Chromosome Representation for
Evolving Flexible Job Shop Schedules

Joc Cing Tay and Djoko Wibowo

Intelligent Systems Lab
Nanyang Technological University

asjctay@ntu.edu.sg

Abstract. As the Flexible Job Shop Scheduling Problem (or FJSP) is strongly
NP-hard, using an evolutionary approach to find near-optimal solutions re-
quires effective chromosome representations as well as carefully designed pa-
rameters for crossover and mutation to achieve efficient search. This paper pro-
poses a new chromosome representation and a design of related parameters to
solve the FJSP efficiently. The results of applying the new chromosome repre-
sentation for solving the 10 jobs x 10 machines FJSP are compared with three
other chromosome representations. Empirical experiments show that the pro-
posed chromosome representation obtains better results than the others in both
quality and processing time required.

Keywords. Flexible Job Shop Scheduling Problem, Genetic Algorithm, Chro-
mosome Representation

1 Introduction

In today’s engineering domain, effective planning and scheduling has become a criti-
cal issue [1]. For instance, in manufacturing production lines, efficient and effective
resource allocations are required to maintain sufficient inventories while maximizing
production volume. Even on smaller problems, the number of possible plans and
ways to allocate resources are prohibitively large to preclude any form of enumerative
search.

A commonly used abstraction of scheduling tasks is known as the Flexible Job
Shop Problem (or FJSP). The FJSP is an extension of the classical job shop schedul-
ing problem (or JSP) which allows an operation to be processed by any machine from
a given set of resources. The task is to assign each operation to a machine and to or-
der the operations on the machines, such that the maximal completion time (or
makespan) of all operations is minimized.

This problem has wide applications in manufacturing and transportation systems
[2][3]. Compared to the classical JSP, the FJSP is strongly NP-hard due to 1) as-
signment decisions of operations to a subset of machines and 2) sequencing decisions
of operations on each machine. Therefore, heuristics based on randomized search
have typically been the path taken to find good approximate solutions [4].

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 1800 dpi
 Downsampling für Bilder über: 2700 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Nein

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages false
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Average
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Average
 /DetectBlends true
 /GrayImageDownsampleType /Average
 /PreserveEPSInfo true
 /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 1800
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

An Effective Chromosome Representation 211

Recently, some researchers have focused on applying Genetic Algorithms (or
GAs) to solve the FJSP and have obtained promising results [5][6][7]. In their works,
chromosome representation is the first important task for a successful application of
GA to solve the FJSP. Chen et al. [5] have used A-string (operations) and B-string
(machines) representations, Mesghouni et al. [6] have used a parallel machine repre-
sentation and a parallel job representation, while Kacem et al. [7] used an assignment
table representation. In this paper, we propose a new chromosome representation that
can be used by GAs to solve the FJSP efficiently.

This paper is organized as follows: Section 2 introduces the problem formulation.
Section 3 describes three different chromosome representations described in literature
and a new chromosome representation proposed by ourselves. Section 4 compares
the results of the chromosome representation to three other chromosome representa-
tions described in Section 3 in solving the 10 jobs x 10 machines FJSP. Then, Sec-
tion 5 and Section 6 represent crossover operators and mutation operators with suit-
able rates for the new chromosome representation. Finally, Section 7 summarizes and
analyses the strengths and weaknesses of our representation.

2 Problem Formulation

The FJSP [5] can be defined as follows:

• There are n jobs, indexed by i, and these jobs are independent of each other.
• Each job i has li operations, and a set of precedence constraints Pi. The i-th job is

denoted by Ji.
• Each job i is a set of operations Oi,j for j = 1, ..., li.
• There are m machines, indexed by k.
• For each operation Oi,j, there is a set of machines capable of performing it. The set

is denoted by Mi,j, Mi,j ⊆ {1, ..., m}.
• The processing time of an operation Oi,j on machine k is predefined and denoted by

tijk.
• Each operation cannot be interrupted during its performance (non-preemptive con-

dition).
• Each machine can perform at most one operation at any time (resource constraint).
• The precedence constraints of the operations in a job can be defined for any pair of

operations.
• The objective is to find a schedule with shortest makespan, where the makespan of

a schedule is the time required for all jobs to be processed in the job shop accord-
ing to the schedule.

