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Abstract. Given an evolutionary algorithm for a problem and an in-
stance of the problem, the results of several trials of the EA on the
instance constitute a sample from the distribution of all possible results
of the EA on the instance. From this sample, we can estimate, non-
parametrically or parametrically, the probability that another run of the
EA, independent of the initial ones, will identify a better solution to the
instance than any seen in the initial trials. We derive such probability
estimates and test the derivations using a genetic algorithm for the trav-
eling salesman problem. We find that while the analysis holds promise,
it should probably not depend on the assumption that the distribution
of an EA’s results is normal.

1 Introduction

Evolutionary algorithms are applied to instances of computationally difficult
optimization problems for which optimum solutions are not known. Because EAs
are probabilistic, we cannot in general know how good the solution returned by
any one run might be, and we often carry out multiple trials of an EA on an
instance.

The results of such trials constitute a sample from the distribution of all
possible results of the EA on the target instance. We can use this sample to
determine whether subsequent runs might or might not be worth doing. Specifi-
cally, we can estimate, from an initial set of trials, the probability of identifying
a better solution on the next run, or in the next fifty runs. Such information
would be useful, for instance, when deciding whether to carry out more trials of
a computationally expensive EA.

We consider, then, the following problem. Given an evolutionary algorithm
for a problem, an instance of the problem, and the results of an initial set of
trials of the EA on the instance, what is the probability that one additional trial,
independent of those already completed, will return a solution better than any
observed in the initial trials?

A non-parametric analysis identifies a probability that depends only on the
number of initial trials. A parametric analysis assumes that the values the EA re-
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turns conform to a particular distribution—here, normal—and identifies a proba-
bility that depends on that assumption and on the mean and standard deviation
of the initial results. The two analyses are tested with a simple genetic algo-
rithm on five instances of the well-known traveling salesman problem. We find
that neither analysis is as accurate as we might like, and the second is flawed by
the assumption of normality, but the method itself holds promise.

The following sections of the paper define the problem precisely, present
non-parametric and parametric derivations of the probability that another trial
identifies a better solution, and describe the tests of both analyses using a genetic
algorithm for the traveling salesman problem.

2 The Problem

Let Q be an optimization problem, like the traveling salesman problem or the
0-1 knapsack problem, and let E be an evolutionary algorithm for Q. The fitness
of a genotype in E is the objective function value of the solution the genotype
represents. When E is applied to an instance of Q, it reports, on its termination,
the single best solution represented in its population.

Without loss of generality, assume that Q seeks to minimize its objective
function, as in the TSP, and let Qo be a particular instance of Q. Assume that
Qo is difficult enough for E that E is unlikely to return an optimum solution to
Qo. Since E is probabilistic, repeated independent trials of it on Qo will return
solutions with a variety of fitnesses.

Let the random variable X be the fitness of the solution E returns at the
conclusion of one trial on Qo. X has some (unknown) distribution. Given n
probes into this distribution—that is, given the results of n independent trials
of E on Qo—what can we say about the distribution of X? In particular, how
likely is it that another trial will improve on the best result observed in the
initial trials?

Note that the problem just posed is a special case of a more general one:
Given a sample from an unknown distribution, what can we say about that
distribution and probabilities based on it?

3 A Non-parametric Analysis

Consider a sequence of n probes into the unknown distribution of X; that is, a
sequence of n independent runs of the evolutionary algorithm E on the problem
instance Qo. The trials will return values X1, X2, . . . , Xn, the fitnesses of the n
best solutions to Qo that E discovers.

