Combining a Memetic Algorithm with Integer Programming to Solve the Prize-Collecting Steiner Tree Problem^{*}

Gunnar W. Klau¹, Ivana Ljubić¹, Andreas Moser¹, Petra Mutzel¹, Philipp Neuner¹, Ulrich Pferschy², Günther Raidl¹, and René Weiskircher¹

¹ Institute of Computer Graphics and Algorithms, Vienna University of Technology, Favoritenstraße 9–11/186, 1040 Vienna, Austria

 $\{\texttt{klau,ljubic,moser,mutzel,neuner,raidl,weiskircher}\} @ads.tuwien.ac.at \\$

² Department of Statistics and Operations Research

University of Graz, Austria pferschy@uni-graz.at

Abstract. The prize-collecting Steiner tree problem on a graph with edge costs and vertex profits asks for a subtree minimizing the sum of the total cost of all edges in the subtree plus the total profit of all vertices **not** contained in the subtree. For this well-known problem we develop a new algorithmic framework consisting of three main parts:

(1) An extensive preprocessing phase reduces the given graph without changing the structure of the optimal solution. (2) The central part of our approach is a memetic algorithm (MA) based on a steady-state evolutionary algorithm and an exact subroutine for the problem on trees. (3) The solution population of the memetic algorithm provides an excellent starting point for post-optimization by solving a relaxation of an integer linear programming (ILP) model constructed from a model for finding the minimum Steiner arborescence in a directed graph.

Extensive experiments on benchmark instances from the literature show that our combination of an MA with ILP-based post-optimization compares favorably with previously published results. While our solution values are almost always the same (not surprisingly, since an extension of our ILP approach shows the optimality of these values), we obtain a significant reduction of running time for medium and large instances.

1 Introduction

We consider the prize-collecting Steiner tree problem, an extension of the wellknown *Steiner problem*, where the input is a graph whose vertices are associated with profits and edges with costs. Our goal is to find a connected subgraph that minimizes the sum of the profits of the vertices that are **not** contained in the subgraph plus the costs of the edges in the subgraph. The problem finds

^{*} Partly supported by the Doctoral Scholarship Program of the Austrian Academy of Sciences (DOC) and by the Austrian Science Fund (FWF), grant P16263-N04.

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 1304–1315, 2004.

[©] Springer-Verlag Berlin Heidelberg 2004

its application in the design of networks for communication or distribution of utilities such as district heating or water.

Let G = (V, E, c, p) be an undirected connected graph with $p: V \to \mathbb{R}^{\geq 0}$ a profit function on the vertices and $c: E \to \mathbb{R}^{\geq 0}$ a cost function on the edges. The *prize-collecting Steiner tree problem* (PCSTP) is to find a connected subgraph $T = (V_T, E_T)$ of G, that minimizes

$$c(T) = \sum_{v \notin V_T} p_v + \sum_{e \in E_T} c_e.$$
(1)

Note that if the goal is to find a subgraph T that **maximizes** the sum of the profits of the vertices in T minus the cost of the edges in T, every optimal solution is an optimal solution for our minimization problem and vice versa. Furthermore, it is easy to see that every optimal solution T is a tree. Throughout this paper we will distinguish between *positive vertices*, defined as $R = \{v \in V \mid p_v > 0\}$, and *non-positive vertices*. An example of a PCSTP instance and its feasible solution are shown in Figure 1(a) and 1(b), respectively.

Fig. 1. Example of a PCSTP instance. Each connection has fixed costs, hollow circles and filled circles represent positive and non-positive vertices, respectively (Fig. 1(a)). Figure 1(b) shows a feasible solution and Figure 1(c) the transformation into the Steiner arborescence problem.

Previous Work. The PCSTP has been introduced by Bienstock et al. [1], where a factor 3 approximation algorithm has been proposed. Several other approximation algorithms have been developed (see [7,8]). Segev [16] defined the node weighted Steiner tree problem (NWSTP) – another extension of the Steiner problem in graphs, where, in contrast to PCSTP, some vertices must be contained in every solution. Polyhedral studies of this problem can be found in [5,6]. Engevall et al. [4] proposed a Lagrangean relaxation approach based on the shortest spanning tree integer linear programming (ILP) formulation for NWSTP.

Lucena and Resende [11] presented a cutting plane algorithm for solving PCSTP based on generalized subtour elimination constraints. The algorithm

Fig. 2. Three main phases of the proposed approach for PCSTP: (1) Preprocessing reduces the given input graph G = (V, E, c, p) into G' = (V', E', c', p') without changing the structure of the optimal solution. (2) A memetic algorithm (MA). (3) A collection of solutions of the MA provides an excellent starting point for post-optimization by solving a relaxation of an ILP model constructed from a model for finding the minimum Steiner arborescence in a directed graph.

also contains basic reduction steps similar to those already proposed by Duin and Volgenant [3] for NWSTP.

Canuto et al. [2] developed a multi-start local-search-based algorithm with perturbations for PCSTP. It comprises Goemans-Williamson's algorithm, 1-flip neighborhood search and path relinking. A variable neighborhood search method is applied as a post-optimization procedure. The algorithm found optimal solutions on nearly all instances from [11] for which the optima were known.

Our Contribution. A new algorithmic framework is developed as outlined in Figure 2. The computational results given in Section 3 show that our new approach is significantly faster than the previous approach by Canuto et al. [2] while the solutions have the same quality. For a number of instances we manage to find new best solutions, while on the majority of instances our solution values are identical, which is not surprising: Extending our ILP approach shows that these values are indeed optimal. The progress we obtain with respect to running time gives rise to the possibility of solving much larger instances in the future.

2 Combining the Memetic Algorithm with an ILP Model

Within this section, we propose basic ideas of our new algorithmic framework for the PCSTP whose outline is given in Fig. 2. After the input graph G has

been reduced into a graph G' = (V', E', c', p'), we apply a memetic algorithm that uses problem-dependent operators and strongly interacts with an exact subroutine for the PCSTP problem on trees.

Our ILP-based post-optimization procedure utilizes the combined context of the MA-solutions to produce a final tree that is superior to any single one in the population. Furthermore, the post-optimization algorithm benefits from the fact that solving the PCSTP restricted to a sparse edge set can be much simpler than solving the original problem.

As input for the ILP algorithm, we take a subgraph G_{LP} of G' induced by $E_{LP} = E'_{first} \cup E'_{last}$, the sets of edges that appear in any single solution of the first, respectively, last population. Note that taking the edges from the first generation enables us to escape local optima found by MA.

The best-found subtree T of the original graph G is finally determined by mapping back the solution T' found by the ILP-relaxation.

2.1 Preprocessing

In this section, we briefly describe reduction techniques adopted from the work of Duin and Volgenant [3] for the NWSTP, which have been partially used also in [11]. From the implementation point of view, we transform the graph G = (V, E, c, p) into a reduced graph G' = (V', E', c', p') by applying the steps described below and maintain a *backmapping* function to transform each feasible solution T' of G' into a feasible solution T of G.

Least-Cost Test. Let d_{ij} represent the shortest path length between any two vertices i and j from V (considering only edge-costs). If $\exists e = (i, j)$ such that $d_{ij} < c_{ij}$ then edge e can simply be discarded from G. The procedure's time complexity is dominated by the computation of all-pair shortest paths, which is $O(|E||V| + |V|^2 \log |V|)$ in the worst case.

Degree-*l* **Test.** Consider a vertex $v \notin R$ of degree $l \geq 3$, connected to vertices from $Adj(v) = \{v_1, v_2, \ldots, v_l\}$. For any subset $K \subset V$, denote with $MST_d(K)$, the minimum spanning tree of K with distances d_{ij} . If

$$MST_d(K) \le \sum_{w \in K} c_{vw}, \quad \forall K \subseteq Adj(v), \quad |K| \ge 3,$$
(2)

then v's degree in an optimal solution must be zero or two. Hence, we can remove v from G by replacing each pair (v_i, v) , (v, v_j) with (v_i, v_j) either by adding a new edge $e = (v_i, v_j)$ of cost $c_e = c_{v_iv} + c_{vv_j} - p_v$ or in case e already exists, by defining $c_e = \min\{c_e, c_{v_iv} + c_{vv_j} - p_v\}$.