For simplicity, a matrix is used to denote both Mij and tijk.

212 J.C. Tay and D. Wibowo

3 Chromosome Representations

Solution Representation

Each chromosome in the population represents a solution of the problem. The solu-
tion is represented by an activity graph. The activity graph is a weighted directed acy-
clic graph G = (V, E, w). The node v ∈ V indicates the operation and the machine
where the operation will be performed. E represents a set of edges in G. The weight
w of the edge vi vj indicates the duration of the operation represented by the node
vi. G can be transcribed to a Gantt chart to visualize its corresponding schedule.

This section will briefly describe three chromosome representations commonly
used for encoding GA-based solutions to the FJSP, afterwhich, a new chromosome
representation will be presented.

Chromosome A: Machine Order with Integers

This chromosome by Chen et al [5] consists of two integer strings (denoted as A1 and
A2). The length of each string is equal to the total number of operations. String A1 as-
signs a machine index to each operation. The value of the j-th position of string A1

indicates the machine performing the j-th operation. String A2 encodes the order of
operations on each machine. Both strings of Chromosome A are as follows:

• String A1:

O11 O12 ... Oij ... Onl

11OM
12OM ...

ijOM ...
nlOM

where
ijOM is the machine to perform operation Oij, ijO MM

ij
∈ .

• String A2:

M1 M2 ... Mm

1MO
2MO ...

mMO

where
kMO is an ordered set of operations on machine Mk.

Chromosome B: Machine Order with Bits

The chromosome by Paredis [8] also consists of two strings (denoted as B1 and B2).
String B1 is identical to A1. String B1 is a bit string that gives the order of any pair of
operations. A bit value of 0 indicates that the first operation in the paired-combination
must be performed before the second operation. Both strings of Chromosome B are as
follows:

An Effective Chromosome Representation 213

• String B1 (identical to A1):

O11 O12 ... Oij ... Onl

11OM
12OM ...

ijOM ...
nlOM

where
ijOM is the machine to perform operation Oij, ijO MM

ij
∈ .

• String B2:

{O11, O12} {O11, O13} ... {On(l – 1), Onl}
b1112 b1113 ... b n(l – 1)nl

where bijik is a bit specifying the precedence constraint between Oij and Oik.

Chromosome C: Simple Operation Order

Chromosome C by Ho and Tay [9] also consists of two strings (denoted as C1 and C2).
This chromosome represents an instance of the FJSP, where the operations in each
job have sequential precedence constraints. String C1 encodes the order of the opera-
tions with respect to other jobs. It does not specify the order of operations within the
same job as this is already implied by its index value. String C2 represents the ma-
chine assignment to operations (as in A1 and B1) but with a twist. To ensure solution
feasibility, the machine index is manipulated so that the string will always be valid.
String C2 identifies those machines according to availability and viability. Therefore,
if the machine is not available for an operation, it won’t have an index number in the
set of machines and therefore this machine won’t be selected. Machine selection is
indicated simple boolean values. Both strings of Chromosome C are given as fol-
lows:

• String C1:

()1Of job ()2Of job ... ()hjob Of

where Oh denotes the hth operation to be performed, and fjob (Oh) indicates the job
number of operation Oh.

• String C2:

O11 O12 ... Oij ... Onl()
11Oidx Mf ()

12Oidx Mf ... ()
ijOidx Mf ... ()

nlOidx Mf

where
ijOM is the machine to perform operation Oij, ijO MM

ij
∈ , and ()

ijOidx Mf

gives the set of index numbers of available machines for Oij.

214 J.C. Tay and D. Wibowo

Fig. 1 gives an example of the FJSP for 2 jobs; each having 3 operations, running
on 2 machines. One feasible solution for this problem is shown as an activity graph
and a Gantt chart in Fig. 2. Note that the weight of an edge in the activity graph indi-
cates the duration of the preceding operation node. The Chromosome C representa-
tion for this particular solution is shown in Fig. 3. Note that string C2 does not indicate
the machine number but the index number of available machine. Therefore, machine
2 is the first available machine for O21.