Assume that the probability that two trials return identical results is negligi-
ble. Then the probability that the second trial will return a solution with smaller
evaluation than the first is P [X2 < X1] = 1/2; the probability that the third
trial will return a better solution than the first two is P [X3 < X1, X2] = 1/3;
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and so on. In general, the probability that the last of k trials will return the
solution with the smallest evaluation is

P [Xk < X1, X2, . . . , Xk−1] =
1
k

. (1)

When n trials have been completed and the values x1, x2, . . . , xn observed, it
is no longer strictly accurate to say that the probability that the next trial will
improve on its predecessors is 1/(n + 1), since this probability now depends on
the recorded values and on the distribution of X. However, that distribution is
unknown, so we will reckon the probability that the next trial returns a better
result than its predecessors as p = 1/(n + 1). More generally, if we carry out m
additional trials, at least one of them will improve on the first n trials if it is not
the case that none do. The probability that one additional trial fails to return a
better result is 1 − p = n/(n + 1), so the probability that none of m additional
trials returns a better result is (1−p)m = (n/(n+1))m, and the probability that
at least one of them does improve on the best of the first n trials is then

1 − (1 − p)m = 1 −
(

1 − 1
n + 1

)m

. (2)

For example, if n = 20, then the probability that the twenty-first trial returns
a solution with smaller evaluation than any of the first twenty is 1/21 = 0.0476.
If we carry out 25 additional trials, the probability that at least one of them
returns a better solution than any in the first batch is

1 −
(

1 − 1
21

)25

= 0.705. (3)

4 A Parametric Analysis

Again, let X1, X2, . . . , Xn be the fitnesses of the solutions returned by n inde-
pendent trials of the evolutionary algorithm E on the problem instance Qo. If
we can assume a particular distribution for X, more precise predictions of the
evolutionary algorithm’s behavior become possible.

For example, assume that X has the normal distribution N(µ, σ2) with mean
µ and variance σ2. The mean X of the n returned values is an unbiased estimator
of µ, and their variance S2 = 1

n−1

∑n
i=1(Xi − X)2 is an unbiased estimator of

σ2; we approximate N(µ, σ2) with N(x, s2), where x and s2 are the mean and
variance of the trials’ results.

The probability that another trial will return a solution with a smaller
evaluation than any of the first n trials depends on the smallest evaluation
among them, on x, and on s =

√
s2, as Figure 1 illustrates. In particular, if

xmin = min{x1, x2, . . . , xn}, then

p = P [X < xmin] = P

[
Z <

xmin − x

s

]
= 0.5 − Φ

(
x − xmin

s

)
, (4)
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Fig. 1. Given the results of n trials with mean x, standard deviation s, and smallest
value xmin, the probability P [X < xmin] that a new trial will return a solution with
smaller evaluation than xmin, under the assumption that X is normally distributed

where Z is the standard normal random variable with distribution N(0, 1) and
Φ(z) is the area under Z’s density function above z.

Again, the probability that at least one of m additional trials returns a so-
lution with smaller evaluation than any among the first n is 1 − (1 − p)m. In
addition, it is possible to estimate the probability that an additional trial will
return a solution with evaluation smaller than an arbitrary value xo:

P [X < xo] = P

[
Z <

xo − x

s

]
. (5)

For example, if twenty trials of the evolutionary algorithm E on the problem
instance Qo have returned solutions whose evaluations have mean x = 455.3,
standard deviation s = 18.6, and minimum xmin = 426.8, then the probability
p that another trial will return a value less than xmin is

p = P [X < 426.8] = P

[
Z <

426.8 − 455.3
18.6

]
= P [Z < −1.53] (6)

= 0.5 − Φ(1.53) = 0.5 − 0.437 = 0.063,

and the probability that at least one of 25 additional trials will improve on xmin
is 1 − (1 − 0.063)25 = 0.803.

Moreover, the probability that another trial will identify a solution with
evaluation less than, say, 425.0 is

P [X < 425.0] = P

[
Z <

425.0 − 455.34
18.6

]
= P [Z < −1.63] (7)

= 0.5 − Φ(1.63) = 0.5 − 0.448 = 0.052.