The procedure's worst case running time is dominated by the computation of all-pair shortest paths, which is $O(|E||V| + |V|^2 \log |V|)$. It is straightforward to apply a simplified version of this test to all vertices $v \in V$ with l = 1 and l = 2. **Minimum Adjacency Test.** This test is also known as $V \setminus K$ reduction test from [3]. If there are adjacent vertices $i, j \in R$ such that:

$$\min\{p_i, p_j\} - c_{ij} > 0 \text{ and } c_{ij} = \min_{it \in E} c_{it},$$

then i and j can be fused into one vertex of weight $p_i + p_j - c_{ij}$.

Summary of the Preprocessing Procedure. We apply the steps described above iteratively, as long as any of them changes the input graph (see Fig. 2). The total number of iterations is bounded by the number of edges in G. Each iteration is dominated by the time complexity of the least-cost test. Thus, the preprocessing procedure requires $O(|E|^2|V| + |E||V|^2 \log |V|)$ time in the worst case, in which the input graph would be reduced to a single vertex. However, in practice, the running time is much lower, as documented in Section 3. The space complexity of preprocessing does not exceed $O(|E|^2)$.

2.2 A Memetic Algorithm for the PCSTP

For many hard combinatorial optimization problems, combinations of evolutionary algorithms and problem-dependent heuristics, approximation algorithms or local improvement techniques have been applied with great success. In a memetic algorithm (MA), candidate solutions created by an evolutionary algorithm framework are fine-tuned by some of these procedures [13].

We propose an MA based on a straight-forward steady-state evolutionary algorithm combined with an exact algorithm for solving the PCSTP on trees. In each iteration, we apply k-ary tournament selection with replacement in order to select two parental solutions for mating. A new candidate solution is always created by recombining these parents, mutating it with probability $p_{\text{mut}} \in [0, 1]$, and pruning the obtained tree to optimality. Such a solution replaces always the worst solution in the population with one exception: To guarantee a minimum diversity, a new candidate whose set of edges $E_{T'}$ is identical to that of a solution already contained in the population is discarded [14].

Each randomly created initial solution and each solution derived by recombination and possibly mutation is optimally pruned with respect to its subtrees, using the local improvement algorithm described below.

Local Improvement. The algorithm we use here solves tree instances of the PCSTP to optimality and runs in O(|V'|) time (see also [8,10]).

Given a tree instance $T' = (V_{T'}, E_{T'}, p', c')$ created by an MA, a subtree of T' is *optimal*, if there is no subtree of T' with costs lower than c(T'). The algorithm we use here maximizes the sum of the profits of the vertices in T' minus the sum of the edge-costs in T'. We label the vertices $v \in V_{T'}$ and traverse them in bottom-up order, until we end-up with a single vertex. Finally, the optimal solution corresponds to the subtree shrunk within the vertex v^* such that $v^* = \arg \max_{v \in V_{T'}} l_v$. The algorithm is as follows:

- 1. Set $l_v = p'_v$, for all $v \in V_{T'}$;
- 2. For all leaves $u \in V_{T'}$: (a) if $c'_{uv} \leq l_u$, shrink u and v into one vertex and set $l_v = l_v + l_u - c'_{uv}$; (b) Delete u;
- 3. Goto 2. until a single vertex is left;

Clustering. Employing *clustering* as a grouping procedure within variation operators, we can group the subsets of vertices and insert or delete them at once. For each positive vertex $z \in R'$, we define a cluster set N(z) [12]:

$$N(z) := \{ v \in V' \setminus R' \mid \forall c \in R' : d'_{vz} \le d'_{vc} \} \cup \{ z \},$$

where d'_{vz} denotes the shortest path length between v and z. Hence, each nonpositive vertex v is assigned to the cluster set of its nearest positive vertex z = base(v). Note that the sets N(z) are analogous to Voronoi regions in the Euclidean plane.

Mehlhorn [12] proposed an efficient implementation of the clustering algorithm which runs in $O(|V'| \log |V'| + |E'|)$ time.

Edge-Set Encoding. From spanning tree problems, we know that a direct representation of spanning trees as sets of their edges exhibits significant advantages over indirect encodings [15]. In our approach, the PCSTP solution edges are stored in hash-tables, requiring only O(|V'|) space. Thus, insertion and deletion of edges, as well as checking for existence of an edge, can be done in expected constant time.

Initialization. Given an input graph G' = (V', E', c', p') and its set of positive vertices R', the distance network $G_D(R', E_D, c_D)$ is an undirected complete graph whose edge costs $c_D(u, v)$ are given by the shortest path lengths between u and v in G'. For generating initial solutions we use the following modification of the distance network heuristic for the Steiner tree problem [12]:

- 1. Randomly select a subset $V'_{init} \subset R'$ of size $\lceil p_{init} \cdot |R'| \rceil$, $p_{init} \in (0, 1)$; 2. Construct the minimum spanning tree (MST) T'_{init} on the subgraph of G_D induced by V'_{init} ;
- 3. Replace each edge of T'_{init} by its corresponding shortest path in G' to obtain $G'_r = (V'_r, E'_r);$
- 4. Find the MST T'_r on the subgraph of G' induced by V'_r ;
- 5. Apply the exact algorithm for trees to solve T'_r to optimality;

Recombination. The recombination operator is designed with strong inheritance in mind; we try to adopt the structural properties of two parental solutions. If the two solutions to be combined share at least one vertex, we just construct the spanning tree over the union of their edge sets. Due to the deterministic nature of our local improvement subroutine, we build a random spanning tree on the union of parental edges to avoid premature convergence.

When the parent solutions are disjoint, we randomly choose a vertex out of each solution, look up the shortest path between these two vertices and add for each vertex v along the path all the edges that belong to cluster N(base(v)). Finally, we build a random spanning tree over all these edges and apply local improvement.

Mutation. The aim of the mutation operator is to make small changes in the current solution which we achieve by connecting one cluster to the solution. To find an appropriate cluster to add, the algorithm randomly chooses a *border* vertex v which is a vertex adjacent to at least one vertex outside our current solution. We incorporate the vertices of cluster N(base(v)) into our solution and search for a neighboring cluster whose base vertex v' is preferably not yet an element of the current solution; the vertices of N(base(v')) will be added to our solution. Finally we construct a minimum spanning tree and apply local improvement.

Assuming the complete distance network is determined once in the preprocessing phase and its edges are pre-sorted in non-increasing order, as well as the edges of E', the running time complexity of initialization and variation operators is $O(|E'| \cdot \alpha(|E'|, |V'|))$.

2.3 ILP Formulation

Our ILP formulation relies on a transformation of the PCSTP to the problem of finding a minimum subgraph in a related, directed graph as proposed by Fischetti [5]. We transform the graph $G_{\text{ILP}} = (V_{\text{ILP}}, E_{\text{ILP}}, c', p')$ that results from the application of the memetic algorithm as described in Section 2.2 into the directed graph $G'_{\text{ILP}} = (V_{\text{ILP}} \cup \{r\}, A_{\text{ILP}}, c'')$ (see Figure 1(c) for an example).

In addition to the vertices of the input graph G_{ILP} , the vertex set of the transformed graph contains an artificial root r. The arc set A_{ILP} contains two directed edges (v, w) and (w, v) for each edge $(v, w) \in E_{\text{ILP}}$ plus a set of arcs from the root r to the positive vertices $\{v \in V_{\text{ILP}} \mid p_v > 0\}$. We define the cost vector c'' as follows:

$$c_{vw}'' = c_{vw}' - p_w' \quad \forall (v,w) \in A_{\mathrm{ILP}}, v \neq r \quad \mathrm{and} \quad c_{rv}'' = -p_v' \quad \forall (r,v) \in A_{\mathrm{ILP}} \ .$$

A subgraph T_{ILP} of G'_{ILP} that forms a directed tree rooted at r is called a *Steiner arborescence*. It is easy to see that such a subgraph corresponds to a solution of the PCSTP if r has degree 1 in G'_{ILP} (*feasible arborescence*). In particular, a feasible arborescence with minimal total edge cost corresponds to an optimal prize-collecting Steiner tree.