 Time Durations

Machine 1
Machine 2

O11 O12 O13 O21 O22 O23
3 2 5 N/A 4 3
4 3 4 1 5 2

 Precedence Constraints

O11 O12

O11 O13

O21 O22

O21 O23

Fig. 1. Example of a 2x2 FJSP

 Directed Acyclic Graph Representation

 Gantt Chart Representation

O11 O12 O13
at M1 at M1 at M2

O21 O22 O23
at M2 at M2 at M1

Start End

0

0
1

3

5

5

2

2

3

4

1 2 3 4 5 6 7 8 9 10

O11 O12 O23

O21 O22 O13Machine

Machine

Fig. 2. Activity Graph and Gantt Chart for a Feasible Solution to the 2x2 FJSP

 Data Abstraction

 Data Structure

J1 J1 J2 J2 J1 J2
String C1 String C2

O11 O12 O13 O21 O22 O23

0 0 1 1 0 1 0 0 1 0 1 0
Integer Integer

1 1 2 1 2 1

O11 O12 O21 O22 O13 O23
String C1 implicitly describes:

Fig. 3. Chromosome C Representation of the Feasible Solution to the 2x2 FJSP

An Effective Chromosome Representation 215

Chromosome D: Operation Order with Bits

This chromosome is composed from chromosome representations B and C. The
chromosome consists of three strings (denoted as D1, D2 and D3). D1 and D2 are
equivalent to C1 and C2 respectively while D3 is similar to B2. String D3 is described
as follows:

{O11, O12} {O11, O13} ... {On(l – 1), Onl}
b1112 b1113 ... b n(l – 1)nl

In string D3, bijik is a bit specifying the precedence constraint between Oij and Oik.
The constraints created by D3 will only contain pairs of operations that are not in-
cluded in the precedence constraints of the problem. Therefore, the possibility of in-
valid orders occurring due to precedence constraints is reduced. Also, a particular lo-
cation in the chromosome only controls a specific property, therefore the difference
between two solutions will be approximately proportional to the hamming distance
between the chromosome representations.

Table 1 shows the space complexity and the time complexity in converting each
chromosome into a FJSP solution during each generation. T denotes the total number
of job operations in the FJSP, c denotes the number of precedence constraints, and d
denotes the length of the string D3.

Table 1. Theoretical Complexity of the Chromosome Representations

Chromosome
Representation

Chromosome
Length

Conversion
Complexity

Chromosome A 2T O(T + c)
Chromosome B T + 0.5T(T – 1) O(T2 + c)
Chromosome C 2T O(T + c)
Chromosome D 2T + d O(T + c + d)

Although the asymptotic conversion complexity of Chromosome A is of the same
order as Chromosome C, the former often has a larger hidden constant multiple. This
is because, for each generation, Chromosome A has to be converted several times to
process its partial string as follows: Though the validity of the machine can be
checked in O(T) time, cycle detection in O(T + c) and cycle removal in O(c) time,
other cycles often exists after the previous cycle is removed. Therefore, for one gen-
eration, the cycle detection and removal process maybe performed more than once.

4 Empirical Results

The purpose of this experiment is to empirically compare the four different chromo-
some representations. Our algorithm was coded in Java on a 2 GHz Pentium IV. The
experiment was conducted for 100 runs of each chromosome representation to solve a
randomized FJSP of 10 jobs x 10 machines using a population of 100 individuals.

216 J.C. Tay and D. Wibowo

Each run consists of at least 200 generations. Chromosome A, B and D may produce
invalid solutions, therefore repairing the invalid chromosome can be optionally incor-
porated. Chromosome C [9] can only be used to solve the FJSP where the order of
operations within a job is predetermined, therefore the problem definition for the
chromosome C does not include randomized precedence constraints. The results of
the experiment are shown in Table 2.

Table 2. Experimental results

Chromosome
Representation

Forced
Repair

Average
Best

Makespan

Standard
Deviation

Average
Time

(seconds)
No 26.22 2.13 96.72Chromosome A
Yes 25.81 2.33 97.58
No 44.45 24.49 21.81Chromosome B
Yes 24.88 2.67 39.21

Chromosome C N/A 22.14 1.02 3.61
No 19.73 0.97 5.17Chromosome D
Yes 19.42 0.82 5.54

In terms of computation time, Chromosome A was the slowest. As strings A1 and
A2 of Chromosome A must be processed separately, the algorithm is not strictly a ca-
nonical GA. Each time A1 was modified, A2 had to be rebuilt [5]. As this process was
performed for every generation, the total time required increased significantly. In
contrast, the strings in B1, C1, and D1 can be modified independently of B2, C2, and D2.
The empirical results validate that these chromosomes are empirically faster.

