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Abstract. Several inverse problems exist in the atmospheric sciences
that are computationally costly when using traditional gradient based
methods. Unfortunately, many standard evolutionary algorithms do not
perform well on these problems. This paper investigates why the tem-
perature inversion problem is so difficult for heuristic search. We show
that algorithms imposing smoothness constraints find more competitive
solutions. Additionally, a new algorithm is presented that rapidly finds
approximate solutions.

1 Introduction

There are a number of problems in the atmospheric sciences where forward
models are used to map a set of atmospheric properties to a set of observations.

MODEL(Atmospheric.properties) −→ Observations

What is actually needed is the inverse: given the observed data, what at-
mospheric properties produced those observations? Typically, observations are
noisy. In many cases, it is necessary to solve these inverse problems in real-time.
For example, in several satellite missions, it is necessary to solve these inverse
problems several times a second in order to keep up with data collection.

Traditional gradient based methods can be used, but such methods are com-
putationally costly [1]. It would seem that these problems are perfect candidates
for heuristic search methods. However, we have found that well-known, well-
tested evolutionary algorithms and local search methods applied to inversion
problems do not always yield acceptable solutions.

This paper describes the temperature inversion problem that is central to the
retrieval of water vapor profiles. These profiles are used in global atmospheric
circulation and weather prediction models. Every set of observations that is
collected results in a new temperature inversion problem that must be solved.
Results are formally presented for evolution strategies, the CHC algorithm, and
a local search bit climber. A number of algorithms have been been applied to the
temperature inversion problem on a more limited basis, including Population-
Based Incremental Learning, or PBIL [2], and Differential Evolution [3]. All of
these algorithms fail in similar ways.
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This paper also looks at why the temperature inversion problem is difficult
for evolutionary algorithms and local search methods. While the problem is
nonlinear, the 2-D slices are smooth and uniformly unimodal. However, there
are ridges in the fitness landscape that can induce false local minima. There are
also biases in the evaluation functions so that some parameters (i.e., estimated
temperatures) exert a larger effect on the evaluation function than others.

An algorithm proposed by Salomon is tested that exploits known properties
of temperature profiles and produces useful results [4]. Finally a new algorithm
called “Tube Search” is developed and tested. It ignores bias in the evaluation
function, and uses smoothness constraints to avoid ridge problems. It quickly
produces good approximate solutions.

2 Background

Atmospheric sciences researchers use a forward model that relates vertical tem-
perature profiles to observed measurements. The forward model, as described in
this paper, generates 2000 radiance measurements (observations) given a 43 di-
mensional temperature profile. The parameter indexed by (44− k) in the profile
is the estimated temperature at an altitude of approximately k kilometers in the
atmosphere: the parameters are enumerated in reverse order, and the spacing
is somewhat greater at higher altitudes. We actually want to solve the inverse
problem: given a set of observations, what is the corresponding temperature
profile? In practice, radiance measurements from a constellation of satellites are
used in an inverse radiative transfer model. Examples of extant observing sy-
stems are: Operational Vertical Sounder (TOVS), the Special Sensor Microwave
Imager (SSM/I), and the Advanced Microwave Sounder Unit (AMSU). The in-
verse solution must be accurate and fast ; measurements are often collected at a
high spatial resolution from satellites whose orbital period is about 90 minutes
(or moving at about 8 km/sec).

The forward model is the simplified form of the equation of radiative transfer
that does not account for the presence of clouds. The equation of transfer is
solved for the radiances at different wavelengths observed at the top of the
atmosphere. This model is “plane parallel” (e.g., with no horizontal variations
in its properties ). Radiances are calculated at a viewing angle θ as:

I(τ,µ) = Bν(Ts)e−τs/µ +
∫ ν

0
Bν(T )e−τ/µµ−1dτ

where I(τ,µ) = radiance
µ = cos(θ)
τ = optical depth
s = surface

Bν(T ) = Planck radiance for temperature T.

An analytical inversion of this model is impossible because radiances are
non-linearly related to the temperature profiles. Alternatively, the inverse tem-
perature model can be formulated as an optimization problem, where the target
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temperature profile is the global optimum of the search space. Specifically, the
objective function is the root mean squared error between the observable measu-
rements, and the output of the forward model at any point in the search space.