We model the problem of finding a minimum Steiner arborescence T_{ILP} by means of an integer linear program. Therefore, we introduce a variable vector $x \in \{0,1\}^{|A_{\text{ILP}}|+|V_{\text{ILP}}|}$ with the following interpretation:

$$x_{vw} = \begin{cases} 1 & (v,w) \in T_{\mathrm{ILP}} \\ 0 & \mathrm{otherwise} \end{cases} \forall (v,w) \in A_{\mathrm{ILP}}, \quad x_{vv} = \begin{cases} 1 & v \notin T_{\mathrm{ILP}} \\ 0 & \mathrm{otherwise} \end{cases} \forall v \in V_{\mathrm{ILP}} \setminus \{r\}$$

The ILP is then as follows:

$$\min \quad \sum_{a \in A_{\rm ILP}} c_a'' x_a \tag{3}$$

subject to
$$x(\delta^{-}(\{v\})) + x_{vv} = 1$$
 $\forall v \in V_{\text{ILP}} \setminus \{r\}$ (4)

$$x(\delta^{-}(S)) \ge 1 - x_{vv} \qquad v \in S, r \notin S, \forall S \subset V_{\text{ILP}}$$
(5)

$$\sum_{(r,v)\in A_{\mathrm{H,P}}} x_{rv} \le 1 \tag{6}$$

$$x_{vw}, x_{vv} \in \{0, 1\} \qquad \forall (v, w) \in A_{\mathrm{ILP}}, \forall v \in V_{\mathrm{ILP}}, \quad (7)$$

where $\delta^{-}(S) = \{(u, v) \in A_{\text{ILP}} \mid u \notin S, v \in S\}.$

Constraint (4) states that every vertex that is part of the solution must have at least one incoming edge while (5) states that for each vertex v in the solution, there must be a directed path from r to v. Constraint (6) ensures that at most one of the edges starting at the artificial root is chosen. We use CPLEX as linear program solver to solve the *ILP-relaxation* of the problem obtained by replacing constraints (7) with $0 \le x_{vw}, x_{vv} \le 1$, $(v, w) \in A_{\text{ILP}}, v \in V_{\text{ILP}}$.

There are exponentially many constraints of type (5), so we do not insert them at the beginning but rather *separate* them during the optimization process; that is, we only add constraints violated by the current solution of the ILPrelaxation. These violated constraints can be found efficiently using a maximum flow algorithm on the graph with arc-capacities given by the current solution. We also use *pricing* which means that we do not start with all the variables but rather add them only if needed to prove optimality. A detailed description of this approach that also includes *flow-balance* and *asymmetry constraints* can be found in [9].

3 Computational Results

We tested our new approach extensively on 114 benchmark instances¹ described in [2,11]. The instances range in size from 100 vertices and 284 edges to 1000 vertices and 25 000 edges. Because of space limitations, we present detailed results for the 60 most challenging instances from Steiner series C and D. Graphs from series C have 500, and graphs from series D 1000 vertices. Table 1 lists the instance name, its number of edges |E|, the size of the graph after the reductions described in Section 2.1 (|V'|, |E'|) and the time spent on preprocessing (t_p [s]).

The following setup was used for the memetic algorithm as it proved to be robust in preliminary tests: Population size |P| = 800; group size for tournament selection k = 5; parameter for initializing solutions $p_{init} = 0.9$; mutation probability $p_{mut} = 0.3$. Each run was terminated when no new best solution could be identified during the last $\Omega = 10\,000$ iterations.

Because of its stochastic nature, the MA was performed 30 times on each instance and the average results are presented in Table 1 which also contains the

¹ Benchmark instances are available from http://research.att.com/~mgcr/data/.

average costs $c(T)_{avg}$ and their standard deviation $\sigma(c)$. Furthermore, we show the average CPU-time and the average number of evaluated solutions until the best solution was found (t, respectively *evals*), and the success rates (sr [%]), i.e. the percentage of instances for which optimal solutions could be found.

We also list the results of our combined approach, MA+ILP, where one MA run (with a fixed seed-value) was post-optimized with the ILP method. The value of the obtained solution and *only* the post-optimization CPU-time in seconds are given in columns c(T) and t [s], respectively. Note that the time presented for MA excludes preprocessing times.

We compared the results of our new approach (MA+ILP) to those of Canuto et al. (CRR) obtained using multi-start local search with perturbations and variable neighborhood search [2]. Table 1 provides the solution values of CRR (c(T)) and the total running time in seconds (t). In most cases our solution values are identical to CRR. The cases where one of the two is superior are marked by a box.

Finally, to see if we can obtain provably optimal solutions using the ILP approach, we continued the optimization: starting from the ILP-solution of the restricted MA+ILP problem, the rest of variables from G' was considered within pricing of the ILP-relaxation. In column OPT, we show the values of the obtained integer solutions. If we did not obtain an integer solution, or if our ILP-based algorithm terminated abnormally (because of memory consumption) we show the values obtained by Lucena & Resende [11], denoting it with ⁺, respectively ^{*}. Note that all values given in OPT are optimal except for D14-B where the best-known lower bound is printed [11]. The last column t [s] lists the additional CPU-time needed to compute a provably optimal solution.

When comparing our running time data (achieved on a Pentium IV with 2.8 GHz, 2 GB RAM, SPECint2000=1204) with the results of Canuto et al. [2] (Pentium II with 400 MHz, 64 MB RAM), the widely used SPEC[©] performance evaluation (www.spec.org) does not provide a direct scaling factor. However, taking a comparison to the respective benchmark machines both for SPEC 95 and SPEC 2000 into account, we can argue by a conservative estimate that dividing the Canuto et al. running times by a factor of 10 gives a very reasonable basis of comparison to our data.

Table 2 summarizes our results over all benchmark instances used in [2]. The second and third column show that using sophisticated preprocessing reduces the number of nodes and edges in the problem graph by 30-45% on average. We also provide the average quality (%-gap) and the average total running time for the approach of Canuto et al. (CRR), our memetic algorithm (MA) and the MA combined with linear programming post-processing (MA+ILP), respectively. The last column gives the average running time for computing a provably optimal solution with our ILP-based approach or a question mark where we could not find an optimal solution for all instances.

The summarized results indicate that MA alone is substantially faster than CRR (by an order of magnitude for the largest group D), but the average solution quality is slightly worse. Solutions of MA+ILP are not significantly worse than CRR solutions, but MA+ILP is much faster than CRR, even when we take the difference in hardware into account.

Table 1. Results obtained by Canuto et al. (CRR), the memetic algorithm (MA) and the combination of MA with ILP (MA+ILP) on selected instances from Steiner series C and D. Running times in (CRR) to be divided by 10 for comparison (cf. SPEC comparison).