The fastest result was produced by chromosome C. Unfortunately, this representa-
tion was only able to solve the FJSP with ordered precedence constraints. Although
the chromosome D was not the fastest, it could solve the general FJSP with accept-
able computational time.

As Chromosome A, B, and D may produce invalid representation, the forced
mechanism to repair the invalid chromosome must be incorporated. For these chro-
mosome representations, the presence of a repair mechanism always improves the
makespan because it takes a larger number of generations to get a valid chromosome
from the invalid chromosome by the using the standard crossover and mutation op-
erator without any repair mechanism.

From the result in Table 2, it can also be observed that the average best makespan
produced by Chromosome B without a repair mechanism is very high. This indicates
that Chromosome B would produce many invalid chromosomes. Without repair, the
solution can only be found in 62 cases out of 100. The repair mechanism improves
the solution of Chromosome B significantly. It could also be observed that the addi-
tional computation time for the repair mechanism of Chromosome B was also more
significant than the other representations.

In terms of the average best makespan, Chromosome D gives the best result com-
pared to the other three representations. This is due to the simplicity of Chromosome

An Effective Chromosome Representation 217

D’s representation as compared to the others. Chromosome D also has a smaller stan-
dard deviation. Therefore, chromosome D is better in term of robustness and stability
compared to the other chromosome representations used on this experiment.

5 Crossover Rates

Crossover Operators

String D1 of Chromosome D describes the order of jobs. Therefore, offsprings may
not be genetically reproduced by using standard 1-point or 2-point crossover, as the
result may become infeasible. We use order-preserving 1-point crossover operator [5]
for D1. The following is an example of order-preserving 1-point crossover given two
strings D1(1) and D1(2).

Before crossover: a crossover b
String D1(1): 0 0 | 1 0 1 1
String D1(2): 1 0 | 1 0 0 1

After crossover:
String D1(3): 0 0 | 1 1 0 1
String D1(4): 1 0 | 0 0 1 1

String D1(3) consists of partial strings denoted as D1(3)a and D1(3)b. String D1(3)a,
which contains the elements before the crossover point, is constructed from D1(1)a.
Therefore, D1(3)a is “0 0” in this example. The string D1(3)b, which contains ele-
ments after the crossover point, is constructed by removing the first occurrences of
elements that are now in string D1(3)a from the string D1(2). In this case, the first two
0’s of string D1(2) are removed, and therefore the string D1(3)b is “1 1 0 1”. This
method is also similarly applied to obtain D1(4). It can be seen that the number of 0’s
and 1’s are preserved by this method, and therefore the string D1 of the offspring will
always be valid. For string D2 and D3, we use the standard 1-point or 2-point cross-
over operator. For string D2, the invalid machine index assignment is handled sepa-
rately. If there exist invalid indices of available machines in string D2 after crossover
is applied, then the machine is reassigned randomly to a valid machine index number.

Suitable Rates for Crossover Operators

The canonical GA relies mainly on its operators to control the diversity of the popu-
lation from one generation to the next. An experiment was conducted to study the ef-
fects of the crossover rate on the optimality of the makespan when using Chromo-
some D. In order to show the significance of the observed parameter and reducing the
effects of the other factors, all other parameters are kept constant. Order-preserving 1-
point crossover operator is used for the string D1, and standard 1-point crossover op-
erator is used for the string D2 and D3, and the experiment is conducted without muta-
tion. Therefore, the population will only be affected by the crossover operator.

218 J.C. Tay and D. Wibowo

We use a modified JSP standard problem instance ft10 from Fisher and Thomp-
son [10] with 10 machines, 10 jobs, each with 10 operations and vary the crossover
rate from 0 to 1 with an interval step of 0.05. The experiment was repeated 100 times,
and the averages of the best makespan were observed. The graphs of the average best
makespans and its standard deviations are shown in Fig. 4. As the crossover rate in-
creases, the average of the best makespans is observed to decrease gradually. The
graph shows a significant improvement initially when the crossover rate is small.
With a larger crossover rate, there is little improvement on the result and the trend
flattens out. We conjecture that a crossover rate of greater than 0.85 may produce the
best result. However, without mutation, it is unlikely to be the global optimal.