First order derivatives can be calculated analytically for the temperature
inversion problem [1]. When clouds or aerosols are present, the analytical calcu-
lation of these derivatives is impossible. In the simple model where only blue sky
exists, success has been achieved using Newtonian iteration and a good starting
guess. However, achieving a quadratic convergence rate for solutions near the op-
timum is highly dependent on a good a priori guess of the temperature profile,
and search is still very costly. We attempt to improve computational efficiency
by solving the inverse problem using non-derivative search methods.

3 Evolutionary Algorithms and Local Search

One of the more successful variants of genetic algorithms is CHC [5]. CHC uses
a bit representation. In this study, the standard binary reflected Gray code is
used. CHC uses cross generational selection: newly created offspring must com-
pete with the parent population for survival. Parents are not allowed to cross
unless they are sufficiently different. CHC uses a modified version of uniform
crossover, where half of the non-matching bits are exchanged. No mutation is
used (note that uniform crossover already randomly assigns non-matching bits).
CHC also includes a restart mechanism that reinitializes the population by ran-
domly flipping 35% of the bits of the best individual.

Evolution strategies emphasize mutations over recombination. Individuals
are represented as real valued vectors. Each individual modifies its parameters
to produce offspring. Depending on the implementation, there can be several
parents in the population, and each can generate one or more offspring. If many
offspring are generated, selection is used to keep each generation the same size. In
a (µ, λ) selection strategy, the new population is chosen only from the offspring.
An elitist strategy, on the other hand, selects the next generation from both the
parents and the offspring. This is known as a (µ+λ) selection strategy. Mutation
is usually performed based on a distribution around the individual undergoing
mutation. A global distribution can be used for all individuals, or each individual
may maintain its own distribution, σ, often interpreted as a step size. Self-
adaptive strategies allow the angle of mutation to change. Correlated mutations
attempt to estimate the covariance for each pair of object parameters. In other
words, an n dimensional problem requires n(n − 1)/2 rotation parameters, in
addition to the n object parameters, and n step size multipliers, σi.

Local search encompasses a broad range of algorithms that search from a
current state, moving only if new states improve objective fitness. This has pro-
ven to be a simple, yet often effective search method. In this paper, local search
refers to a Gray coded steepest ascent bit climber. Each parameter is encoded
as a Gray bit string and, by flipping one bit at a time, a neighborhood pattern
forms around the current best solution. Local search evaluates all these neigh-
borhood points before taking the best, or steepest, step. Because each neighbor
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Fig. 1. The best solutions in 30 trials on a McClatchey tropical profile. The dashed
line indicates the target tropical profile, and the solid black line is the best solution
found by each algorithm. Even CHC’s dominating performance finds a disappointing
“zig-zag” solution. None of the solutions finds a useful temperature profile.

differs from the current best by only one dimension, the neighborhood forms a
coordinate pattern. Local search terminates when no improving move is found.

Empirical Results

In order to evaluate the various search algorithms on the temperature inversion
problem, we used five, well-known, McClatchey temperature profiles [6], which
represent conditions ranging from subarctic winter to tropical summer.

The range of the temperatures is (190, 310) Kelvin, a difference of 120. In
order to represent this with integer precision, seven bits are needed (27 = 128).
CHC and local search used a Gray encoding scheme. A population size of 50 was
used for CHC. For evolution strategies, the high dimension space means that
using the correlated mutations model would require 43(42)/2 = 903 rotation pa-
rameters. This much additional overhead is impractical; rotations were not used.
Bäck and Schwefel [7] recommend a (µ, λ) selection strategy and indicate that
the ideal ratio of parents and offspring is µ/λ = 1/7. The (30,210)ES we tested
on the temperature problem outperformed the (30+210)ES and is reported as
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Table 1. Results of 30 runs of CHC, a (30,210)ES and a local search bit climber on a
McClatchey tropical profile.

Algorithm Best Mean Std Dev
CHC 436,212 850,381 226,674
Evolution Strategies 3,402,780 6,344,321 1,891,605
Local Search 2,099,330 2,886,128 621,260

the evolution strategy contribution in this paper. This implementation used the
standard rules for adapting σ [7].