Instance IP <		Orig.	Pre	process	sing			MA			MA+ILP		CRR		OPT-ILP	
C11-B 2000 489 2143 9.4 18.0 0.0 0.1 1000 32 0.4 32 140 32 447 C12-B 2000 484 2186 6.8 460 0.0 0.1 1010 32 0.4 32 140 32 447 C12-B 2000 484 2186 6.8 460 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 236 0.0 11 1100 0.0 110 1100 0.0 110 1100 110 0.0 111 1000 111 1000 111 1000 111 1000 111	Instance					$c(T)_{avq}$	$\sigma(c)$		evals	sr [%]						
C12-B 200 842 2186 6.8 36.7 0.5 9.0 24.6 33.3 38 0.4 38 162 38.8 0.3 C13-B 2500 471 2112 9.8 257.0 0.2 17.9 532.6 0.0 236 0.6 236 0.6 236 0.6 236 0.6 237 1050 238 0.5 C13-B 2500 457 2113 0.8 255 27.5 138 10 318 10 318 0.4 138 0.4 C15-A 2000 370 17.3 0.0 13.8 0.4 13.7 10.0 11.1 138 14.1 14.8 14.1 C16-A 12500 460 4538 2.9 11.8 1.9 11.1 17.8 13.0 14.1 1.3.8 C17-A 12500 460 43.2 14.1 0.4 12.0 11.1 1.3.8 3.2.1 11.1 </td <td>C11-A</td> <td>2500</td> <td>489</td> <td>2143</td> <td>9.4</td> <td></td> <td></td> <td>6.1</td> <td>500</td> <td>100.0</td> <td>18</td> <td>0.4</td> <td>18</td> <td>128</td> <td>18</td> <td>0.2</td>	C11-A	2500	489	2143	9.4			6.1	500	100.0	18	0.4	18	128	18	0.2
C12-B 2500 472 2118 6.8 4.60 0.0 8.7 500 1000 236 0.6 237 1050 236 0.6 C13-B 2500 471 2112 9.8 25.5 0.7 35.9 1545 600 238 18.5 25.5 733 25.8 52.5 C14-H 2500 406 157 13.6 0.5 28.8 92.1 43.3 131 10.0 13.8 76.6 31.8 0.0 C15-B 2500 400 47.0 0.0 1.5 50.0 0.0 12 1.9 111 192.0 11.0 1.3 1.4 1.8 1.4 C16-B 12500 498 4604 2.4 12.0 11.0 12.0 11.1 12.0 11.1 13.0 14.6 13.0 14.6 13.0 14.6 6.6 13.0 14.1 14.0 14.0 14.0 14.0 14.0 14.0 <	C11-B	2500	489	2143	9.5	32.0	0.0	9.1	1103	100.0	32	0.4	32	140	32	4.7
c13-8 2500 472 2113 9.8 28.7 0.2 179 5326 0.0 2266 0.6 237 150 238 52.5 C14-A 2500 459 2048 7.5 234.6 0.0 21.0 316.1 100.0 233 1.7 233 829 293 0.4 C15-A 2500 406 1871 6.5 502.2 0.4 4.14 200 10.6 500 1.0 1.0 9.1 1.0 9.1 1.0 9.1 1.0 9.1 1.0 9.1 1.0 9.1 1.0 9.1 1.0 9.1 1.0 9.1 1.0 9.1 1.0 9.1 1.0 1.0 9.1 1.0 </td <td>C12-A</td> <td>2500</td> <td>484</td> <td>2186</td> <td>6.8</td> <td>38.7</td> <td>0.5</td> <td>9.0</td> <td>2456</td> <td>33.3</td> <td>38</td> <td>0.4</td> <td>38</td> <td>162</td> <td>38</td> <td>0.3</td>	C12-A	2500	484	2186	6.8	38.7	0.5	9.0	2456	33.3	38	0.4	38	162	38	0.3
C13-B 2500 471 2112 9.8 25.5 0.7 35.9 15.45 7.65 25.8 2.68 25.27 C14-B 2500 460 2018 7.5 23.0 0.0 21.0 31.0 23.8 1.7 23.8 23.8 0.0 C15-A 2500 460 175.3 6.0 55.1 0.9 45.7 15607 46.7 1551 0.0 15.5 551 837 551 0.4 C16-B 12500 400 44.0 12.0 0.0 11.2 600 0.0 12.5 111 1758 11 13.8 1.4 1.8 1.4 1.8 1.4 1.8 1.4 1.8 1.4 1.8 1.4 1.8 1.4 1.8 1.4 1.8 1.4 1.8 1.4 1.4 1.2 1.11 3.990 1.1.4 1.6 1.1.4 1.8 1.4 1.4 1.2 1.11 1.8 1.4 1.8	C12-B	2500	484	2186	6.8	46.0	0.0	8.7	590	100.0	46	0.5	46	156	46	0.8
Cit4-B 2500 466 2981 7.5 31.8 0.0 21.0 31.63 10.00 23.3 1.7 29.3 29.3 29.3 0.4 Cit5-B 2500 450 187 65 18.8 0.0 13.8 10.0 13.8 76.6 31.8 0.4 Cit5-B 2500 370 173 6.0 551.8 9.9 45.7 15607 46.7 551 8.3 511 113 120.0 11.1 1.09 11 1.09 11 1.09 11 1.09 11 1.09 11 1.09 11 1.09 11 1.09 11 1.09 11 1.09 11 1.09 11 1.09 11 1.09 11 1.09 11 1.09 11 1.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <th< td=""><td>C13-A</td><td>2500</td><td>472</td><td>2113</td><td>9.8</td><td>237.0</td><td>0.2</td><td>17.9</td><td>5326</td><td>0.0</td><td>236</td><td>0.6</td><td>237</td><td>1050</td><td>236</td><td>0.5</td></th<>	C13-A	2500	472	2113	9.8	237.0	0.2	17.9	5326	0.0	236	0.6	237	1050	236	0.5
Ci4-B 2500 469 2048 7.5 318.6 0.5 50.2 84.5 147.7 20.0 501 47.7 501 95.7 511 0.0 118 766 511 0.0 15.7 511 0.0 15.5 0.0 15.7 501 0.7 501 0.57 501 0.57 501 0.57 501 0.551 837 551 0.0 C16-B 12500 00 4740 2.4 12.0 0.0 11.2 620 0.0 11.2 3.5 0.0 12 1.9 111 130 0.0 11.4 1.8 1.4 1.8 1.4 1.8 1.4 1.8 1.4 1.4 1.8 1.4 1.4 1.8 1.4 1.4 1.8 1.4 1.8 1.4 1.8 1.4 1.4 1.6 1.4 1.5 1.1 1.3 2.0 1.2 1.1 1.3 2.0 1.2 1.4 1.6 </td <td>C13-B</td> <td>2500</td> <td>471</td> <td>2112</td> <td>9.8</td> <td>258.5</td> <td>0.7</td> <td>35.9</td> <td>15455</td> <td>60.0</td> <td>258</td> <td>18.5</td> <td>258</td> <td>733</td> <td>258</td> <td>52.5</td>	C13-B	2500	471	2112	9.8	258.5	0.7	35.9	15455	60.0	258	18.5	258	733	258	52.5
C15-A 2500 406 1871 6.5 502.2 0.8 45.4 14727 20.0 501 4.7 501 937 501 0.5 C16-A 12500 500 4740 2.4 12.0 0.0 10.6 500 0.0 12 3.5 11 1778 11 0.9 C16-B 12500 498 4694 2.4 10.0 0.0 11.2 620 0.0 112 1.8 549 18 1.9 C17-B 12500 465 4538 2.9 115.0 0.7 26.2 8361 6.7 112 2.1 111 3900 11.4 - C19-B 12500 465 4538 2.9 146.0 0.6 2.8 400 1.46 3300 1.46 0.8 1.00 1.47 0.0 2.67 1.6 2.95 11.6 0.0 1.6 0.1 1.66 2.6 1.24 1.50 0.00	C14-A	2500	466	2081	7.5	293.0	0.0	21.0	3163	100.0	293	1.7	293	829	293	0.4
C15-B 2500 370 1753 6.0 511. 0.4 71. 1607 46.7 551 0.8. 551 0.4. C16-B 12500 500 4740 2.4 120 0.0 0.15 503 0.0 12 1.9 111 1778 113 182 C17-B 12500 498 4694 2.4 19.0 0.0 11.2 620 0.0 19 2.9 18 4.44 18 1.4 C17-B 12500 498 453 2.9 140.0 0.4 17.9 160 7.0 112 2.1 111 3900 11.1 - C19-A 12500 413 3867 2.5 100.0 18 0.0 18 0.1 12.6 23.3 143 49 10.0 0.0 3.5 500 10.0 18 0.0 18 0.1 12.6 23.5 10.1 13.5 13.5 10.1 <	C14-B										318	1.0	318		318	
C16-A 12500 500 4740 2.4 12.0 0.0 10.6 500 0.0 12 1.9 11 1920 11 0.9 C16-B 12500 498 4694 2.4 10.0 0.0 11.2 503 0.0 12 3.5 111 17.8 11 13.8 44 18 1.4 C17-B 12500 469 4569 2.6 112.4 0.7 24.1 746 6.7 112 2.1 113 3990 11.4 ⁺ - C19-B 12500 465 3882 2.9 11.6.0 0.7 2.5 3.6 1.7 116 21.9.5 11.4 3.990 11.4 ⁺ - C19-B 12500 416 32.8 1.40 0.6 1.5 4035 0.0 146 3300 166 1.8 0.0 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6																