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0
0

.3
5

0
.4

0
0

.4
5

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

Crossover Rate

B
es

t M
ak

es
pa

n

Average

Fig. 4. Effects of crossover rate on the best makespan

6 Mutation Rates

Mutation Operators

Mutation can be applied to String D1 of Chromosome D by swapping two elements at
two randomly selected locations. Another mutation operator that can be applied is the
two-opt mutation operator [11]. This operator inverts the order of operations between
two randomly selected locations. In this experiment, the string D1 is mutated by
swapping two elements at two randomly selected locations, because this is commonly
used for resource scheduling [12].

String D2 can be mutated by randomly changing the machine indices. The invalid
machine assignment may be handled separately, or incorporated into the operator. By
incorporating it into the operator, the mutation operator can be considered as a con-
straint-preserving operator that will always ensure feasibility of the mutated instance.

An Effective Chromosome Representation 219

Finally, string D3 is a sequence of bits, which can be mutated by simply inverting a
random number of them.

Suitable Rates for Mutation Operators

This experiment uses the same configuration, as well as the same randomized prob-
lem as in the previous experiment on the crossover operator. In this experiment, the
crossover operator was set at 0.95. The mutation rate was varied from 0 to 1. The ex-
periment was repeated 100 times, and the averages of the best makespan were ob-
served. The graphs of the average best makespans and its standard deviations are
shown in Fig. 5 and Fig. 6.

Fig. 5 shows that the best result is achieved when the mutation rate is around
0.025. There is a significant improvement on the average of makespan from mutation
rate of 0 to 0.025. As the mutation rate increases beyond 0.025, the average of the
best makespan also increases gradually.

To investigate the significant improvement on the best makespan from mutation
rate of 0 to 0.025, another experiment was conducted by varying the mutation rate
from 0 to 0.03 with an interval of 0.001. The graph of the result is shown on Figure 6.

In the interval of 0 to 0.004, the best makespan drops significantly. This shows the
importance of the mutation operators in reducing the best makespan. As the mutation
rate increases, the best makespan is quite stable and slowly increases beyond 0.018.
The trend of increasing makespan after 0.03 is further supported by the trend of the
best makespan after 0.025 in Fig. 6. A large mutation rate may destroy the good
schemata and reduce the GA’s ability to find better makespans. Therefore, we con-
jecture that the mutation rate around 0.006 to 0.017 would produce the best result.

The experiment was conducted using Chromosome D, with high crossover at null
mutation until equilibrium is reached, then followed by regeneration and application
of mutation at the previous equilibrium crossover point (or greater). We believe this
is a good approach to solve the FJSP.

7 Conclusions

In this paper, a new chromosome representation for solving the FJSP was proposed.
The three partial strings of Chromosome D are independent; therefore they can be
modified separately by appropriate genetic operators. A particular location in the
chromosome only controls a specific property, therefore the difference between two
solutions will be proportional to the hamming distance between the chromosome rep-
resentations. The order specified by String D1 is always valid. The transitive closure
of the precedence constraints has to be constructed to create String D3. This may incur
an overhead at the initial stage, but it will reduce the possibility of invalid orders due
to precedence constraints as the explicit and implied precedence constraints of the
problem are not included in the chromosome.