The distribution of X, the value returned by one trial of E on Qo, depends
not only on E’s coding, fitness function, and operators but also on all its features
and parameter values; change any of these, and the distribution changes. Also,
X’s distribution is bounded below by the evaluation of an optimum solution
and so is likely to be skewed rather than normal. However, an analysis like that
above can be carried out with any other distribution, and a χ2 statistic can be
used to test the hypothesis that X conforms to the chosen distribution.
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5 Tests

The analyses of the previous two sections were tested with a straightforward (and
not particularly effective) generational genetic algorithm. The GA addressed
the well-known traveling salesman problem (TSP) in which, given a collection
of cities and the distances between them, we seek a tour that visits each city
exactly once and has minimum total distance. The GA represents candidate
tours as permutations of the cities. The order of the cities in a permutation
indicates the order in which the permutation’s tour visits them, and the fitness
of a permutation is that tour’s length, which we seek to minimize.

The GA initializes its population with random permutations, and it chooses
permutations to be parents in k-tournaments. The crossover operator is edge
recombination [1], and the mutation operator is subtour inversion [2, pp.219–
220]. Each new permutation is generated by exactly one operator, never both.
The GA is 1-elitist, preserving the best permutation from the current generation
into the next, and it runs through a fixed number of generations.

In these experiments, the GA’s population contained 100 permutations. The
size of its selection tournaments was k = 2, and a tournament’s winner always
became a parent. The probability that it would apply crossover to generate the
next new permutation was 50%, and the probability of mutation was therefore
also 50%. The GA ran through 1 000 generations.

The GA was run on five TSP instances taken from TSPLIB1 [3]. These
instances contain between 52 and 280 cities. On each instance, the GA was run
twenty independent times, and the mean tour length, the standard deviation of
the lengths, and the shortest tour length were recorded. Based on these statistics,
non-parametric and parametric (normal) probabilities that another run would
identify a tour shorter than the shortest were derived according to the discussions
in the previous two sections. These probabilities were tested by running the GA
2 000 more times on each instance and noting the relative frequency of the event
that a trial identified a tour shorter than the initial minimum.

Table 1 summarizes the results of these trials. For each TSP instance, it lists
the mean, standard deviation, and minimum of the tour lengths returned by
the GA’s initial twenty trials; the two estimated probabilities that another trial
would identify a shorter tour; and the number of additional trials, the number of
those that found a shorter tour, and the relative frequency of the shorter tours.

The non-parametric probability estimates are based only on the sizes of the
initial samples. Since these sizes are all the same (20), so are the non-parametric
estimates (0.0476). The parametric probability estimates assume that, as a ran-
dom variable, the outcome of a run of the GA on a particular TSP instance has
a normal distribution. We estimate the distribution’s mean and variance with
the sample mean and sample variance, so the parametric estimates depend on
the mean, standard deviation, and minimum of the initial trials’ results. These
estimates vary from 0.0281 to 0.0582.

1 elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/index.html
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Table 1. Results of the trials of the genetic algorithm on five TSP instances. For
each instance, the table lists the mean, standard deviation, and minimum of the tour
lengths the GA returned in twenty initial trials; the non-parametric and parametric
(normal) estimated probabilities that one more trial would identify a shorter tour; and
the number of additional trials, the number that found a shorter tour, and the relative
frequency of shorter tours

Initial sample Est. probs. Add’l Num Rel.
Instance Mean StdDev Min Non-par Normal trials < min freq.
berlin52 9834.8 497.80 8883 0.0476 0.0281 2000 18 0.0090
st70 1153.7 64.91 1052 0.0476 0.0582 2000 130 0.0650
eil76 890.1 38.81 828 0.0476 0.0548 2000 188 0.0940
ch130 17396.2 627.43 16216 0.0476 0.0301 2000 109 0.0545
a280 15148.1 314.99 14573 0.0476 0.0336 2000 201 0.1005

In the 2 000 additional runs of the GA on each instance, the relative frequen-
cies of the event that a trial returns a tour shorter than the shortest among the
initial runs varies from 0.0090 to 0.1005. On two instances (st70 and ch130), the
non-parametric probability estimates are close to the relative frequencies, from
which they differ by about 27% and 13%, respectively. On the other instances,
the estimates differ from the relative frequencies by at least 47%. Similarly, on
only one instance (st70) is the parametric estimated probability close to the rel-
ative frequency, differing from it by about 10%. On eil76 the difference is about
42%, and on the remaining three instances the difference is greater.