C16-B 12500 500 4740 2.4 120.0 0.0 11.5 503 0.0 12 3.5 11 1758 11 13.8 C17-B 12500 498 4694 2.4 19.0 0.0 11.2 620 0.0 19 2.9 18 444 18 1.4 C18-B 12500 469 4569 2.6 112.4 0.7 2.4 8361 6.7 112 2.1 113 3202 13.4 - C19-A 12500 416 3867 2.8 140.0 0.6 7.8 528 100.0 266 0.2 266 4311 466 0.6 0.0 7.3 500 100.0 146 3.30 146 0.6 0.0 3.8 150 100.0 18 0.0 18 0.0 18 0.0 18 0.0 18 0.0 18 0.0 1203 20.0 160 100.0 10									15607							
C17-B 12500 498 4694 2.4 19.0 0.0 11.2 620 0.0 19 2.9 18 549 18 1.9 C17-B 12500 469 469 2.6 112.4 0.7 24.1 74.6 6.7 112 2.1 111 3900 11.1 ⁺ C18-A 12500 465 4538 2.9 146.2 0.4 1.7.9 5402 800 146 2.3 146 3300 146 0.6 6.6 C20-B 12500 416 3867 2.8 140.0 0.6 15.8 4035 0.0 147 30 146 3300 146 0.6 C20-B 12500 133 563 5.0 0.0 3.5 500 100.0 188 0.0 18 2.6 1.0 2.8 4.80 4.80 4.80 0.0 3.5 500 10.0 1.6 0.7 500 0.0	C16-A	12500	500	4740	2.4	12.0	0.0	10.6	500	0.0	12	1.9	11	1920	11	0.9
C17-B 12500 488 4694 2.3 18.2 0.4 12.7 1951 76.7 118 2.1 18 4.34 18 1.4 C18-B 12500 465 4538 2.9 115.0 72.4 174.0 72.4 111 300 111 ⁺ - C19-A 12500 446 3862 2.9 146.0 0.4 17.9 5402 80.0 146 2.3 146 0.6 0.6 0.6 1.5 84035 0.0 146 2.3 146 0.6 0.6 0.0 2.5 500 100.0 2.66 0.0 1.6 0.0 1.6 0.0 1.6 0.0 1.6 0.0 1.6 0.0 1.6 0.0 1.6 0.0 1.6 0.0 1.6 0.0 1.6 0.0 1.6 0.0 1.6 1.0 1.8 1.0 1.6 1.0 1.8 1.0 1.0 1.8 1.0 1.0 <	C16-B	12500	500	4740	2.4	12.0	0.0	11.5	503	0.0	12	3.5	11	1758	11	13.8
C18-A 12500 469 469 2.6 112.4 0.7 24.1 7446 6.7 112 2.1 111 3990 11.1 - C18-B 12500 463 882 2.9 14.6 0.4 7.9 5402 80.0 146 26.6 0.0 11.3 3300 146 0.6 0.6 15.8 4035 0.0 147 3.0 146 3300 146 0.6 0.0 0.7 5.9 100.0 266 0.2 266 0.0 267 0.1 1.4 3.0 267 0.1 1.0 257 106 0.0 0.0 3.5 500 100.0 1.8 0.0 1.06 27.7 106 0.0 D1-B 1250 231 431 4.9 100.0 0.3 500 100.0 50 0.1 50 7.7 50 0.0 0.3 1403 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	C17-A	12500	498	4694	2.4	19.0	0.0	11.2	620	0.0	19	2.9	18	549	18	1.9
C18-B 12500 465 4538 2.9 115.0 0.7 26.2 861 6.7 116 219.5 113 3022 113' C19-B 12500 416 3982 2.9 146.2 0.4 17.9 5402 80.0 146 2.3 146 3930 146 0.6 C20-B 1230 416 4.9 18.0 0.0 7.3 598 10.0 266 0.2 266 4311 2066 0.0 1.8 0.0 1.8 0.0 1.8 0.0 1.8 0.0 1.8 0.0 0.3 1.500 10.0 1.6 0.1 1.66 1.8 0.0 0.0 3.1 500 10.0 1.800 0.0 1.807 0.1 1.807 0.1 807 0.1 807 0.1 807 0.1 807 1.1 80.1 1.30 1.33 1.32 1.33 1.33 1.34 1.33 1.34 1.3	C17-B	12500	498	4694	2.3	18.2	0.4	12.7	1951	76.7	18	2.1	18	434	18	1.4
C19-A 12500 430 3982 2.9 146.2 0.4 17.9 5402 80.0 146 2.3 146 3028 146 0.6 C19-B 12500 416 3867 2.8 1490 0.6 15.8 4035 0.00 146 2.3 146 30.6 0.0 C2O-A 12500 231 440 4.9 180 0.0 3.1 500 100.0 18 0.0 18 6 18 0.0 D1-A 1250 231 443 4.9 100.0 0.3 500 100.0 18 0.0 10.6 50 0.1 106 227 106 0.0 D2-B 1250 237 448 4.9 50.0 0.0 7.4 500 100.0 1807 0.1 807 7.34 807 0.1 D2-B 1250 311 51.5 5 807.0 0.0 131 10.0	C18-A	12500	469	4569	2.6	112.4	0.7	24.1	7446	6.7	112	2.1	111	3990	111^{+}	
C19-A 12500 430 3982 2.9 146.2 0.4 17.9 5402 80.0 146 2.3 146 3028 146 0.6 C19-B 12500 416 3867 2.8 1490 0.6 15.8 4035 0.00 146 2.3 146 30.6 0.0 C2O-A 12500 231 440 4.9 180 0.0 3.1 500 100.0 18 0.0 18 6 18 0.0 D1-A 1250 231 443 4.9 100.0 0.3 500 100.0 18 0.0 10.6 50 0.1 106 227 106 0.0 D2-B 1250 237 448 4.9 50.0 0.0 7.4 500 100.0 1807 0.1 807 7.34 807 0.1 D2-B 1250 311 51.5 5 807.0 0.0 131 10.0	C18-B	12500	465	4538	2.9	115.0	0.7	26.2	8361	6.7	116	219.5	113	3262	113^{+}	
C20-A I2500 241 I222 61 266 0.0 7.3 5.98 10.00 266 0.2 266 4.311 266 0.00 C20-B I2500 133 563 5.0 267.0 0.0 5.1 500 100.0 18 0.0 18 0.0 18 0.0 18 0.0 18 0.0 18 0.0 0.0 18 0.0 18 0.0 18 0.0 18 0.0 18 0.0 100 100 100 100 100 100 100 100 100 100 1228 1220 267 486 218 0.0 D2-A 1250 264 488 4.9 218.3 1.0 17.3 500 100.0 180 10.1 183 10.3 1203 123 1263 1263 132 1273 183 120 1233 183 103 103 103 100 1133	C19-A	12500	430	3982	2.9	146.2	0.4	17.9	5402	80.0	146	2.3	146	3928		0.6
C20-B 12500 133 563 5.0 267.0 0.0 5.2 500 100.0 126 126 131 66 18 0.0 0.0 3.1 500 100.0 18 0.0 0.1 18 0.0 0.1 186 0.0 0.0 0.3 8 1950 100.0 100 0.0 0.1 126 237 0.0 0.0 3.5 500 100.0 100 <t< td=""><td>C19-B</td><td>12500</td><td>416</td><td>3867</td><td>2.8</td><td>149.0</td><td>0.6</td><td>15.8</td><td>4035</td><td>0.0</td><td>147</td><td>3.0</td><td>146</td><td>3390</td><td>146</td><td>0.6</td></t<>	C19-B	12500	416	3867	2.8	149.0	0.6	15.8	4035	0.0	147	3.0	146	3390	146	0.6
	C20-A	12500	241	1222	6.1	266.0	0.0	7.3	598	100.0	266	0.2	266	4311	266	0.0
D1-B 1250 233 443 4.9 106.0 0.0 3.8 1950 100.0 106 0.1 106 2.7 106 0.0 D2-B 1250 257 481 4.9 500 0.0 3.5 500 100.0 50 0.1 50 7 50 0.0 D3-A 1250 301 529 5.5 807.0 0.0 7.4 500 100.0 807 0.1 807 7.34 807 0.1 D3-B 1250 317 541 5.6 120.8 0.4 10.4 974 0.0 1881 11.0 1881 1203 1323 188 133 133 188 120 18 335 2157 3352 2157 3352 2157 3352 2157 3352 2157 3352 2167 38 103 113 353 103 103 113 353 103 113 353 103 <th< td=""><td>C20-B</td><td>12500</td><td>133</td><td>563</td><td>5.0</td><td>267.0</td><td>0.0</td><td>5.2</td><td>500</td><td>100.0</td><td>267</td><td>0.1</td><td>267</td><td>3800</td><td>267</td><td>0.1</td></th<>	C20-B	12500	133	563	5.0	267.0	0.0	5.2	500	100.0	267	0.1	267	3800	267	0.1
D2-A 1250 257 481 4.9 50.0 0.0 3.5 500 100.0 50 0.1 50 7 50 0.0 D3-A 1250 361 529 5.5 807.0 0.0 7.4 500 100.0 807 0.1 807 734 807 0.1 D3-A 1250 372 606 6.3 1516.2 1.3 51.0 15976 0.0 1509 0.6 1510 2184 1203 1203 1263 1203 0.3 D4-B 1250 348 588 7.6 2157.0 0.0 217 136 0.0 3135 2.2 3135 255 3135 0.4 D6-A 2000 741 1708 14.7 72.6 0.8 10.5 1102 0.0 171 0.5 70 702 67 0.9 D7-A 2000 764 178 11.7 755.5 0.5 <td< td=""><td>D1-A</td><td>1250</td><td>231</td><td>440</td><td>4.9</td><td>18.0</td><td>0.0</td><td>3.1</td><td>500</td><td>100.0</td><td>18</td><td>0.0</td><td>18</td><td>6</td><td>18</td><td>0.0</td></td<>	D1-A	1250	231	440	4.9	18.0	0.0	3.1	500	100.0	18	0.0	18	6	18	0.0