Each algorithm was run for 30 trials, each trial using exactly 10,000 evaluati-
ons. While 10,000 evaluations is small, we need to reduce the number of evalua-
tions further to achieve real-time performance. Experiments using up to 100,000
evaluations did not improve the results. The best solutions for the McClatchey
tropical profile are shown in figure 1. The dashed line is the target temperature
profile, and the solid black, zig-zagging line is the best solution found by each
method. The best and average error along with standard deviation are given
in Table 1. The large error and high number of evaluations makes all of these
methods impractical.

4 The Ridge Problem, Nonlinearity, and Bias

What makes the temperature inversion problem hard? Without question, the
nonlinearity of the problem plays a major role. Specifically, changing parameter
k in the temperature profile changes the error surface almost everywhere in the
space. An incorrect temperature at location k makes it impossible to correctly
assign temperature at other locations. In future work, we may be able to modify
the evaluation function to localize the nonlinear effects, since the atmosphere
should display physical locality.

Additionally, there seems to be two other major factors. One problem is bias
in the evaluation function. The other problem is ridges in the landscape.

Starting from a globally optimal solution, we varied each parameter by +/−
2.0. Every move increases the objective error, which is zero when no change is
applied. Figure 2 shows the average of the two numbers over the range of the
temperature problem. The upper dimensions have greater influence on the error
value returned by the evaluation function. The parameters that offer the greatest
opportunity to reduce the error will be in the upper dimensions. The bias can
cause search algorithms to fit the upper dimensions of the temperature profile
first–and to potentially assign incorrect values to the temperature parameters in
the lower atmosphere.

Perhaps the most serious problem is that there are ridges in the search space.
Figure 3 shows several representative 2-D slices of the search space. Although
each slice is smooth and unimodal, the curved ridge that cuts through each slice
can cause search to become stuck.
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Fig. 2. The average error profile near the optimal solution. Higher dimension parame-
ters contribute more to the error profile.

Rosenbrock was among the first to notice that search methods, including
derivative-based methods such as steepest descent, are crippled by ridge features
[8]. Winston also notes that ridges cause problems for simple hill climbers [9]. A
ridge can cause a search algorithm to believe it has found a local optima, when,
in reality, the algorithm is simply stuck on the ridge. Even when an algorithm
is not stuck, convergence can be slowed dramatically.

The ridge problem involves two factors: precision and search direction. If
an algorithm looks for improving moves by changing only one dimension at a
time (in a coordinate pattern), it will not see better points that fall between
the neighborhood axis. This is the direction problem. Instead, the search will
find improvements close to the current best solution that lie on or near the
ridge. Precision dictates how close an algorithm looks for improving neighbors.
If the ridge is very steep and narrow, higher precision will be needed to find an
improving move.

Increasing the precision generally decreases the number of false optima. A
lower precision search will get stuck on a ridge, blindly assuming it has found a
local optima. Increasing precision allows more improving moves to be found, but
it forces search algorithms to take smaller steps and move very slowly through the
landscape. This causes an increase in evaluations and a much slower convergence.

200200 200200 220220 220220 240240 240240 260260 260260 280280 280280 300300 300300
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Fig. 3. Two dimensional contours of the first five parameters in the temperature
problem. The black dots represent the optimal solution.
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Fig. 4. In the leftmost graph, a high precision local search (large circles) finds the
global optima, whereas the low precision search gets stuck in local optima (black dots).
In the middle graph, a low precision search induces local optima on a simple parabolic
ridge because all the neighbors (dashed lines) have poorer evaluation. The higher preci-
sion search (rightmost) is able to make more progress, but at the expense of significantly
more evaluations.

This phenomena is called creeping. Figure 4 graphically explains this problem
on a simple parabolic ridge and also documents the existence of this problem
on the first two dimensions of the temperature problem. The higher precision
search is able to move along the ridge and find a better solution. Low precision
induces false optima.

Local search uses a coordinate pattern to search for a globally competitive
solution. Therefore, local search performs poorly in the presence of ridges.

Salomon [10] showed that ridges can be created by rotating common bench-
mark problems. Salomon also points out that the performance of evolution stra-
tegies are invariant with respect to a rotation of the coordinate systems. Muta-
tions can move in any direction, and multiple parameters normally change. This
implies that offspring will not be reproduced on the coordinate axes.