Though the non-parametric estimates are slightly more accurate than the
parametric estimates, as we might expect with small sample sizes, these results
make it difficult to conclude that either the non-parametric or the parametric
probability analyses provide useful estimates of the probability of observing a
better result on a future trial.

One explanation for the failure of the parametric analysis to accurately esti-
mate the desired probability may lie with the size of the initial sample. Larger
samples would provide more accurate estimates of the distributions’ means and
standard deviations and allow more accurate probability estimates.

To test this hypothesis, we used the mean and standard deviation of all
2 020 results on each instance to re-estimate the probabilities of new results
smaller than the initial minima, and compared the new estimates to the relative
frequencies. Table 2 shows the results of these calculations. For each instance,
the table lists the mean and standard deviation of all 2 020 results, the original
minimum result, the parametric probability estimate based on all the results,
and the relative frequency of results less than the original minimum.

In Table 2, we see that the revised estimated probabilities are, with one
exception, very close to the relative frequencies. This suggests that in general,
the samples on which such estimates are based should indeed be larger, though
it does not indicate how much larger might be adequate.
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Table 2. The parametric estimated probabilities, based on all 2 020 trials of the GA
on each instance, compared to the relative frequencies

Entire sample Initial Est. par. Rel.
Instance Mean StdDev min prob. freq.
berlin52 9891.5 435.36 8883 0.0104 0.0090
st70 1140.2 58.58 1052 0.0655 0.0650
eil76 878.2 38.13 828 0.0934 0.0940
ch130 17362.8 734.86 15112 0.0011 0.0545
a280 15126.3 435.19 14573 0.1020 0.1005

It is also possible that the distributions of the GA’s results on the instances
are not normal. Certainly if the GA achieves results that are near optimal (not
particularly the case here), we would expect the distribution of those results to
be skewed, and if a distribution is not normal, probability estimates based on
the assumption that it is are not likely to be accurate.

To examine the possibility that the underlying distributions were not normal,
we performed chi-square tests of goodness-of-fit on the five sets of 2 020 results.
Each tested the null hypothesis that the values conformed to a normal distribu-
tion whose mean and variance were the mean and variance of all the values. On
two instances (st70 and eil76), we reject this hypothesis at the 1% significance
level. On two others (berlin52 and ch130), we reject the hypothesis at the 10%
level. Only for the one remaining instance (a280) can we not conclude that the
2 020 values do not conform to the specified normal distribution.

6 Conclusion

Estimates of the probability that an evolutionary algorithm will identify an
improved result would clearly be useful. We have investigated two techniques
for generating such estimates. One assumes nothing about the distribution of
an EA’s results on a particular problem instance. The other assumes that those
results conform to a normal distribution. Though tests of these techniques used
a simple genetic algorithm for the traveling salesman problem, nothing in them
depends on a particular problem, coding, set of operators, or EA design.

In tests using the genetic algorithm and five instances of the TSP, we found
that neither technique produced accurate estimates of the probability that an-
other run of the GA would produce a better result than the best in a small initial
sample. The non-parametric estimates were slightly more accurate than those
based on the assumption of normality.

The parametric (normal) estimates may have failed for either of two rea-
sons. The initial samples of the GA’s performance may have been too small to
accurately estimate the underlying distribution’s mean and variance, and the
underlying distribution may not have been normal. Still, we suggest that meth-
ods like these, based on larger initial sample sizes and assuming other underlying
distributions, should be able to accurately estimate the probabilities we seek.
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