D2-B 1250 264 488 4.9 218.3 1.0 7.3 4157 93.3 218 0.1 228 486 218 0.0 D3-A 1250 301 529 5.5 807.0 0.0 7.4 500 100.0 807 0.1 807 734 807 0.3 D4-A 1250 311 541 5.6 120.3 0.4 1203 0.3 1203 0.3 1203 0.3 1203 0.3 1203 0.3 1203 0.3 1203 0.3 1203 0.3 1203 0.3 181 1.0 1881 1.0 1881 1.0 135 2.2 3135 2457 335 0.1 1.0	D1-B	1250	233	443	4.9	106.0	0.0	3.8	1950	100.0	106	0.1	106	257	106	0.0
D3-A 1250 301 529 5.5 807.0 0.0 7.4 500 100.0 807 0.1 807 7.34 807 0.1 D3-B 1250 317 606 6.3 1516.2 1.3 51.0 15076 0.0 1509 0.6 1510 2133 1203	D2-A	1250	257	481	4.9	50.0	0.0	3.5	500	100.0	50	0.1	50	7	50	0.0
D3-B 1250 372 606 6.3 1516.2 1.3 51.0 15976 0.0 1509 0.6 1510 2184 1509 0.3 D4-B 1250 311 541 5.6 1203 0.3 1203 0.3 1203 0.3 1203 0.3 1203 1203 1203 0.3 1203 1203 1203 1233 1881 1.3 150 140 1881 1233 1203 1203 0.3 1203 0.3 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1215 3135 0.4 10.5 1203 0.13 52.2 1315 0.0 1105 147 1.0 100 11 0.5 100 110 105 105 105 105 105 105 105 105 105 105 101 105 101 <t< td=""><td>D2-B</td><td>1250</td><td>264</td><td>488</td><td>4.9</td><td>218.3</td><td>1.0</td><td>7.3</td><td>4157</td><td>93.3</td><td>218</td><td>0.1</td><td>228</td><td>486</td><td>218</td><td>0.0</td></t<>	D2-B	1250	264	488	4.9	218.3	1.0	7.3	4157	93.3	218	0.1	228	486	218	0.0
D4-A 1250 311 541 5.6 1203.8 0.4 10.4 974 16.7 1203 0.3 1203 1231 1231 1231 1231 1231 1231 1231 1231 1231 1231 1231 1231 1231 1231 1257 3325 2157 3352 2157 3352 2157 3352 2157 3352 2157 3352 2157 3352 2157 3352 2157 3352 2157 3352 2157 3352 2157 3352 2157 3352 2157 3352 2157 3352 2157 3352 2167 305 010 3112 315 555 3135 0.4 105 107 10.5 1070 107 10.5 1070 107 10.5 1070 107 10.5 10.7 10.3 10.1 103 10.1 103 10.1 103 10.1 103 10.1 103 10.1 103 <	D3-A	1250	301	529	5.5	807.0	0.0	7.4	500	100.0	807	0.1	807	734	807	0.1
D4-B 1250 387 621 7.2 1885.2 2.0 49.6 9671 0.0 1881 11.0 1881 2233 1881 1.3 D5-B 1250 411 649 11.5 313.7. 0.9 65.1 7316 0.0 3135 2.2 3135 2555 3135 0.4 D6-A 2000 741 1708 14.7 72.6 0.8 10.5 1192 0.0 71 10.5 70 702 67 0.9 D7-A 2000 734 1707 11.4 105.0 0.0 8.2 500 105 0.3 505 111 103 0.1 D7-A 2000 764 1738 11.7 755.5 0.5 19.1 2788 50.0 755 15.6 755 1727 755 41.8 D8-A 2000 761 1724 0.9 14364 1.4 122.2 1289 0.0 1671	D3-B	1250	372	606	6.3	1516.2	1.3	51.0	15976	0.0	1509	0.6	1510	2184	1509	0.3
D5-A 1250 348 588 7.6 2157. 0.0 29.1 1963 100.0 2157 3.1 2157 3352 2157 8.8 D5-B 1250 411 649 11.5 3137. 0.9 65.1 7316 0.0 3135 2.2 3135 2555 3135 0.4 D6-A 2000 740 1707 14.4 18.0 0.0 7.7 500 100.0 18 0.3 18 20 18 0.1 D7-B 2000 734 1707 11.4 105.0 0.0 9.5 500 0.1 105 0.3 105 711 103 0.1 D8-A 2000 764 1738 1.1.7 755.5 151.2 1378 50.0 1075 135.4 10072 4109 1070'+ - 2.8 1073 14120 2754 1420 1420 1420 1420 1420 1420 1420	D4-A	1250	311	541	5.6	1203.8	0.4	10.4	974	16.7	1203	0.3	1203	1263	1203	0.3
D5-B 1250 411 649 11.5 3137.7 0.9 65.1 7316 0.0 3135 2.2 3135 2555 3135 0.4 D6-B 2000 740 1707 14.4 18.0 0.0 7.7 500 100.0 18 0.3 18 20 18 0.1 D6-B 2000 734 1705 11.3 50.0 0.0 8.2 500 100.0 50 0.3 105 711 103 0.1 D7-A 2000 736 1707 11.4 105.0 0.0 8.2 500 0.0 105 0.3 105 711 103 0.1 D8-B 2000 764 1738 1.17 755.5 0.5 1.13 100.1 1037 101.4 1038 3175 1036 2.8 D9-A 2000 761 1724 0.9 1446 122.3 1361 0.0 1420 1073																
D6-A 2000 740 1707 14.4 18.0 0.0 7.7 500 100.0 18 0.3 18 20 18 0.1 D6-B 2000 741 1708 14.7 72.6 0.8 10.5 1192 0.0 71 0.5 70 702 67 0.9 D7-A 2000 734 1705 11.3 50.0 0.0 8.2 500 100 105 0.3 105 711 103 0.1 D7-B 2000 764 173 11.7 755.5 0.5 19.1 2788 50.0 755 15.6 755 1727 755 41.8 D8-B 2000 761 172 10.7 10.7 1.5 1.1 173.8 10.0 1037 103.4 1038 317 1036 2.8 D9-B 2000 761 1724 20.9 143.4 10.12 1103 10171 103.4																
D6-B 2000 741 1708 14.7 72.6 0.8 10.5 1192 0.0 71 0.5 70 702 67 0.9 D7-A 2000 734 1705 11.3 50.0 0.0 8.2 500 100.0 50 0.3 50 195 50 0.1 D7-B 2000 736 1707 11.4 105.0 0.9 520 0.0 105 0.3 105 711 103 0.1 D8-A 2000 752 176 1.2.3 1045.7 3.9 123.8 36313 0.0 1075 354.5 1072 4109 1076' - D9-B 2000 761 172 0.9 1436.4 3.0 151.2 31361 0.0 1671 4139 1671 420 4139 1671 422 1409 1671 4139 1671 420 4.1 1010 18 18 540 18																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
D8-A 2000 764 1738 11.7 755. 0.5 19.1 2788 50.0 755 15.6 755 1727 755 41.8 D8-B 2000 778 1757 12.3 1045.7 3.9 123.8 36313 0.0 1037 1013.4 1038 3175 1036 2.8 D9-B 2000 752 1716 1.79 1074.7 1.0 52.1 13718 0.0 1075 354.5 1072 4109 1070+ - D9-B 2000 694 1661 14.6 1674.4 1.4 122.2 21289 0.0 1671 9.0 1671 4120 754 1420 4539.6 D10-A 2000 629 1586 18.5 2089.8 2.1 107.3 1459 0.0 1820 18.1 18.0 18.0 18.0 18.0 18.0 18.0 14.0 14.0 2079 4.1 20.4 4.1																
D8-B 2000 778 1757 12.3 1045.7 3.9 123.8 36313 0.0 1037 1013.4 1038 3175 1036 2.8 D9-A 2000 752 1716 17.9 1074.7 1.0 52.1 1371.8 0.0 1075 354.5 1072 4109 1070 ⁺ D9-B 2000 661 1661 164.6 14.22 21289 0.0 1420 176.6 1420 2754 1420 4539.6 D10-A 2000 629 1586 18.5 2089.8 2.1 107.3 1459 0.0 1671 9.0 1671 4193 1671 2.2 D10-B 2000 986 4658 2.3 2.0 0.0 17.4 814 100.0 29 2.0 30 1280 29 4.7 D12-A 5000 991 4639 23.1 42.0 0.0 15.1 620 100.0																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																2.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														-		