Salomon contrasts this with the Breeder Genetic Algorithm (BGA). On com-
mon benchmarks, if the coordinate system is rotated in the n−dimensional space,
the breeder genetic algorithm often fails. The reason for this failure is largely
due to the low probability that a parameter is modified under mutation (com-
monly 1/l, where l is the chromosome length). More specifically, the probability
that two or more parameters change simultaneously is small. When a ridge runs
through a space that is offset from the coordinate axis, it is necessary for all
the parameters that align with the ridge to change. The conclusions drawn by
Salomon indicate that “crossover’s niche” is quite small, and not suitable for
problems that have ridges.

The limitations of the Breeder Genetic Algorithm do not extend to all genetic
algorithms that use crossover. CHC uses a variation of uniform crossover that
changes many parameters at once. Nevertheless, CHC does use a fixed coordinate
system. Our results indicate that, in fact, CHC performs better than evolution
strategies on the temperature inversion problem.

Salomon suggests that evolution strategies are impervious to the ridge pro-
blem because they are invariant to rotations of the search space. However, Oy-
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man et al. [11] define conditions on a simple parabolic ridge where the elitist ES
limps, or creeps. The problem occurred using a (1+10)ES where a single parent
produces ten offspring; the best offspring replaces the parent if an improvement
is found. The “1/5 rule” was used, which means that the step size is adjusted
to produce an improving move one out of every five tries. When the parent en-
counters a ridge, the step size will decrease because of this rule. After reaching
the ridge, it is difficult for the evolution strategy to re-adapt its step size and
follow the ridge. Thus, evolution strategies can also creep.

5 Optimize and Refine

Salomon [4] also notes that some search algorithms produce results that “zig-
zag” the actual solution when the desired solutions displays physical smoothness.
Salomon suggests an optimize and refine evolution strategy.

The optimize and refine technique was inspired by manufacturing methods:
many products start with a rough approximation that is refined to be more
smooth. The smooth target profile of the temperature inversion problem may be
tackled in the same way. The procedure starts by approximating the target with
a linear fit. The endpoints, x1 and x43, are searched for the position where linear
interpolation minimizes the objective error. Refinement reduces the regions by
half, and the solution becomes a piecewise linear approximation. For example,
the next iteration would increase the dimensionality from two to three by adding
the point x20. This two piece linear approximation is optimized before more
points are added in the next refinement phase.

This method is efficient in several ways. First, a close approximation to the
target is found by searching small landscapes. In the temperature inversion pro-
blem, a linear approximation reduces the dimensionality of the search space from
43 to only two. This gives higher dimensional searches a good place to start. Se-
cond, it forces a smoothness constraint on the problem. Neighboring points in
the domain are forced to be relatively close in the range.

Salomon used a (1,6) evolution strategy, where a single parent produces six
offspring, and uses a non-elitist selection strategy. Instead, in the optimize pro-
cedure, we implemented a simple binary search to locate the minimum at each
inflection point of the piecewise linear solution. The search started at the end-
points, x1 and x43. The binary search moved to the optimum in each dimension
for several iterations until no improvement could be found. Then, the point x20
was added to break the linear region in two, and the optimize procedure was
repeated, this time with three points instead of two. At each step, the regions,
defined by the current set of points, were cut in half after they had been fully
optimized. Figure 5 shows this procedure for the McClatchey subarctic summer
profile. Although this method shows promise, it is able to fit some data exam-
ples better than others. Sometimes the solution still “zig-zags” the target. This
method also struggles to fit the ends of the profile.
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Fig. 5. Optimize and Refine. A fully convergent subarctic summer solution required
an average of 10,446 evaluations. Although this solution fits the profile better than
previous methods, it still wanders the target solution.

6 A New Algorithm: Tube Search

We know that the target temperature profile we are trying to retrieve is relatively
smooth, a constraint that is exploited by the optimize and refine algorithm.