220 J.C. Tay and D. Wibowo

500

510

520

530

540

550

560

570

580

590

600

610

620

630

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

0
.1

7
5

0
.2

0
0

0
.2

2
5

0
.2

5
0

0
.2

7
5

0
.3

0
0

0
.3

2
5

0
.3

5
0

0
.3

7
5

0
.4

0
0

0
.4

2
5

0
.4

5
0

0
.4

7
5

0
.5

0
0

0
.5

2
5

0
.5

5
0

0
.5

7
5

0
.6

0
0

0
.6

2
5

0
.6

5
0

0
.6

7
5

0
.7

0
0

0
.7

2
5

0
.7

5
0

0
.7

7
5

0
.8

0
0

0
.8

2
5

0
.8

5
0

0
.8

7
5

0
.9

0
0

0
.9

2
5

0
.9

5
0

0
.9

7
5

1
.0

0
0

Mutation Rate

B
es

t
M

ak
es

p
an

Average

Fig. 5. Effects of mutation rate on the best makespan

490

500

510

520

530

540

550

560

570

580

590

600

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

0
.0

0
7

0
.0

0
8

0
.0

0
9

0
.0

1
0

0
.0

1
1

0
.0

1
2

0
.0

1
3

0
.0

1
4

0
.0

1
5

0
.0

1
6

0
.0

1
7

0
.0

1
8

0
.0

1
9

0
.0

2
0

0
.0

2
1

0
.0

2
2

0
.0

2
3

0
.0

2
4

0
.0

2
5

0
.0

2
6

0
.0

2
7

0
.0

2
8

0
.0

2
9

0
.0

3
0

Mutation Rate

B
es

t M
ak

es
pa

n

Average

Fig. 6. Effects of mutation rate on the best makespan

The crossover operator and mutation operator for the new chromosome represen-
tation and their suitable rates were also presented. From the experiments conducted, it
has been empirically shown that the new chromosome representation produces a
schedule with shorter makespan. By using Chromosome D, with high crossover (>
0.85) at null mutation until equilibrium is reached, then followed by regeneration and
application of mutation (around 0.006 to 0.017) at the previous equilibrium crossover
point (or greater) would produce a lower average makespan.

An Effective Chromosome Representation 221

References

1. Jain A.S. and Meeran S., “Deterministic Job-Shop Scheduling: Past, Present and Future”,
In European Journal of Operation Research, 113 (2), 390-434, 1998.

2. Pinedo, M., Chao, X., Operations scheduling with applications in manufacturing and
services, McGraw-Hill, Chapter 1, 2 – 11, 1999.

3. Gambardella, L. M., Mastrolilli, M., Rizzoli, A. E., Zaffalon, M., “An optimization meth-
odology for intermodal terminal management”, In Journal of Intelligent Manufacturing,
12, 521-534, 2001.

4. Jansen K., Mastrolilli M., Solis-Oba R., "Approximation Algorithms for Flexible Job
Shop Problems", In Proceedings of Latin American Theoretical Informatics
(LATIN'2000), LNCS 1776, 68-77, 1999.

5. Chen, H., Ihlow, J., and Lehmann, C., “A genetic algorithm for flexible job-shop sched-
uling”, In Proceedings of IEEE International Conference on Robotics and Automation, 2,
1120 – 1125, 1999.

6. Mesghouni K., Hammadi S., Borne P., “Evolution programs for job-shop scheduling”, In
Proc. IEEE International Conference on Computational Cybernetics and Simulation, 1,
720 -725., 1997.

7. Kacem I., Hammadi S. and Borne P., “Approach by localization and multiobjective evo-
lutionary optimization for flexible job-shop scheduling problems”, In IEEE Transactions
on Systems, Man and Cybernetics, 32(1), 1-13, 2002.

8. Paredis, J., Exploiting constraints as background knowledge for genetic algorithms: A
case-study for scheduling, Ever Science Publishers, The Netherlands, 1992.

9. Ho N. B. and Tay J. C., “GENACE: An Efficient Cultural Algorithm for Solving the
Flexible Job-Shop Problem”, accepted for publication in IEEE Congress of Evolutionary
Computation 2004.

10. Fisher, H., Thompson, G.L., “Probabilistic learning combinations of local job-shop sched-
uling rules”, Industrial Scheduling, Prentice Hall, Englewood Cliffs, New Jersey, 225-251,
1963.

11. Lin, S., and Kernighan, B. W., “An effective heuristic for traveling salesman problem”, In
Operations Research, 21, 498-516, 1973.

12. Syswerda, G., Schedule optimization using genetic algorithms, Ed. L Davis (New York:
Van Nostrand Reinhold) 332-349, 1991.

	1 Introduction
	2	Problem Formulation
	3	Chromosome Representations
	Solution Representation
	Chromosome A: Machine Order with Integers
	Chromosome B: Machine Order with Bits
	Chromosome C: Simple Operation Order
	Chromosome D: Operation Order with Bits

	4	Empirical Results
	5	Crossover Rates
	Crossover Operators
	Suitable Rates for Crossover Operators

	6	Mutation Rates
	Mutation Operators
	Suitable Rates for Mutation Operators

	7	Conclusions
	References