D13-B 5000 961 4566 28.0 491.7 1.9 97.2 22843 0.0 486 15.9 486 4288 486 2.6 D14-A 5000 946 4500 35.5 605.6 1.2 102.3 21486 0.0 602 48.6 4288 602 623 D14-B 5000 934 4469 37.2 674.2 1.4 102.8 17746 0.0 665 3409.5 665 617.8 664'' D15-A 5000 832 417.7 47.1 1048.7 1.3 145.7 18343 0.0 1042 18.8 1042 7840 1042 12.8 D16-A 25000 1000 1055 10.8 14.0 0.0 23.1 500.0 14 89 13 13 133 13 13 13 143 13 42.0 D16-B 25000 1000 1055 10.8 23.0 <td></td>																
D14-A 5000 946 4500 35.5 605.6 1.2 102.3 21486 0.0 602 34.2 602 6388 602* D14-B 5000 931 469 37.2 674.2 1.4 102.8 17746 0.0 665 349.5 665 6178 664* D15-A 5000 832 4175 47.1 1048.7 1.3 145.7 18343 0.0 1042 185.8 1042 7840 1042 12.8 D15-B 5000 747 3896 49.2 114.7 0.8 95.6 1026 0.0 1108 112.0 1108 52.0 1108 4.8 D16-B 25000 1000 10595 10.8 14.0 0.0 23.1 500 0.1 14 8.9 13 10.4 24.8 13 13 14.2 20.8 13 13 42.0 113 13.3 14.2 20.8 </td <td></td>																
D14-B 5000 931 4469 37.2 674.2 1.4 102.8 17746 0.0 665 3409.5 665 6178 664* D15-A 5000 832 4175 47.1 1048.7 1.3 145.7 18343 0.0 1042 185.8 1042 7840 1042 12.8 D15-B 5000 1747 3896 49.2 1114.7 0.8 95.6 1002 10.0 1108 5220 1108 48.8 D16-A 25000 1000 10555 10.8 13.3 0.4 26.4 1313 73.3 13 9.3 13 1043 13 42.0 D16-A 25000 1000 10555 10.8 13.3 0.4 26.4 1313 73.3 13 9.3 13 1043 13 42.0 D17-B 25000 999 10534 10.7 23.0 0.0 23.7 948 100.0																2.0
D15-A 5000 832 4175 47.1 1048.7 1.3 145.7 18343 0.0 1042 185.8 1042 7840 1042 12.8 D15-B 5000 747 3896 49.2 1114.7 0.8 95.6 11026 0.0 1108 110.8 520 1108 4.8 D16-A 25000 1000 10595 10.8 14.0 0.0 23.1 500 0.0 14 8.9 13 133 13 24.8 D16-B 25000 1000 10595 10.8 13.3 0.4 26.4 1313 73.3 13 9.3 13 1043 13 42.0 D16-B 25000 1009 10534 10.7 23.0 0.0 24.8 1933 10.0 23 9.5 23 3506 23 167.1 D17-A 25000 949 10.7 220.8 0.0 24.8 100.0 23 10.2 </td <td></td>																
D15-B 5000 747 3896 49.2 1114.7 0.8 95.6 11026 0.0 1108 117.0 1108 5220 1108 4.8 D16-A 25000 1000 10595 10.8 14.0 0.0 23.1 500 0.0 14 8.9 13 1397 13 24.8 D16-A 25000 1000 10595 10.8 13.3 0.4 26.4 1313 73.3 13 9.3 13 1043 13 42.0 D17-A 25000 999 10534 10.8 23.0 0.0 24.8 1983 100.0 23 9.5 23 3506 23 167.1 D17-A 25000 999 10534 10.7 23.0 0.0 23.7 948 100.0 23 10.2 23 2089 23 60.1 D18-A 25000 944 949 11.7 220.8 0.7 81.4 19864																12.8
D16-A 25000 1000 10595 10.8 14.0 0.0 23.1 500 0.0 14 8.9 13 1397 13 24.8 D16-B 25000 1000 10595 10.8 13.3 0.4 26.4 1313 73.3 13 9.3 13 1043 13 42.0 D17-B 25000 999 10534 10.7 23.0 0.0 24.8 1983 100.0 23 9.5 23 3506 23 167.1 D17-B 25000 999 10534 10.7 23.0 0.0 23.7 948 100.0 23 10.2 23 2089 23 60.1 D18-A 25000 994 10.7 23.0 0.0 23.7 948 100.0 23 10.2 23 2089 23 60.1 D18-A 25000 944 949 1.7 220.8 0.7 81.4 19864 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
D16-B 25000 1000 10595 10.8 13.3 0.4 26.4 1313 73.3 13 9.3 13 1043 13 42.0 D17-A 25000 999 10534 10.8 23.0 0.0 24.8 1983 100.0 23 9.5 23 3506 23 167.1 D17-B 25000 999 10534 10.7 23.0 0.0 23.7 948 100.0 23 10.2 23 2360 23 167.1 D17-B 25000 994 10534 10.7 23.0 0.0 23.7 948 100.0 23 10.2 23 2089 23 60.1 D18-A 25000 944 9499 11.7 220.8 0.7 81.4 19864 0.0 218 197.0 218 30044 218 ⁺ D18-B 25000 897 9532 12.4 317.7 2.7 87.6 18480 </td <td></td>																
D17-A 25000 999 10534 10.8 23.0 0.0 24.8 1983 100.0 23 9.5 23 3506 23 167.1 D17-B 25000 999 10534 10.7 23.0 0.0 24.8 1983 100.0 23 9.5 23 3506 23 167.1 D17-B 25000 949 10534 10.7 23.0 0.0 23.7 948 100.0 23 10.2 23 2089 23 60.1 D18-A 25000 949 949 1.7 220.8 0.7 81.4 19864 0.0 218 100.4 218 213 30.4 223 34.9 D18-A 25000 929 9816 12.0 230.2 1.3 98.7 25555 0.0 224 25.2 224 3643 223 34.9 D19-A 25000 862 9131 131.7 317.8 21.8 10.9 <td></td>																
D17-B 25000 999 10534 10.7 23.0 0.0 23.7 948 100.0 23 10.2 23 2089 23 60.1 D18-A 25000 944 9949 11.7 220.8 0.7 81.4 19864 0.0 218 197.0 218 30044 218 ⁺ D18-B 25000 929 9816 12.0 230.2 1.3 98.7 25585 0.0 224 25.2 224 36643 223 34.9 D19-A 25000 897 9532 12.4 317.7 2.7 87.6 18480 0.0 308 151.9 308 40955 306 1446.5 D19-B 25000 862 2131 31.3 37.8 2.2 81.9 17912 0.0 311 13.6 311.3 8600 310 62.8 D19-B 25000 488 2511 37.3 537.0 0.0 18.4																
D18-A 25000 944 949 11.7 220.8 0.7 81.4 19864 0.0 218 197.0 218 30044 218 ⁺ D18-B 25000 929 9816 12.0 230.2 1.3 98.7 25585 0.0 224 25.2 224 3663 223 34.9 D19-A 25000 897 9532 12.4 317.7 2.7 87.6 18480 0.0 308 151.9 308 40955 306 1446.5 D19-B 25000 862 9311 131.8 137.8 2 81.9 17912 0.0 311 13.6 311 36600 310 62.8 D20-A 25000 488 2511 37.3 37.3 0.0 18.4 1036 0.0 536 1.0 536 28139 536 0.5																
D18-B 25000 929 9816 12.0 230.2 1.3 98.7 25585 0.0 224 25.2 224 36643 223 34.9 D19-A 25000 897 9532 12.4 317.7 2.7 87.6 18480 0.0 308 151.9 308 40955 306 1446.5 D19-B 25000 862 9131 13.1 317.8 2.2 81.9 17912 0.0 311 13.6 311 38600 310 62.8 D20-A 25000 486 2511 37.3 37.0 0.0 18.4 1036 0.0 536 1.0 536 28139 536 0.5											-					_
D19-A 25000 897 9532 12.4 317.7 2.7 87.6 18480 0.0 308 151.9 308 40955 306 1446.5 D19-B 25000 862 9131 13.1 317.8 2.2 81.9 17912 0.0 311 13.6 311 38600 310 62.8 D20-A 25000 488 2511 37.3 537.0 0.0 18.4 1036 0.0 536 1.0 536 28139 536 0.5			929				1.3							36643	223	34.9
D19-B 25000 862 9131 13.1 317.8 2.2 81.9 17912 0.0 311 13.6 311 38600 310 62.8 D20-A 25000 488 2511 37.3 537.0 0.0 18.4 1036 0.0 536 1.0 536 28139 536 0.5																
			862		13.1		2.2			0.0	311	13.6	311		310	62.8
D20-B 25000 307 1383 32.9 537.0 0.0 12.7 1587 100.0 537 0.5 537 22104 537 0.1																
	D20-B	25000	307	1383	32.9	537.0	0.0	12.7	1587	100.0	537	0.5	537	22104	537	0.1