We implemented a new algorithm called tube search. Like optimize and refine,
tube search starts with a linear fit. This provides a consistent starting point that
is smooth, a quality we hope to retain throughout the search. Once the linear fit
has been determined, tube search begins. A fixed step is taken on either side of
the linear fit – in effect defining a tube about that solution – and the change in
evaluation is recorded and stored in a vector. Some moves will offer improvement,
while others will not. Once improving moves have been determined, a step of
the same magnitude is taken in each improving dimension simultaneously. A
three-parameter moving average is run on the solution every five iterations to
maintain a smoothness. Each parameter, except the first and last two end points,
is replaced by the average of itself and its two neighbors.

temp[i] =
temp[i − 1] + temp[i] + temp[i + 1]

3
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Fig. 6. Tube Search: The top two graphs show select iterations of the tube search. The
bottom graph shows the final solution after 3,487 evaluations. Of all the profiles tested,
this was the worst fit. The step distance for each parameter is exactly the same, so
bias has no impact on tube search.

Figure 6 graphically explains the tube search and shows the final solution ge-
nerated by searching the temperature problem. Note that 43*2 evaluations are
needed to evaluate the moves defined by the tube. Given the small number of
moves used by the tube search, the total number of evaluations is less than half
of that used by the the optimize and refine algorithm.

The error values associated with the move forming the tube around the cur-
rent best solution will drive the search toward better points while maintaining
smoothness. Because all of the parameters change at once, tube search is not
a simple coordinate search scheme. Additionally, when each step is taken the
magnitude of the step is the same independent of the magnitude of the error. In
this way, tube search ignores the bias in the evaluation function. Lower dimen-
sion parameters can change just as much as higher dimension parameters, even
when they have a smaller contribution to the error.

Tube search works surprisingly well on all temperature profiles we have op-
timized. Oddly enough, the errors associated with the tube search solutions are
not particularly low: the errors are generally much lower for optimize and re-
fine. Even CHC achieves lower errors. However, if we compute a sum-squared
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Table 2. Sum-squared error (SSE) for the optimize and refine method and the tube
search for all the McClatchey profiles we tested.

Profile Tube Search Optimize & Refine
Fitness SSE Fitness SSE

Mid-latitude Summer 932,322 933 256,605 2,592
Mid-latitude Winter 743,194 738 298,684 3,342
Sub-arctic Summer 760,703 1,610 324,395 3,502
Sub-arctic Winter 1,092,430 348 314,486 1,383
Tropical Summer 1,664,570 1,189 399,106 1,423
Original Profile 1,472,380 1,950 314,486 1,370

error (SSE) between the actual target temperature (which we don’t have in the
general case) and the tube search solution, the fit between the tube search so-
lutions and the actual profile is better, on average, than is achieved with other
methods. Table 2 shows the optimize and refine method compared to the tube
search method for all the McClatchey profiles we tested. The better objective
fitness achieved in the optimize and refine algorithm does not imply a closer fit
to the target solution. This may be because the other methods are more affected
by bias in the evaluation function.

Tube search is also much faster than the other methods using fewer than
3,612 evaluations on all data sets. This is still not fast enough to allow for real-
time evaluation. However, tube search has another attractive feature. Each of
the 86 evaluations required to evaluate the moves defined by the tube around
the current best solution are independent and can be done in parallel. This
would allow us to use parallelism to speed up Tube Search by a factor of 86.
Parallel tube search could obtain a solution in the amount of time taken to do
3, 612/86 = 42 sequence evaluations. This is a major advantage given the goal
of doing real-time temperature inversion.

7 Conclusions

Temperature inversion is a practical example of an optimization problem that
has not been efficiently solved using derivative-based search methods. Attempts
to solve this problem using widely used evolutionary algorithms and local search
methods produce poor results. Three algorithms were formally evaluated in this
study, including CHC, a (30,210)ES and local search. We also applied PBIL and
Differential Evolution to the temperature problem using 100,000 evaluations
and the results were similarly poor. Methods that exploit the smoothness of the
temperature profile are more effective and, in the case of the tube search, more
efficient. Other types of smoothing, such as splines, may be a useful addition to
the tube search, as well as other evolutionary algorithms.

The temperature inversion application highlights two difficulties that can
cause a problem for optimization algorithms: bias and ridges. The ridge problem
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is relatively well documented in the mathematical literature on derivative-free
minimization algorithms [8] [12]. The ridge problem seems to be largely unex-
plored in the genetic algorithm community, but has received attention in the
evolution strategies community [10] [11] [13]. Recently, we have begun looking
at the Covariance Matrix Adaptation method [14] [15] for rotating the represen-
tation space; on test functions it is highly effective, but it has not been tested
on the temperature inversion problem.
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