Table 3 further illustrates the importance of using both, recombination and mutation, and that it is necessary to apply local improvement immediately after each variation operator. Shown are average results of 30 runs for the following three variants of the MA: In C+LI, new candidate solutions are created only by recombination followed by local improvement. M+LI applies always only mutation followed by local improvement. In C+M+LI, recombination and mutation are used, and local improvement is performed before a solution is inserted into the population. All strategy parameters were set identical as in the previous experiments with the only exception that in M+LI, the probability of applying mutation was $p_{mut} = 1$. The performance values of these variants can therefore directly be compared to those of the original MA in Table 2.

C+M+LI converged fastest, but the obtained solutions were in nearly all cases substantially poorer (1.7% of average gap over all instances) than those of the original MA (0.6% of average gap). This points out the particular importance of applying local improvement after *both* variation operators. C+LI, on the other side, generally needed much more evaluations and also more time to converge. Although its total running time hardly deviates form our original MA, the average gap obtained over all instances was 1.2%. Finally, the worst results were obtained by running M+LI, with 2% of average gap, which clearly indicates the crossover's importance.

4 Conclusions and Future Research

Our results show that exact algorithms used as local improvement or postoptimization procedures can improve the performance of memetic algorithms. We conjecture that combining linear programming or integer linear programming methods with evolutionary algorithms as described in this paper can yield high quality solutions in short computation time also for other hard optimization problems.

In our future research, we want to combine memetic algorithms with a Branch & Cut approach for solving integer linear programs to obtain even better solutions. Since almost all the currently available benchmark instances are now solved to optimality within a rather short time, the frontier of tractable instances can be pushed further. Based on a real-world utility network design problem we plan to establish new sets of difficult benchmark instances to give new challenges to the community.

Table 2. Summarized results. Running times from Canuto et al. should be divided by 10 for comparison (cf. SPEC comparison). %-gap = $(c(T) - OPT)/OPT \cdot 100\%$.

	Pi	reprocessing		MA	ł	MA+	ILP	CI	ILP	
Group	V' / V [%]	E' / E [%]	$t_{prep} [s]$	%-gap	t [s]	%-gap	t [s]	%-gap	t [s]	t_{OPT} [s]
K	42.8	46.4	1.6	0.17	4.4	0.13	5.5	0.03	74.5	139.3
Р	80.9	74.7	1.0	0.06	12.0	0.01	12.3	0.00	215.1	12.6
C	69.7	59.9	3.8	1.01	20.0	0.70	27.3	0.04	956.2	?
D	70.5	62.9	16.9	0.98	62.7	0.44	232.2	0.41	6834.6	?

Grp.					1			C+M+LI							
Grp.	%-gap	σ	t [s]	evals	sr [%]	%-gap	σ	t [s]	evals	sr [%]	%-gap	σ	t [s]	evals	sr [%]
K	0.2	< 0.1	4.2	592	69.1	0.2	< 0.1	4.3	907	70.1	0.3	< 0.1	3.7	727	70.3
Р	0.3	< 0.1	10.1	5076	46.1	0.3	0.1	11.6	7478	27.3	0.6	0.1	5.8	3040	19.1
C	2.2	0.1	17.4	6222	41.7	3.9	0.2	18.4	4264	24.6	2.4	0.2	11.0	1313	28.8
D	1.9	0.3	60.5	11582	27.4	3.7	0.9	64.7	9479	20.2	3.5	0.2	37.2	1697	18.2

Table 3. Average performance over 30 runs of different MA-variants, for K, P, C and D groups of PCSTP instances.

References

- D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the prize collecting traveling salesman problem. *Math. Prog.*, 59:413–420, 1993.
- 2. S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro. Local search with perturbations for the prize-collecting Steiner tree problem in graphs. *Networks*, 38:50–58, 2001.
- C. W. Duin and A. Volgenant. Some generalizations of the Steiner problem in graphs. *Networks*, 17(2):353–364, 1987.
- S. Engevall, M. Göthe-Lundgren, and P. Värbrand. A strong lower bound for the node weighted Steiner tree problem. *Networks*, 31(1):11–17, 1998.
- M. Fischetti. Facets of two Steiner arborescence polyhedra. Mathematical Programming, 51:401–419, 1991.
- M. X. Goemans. The Steiner tree polytope and related polyhedra. *Mathematical Programming*, 63:157–182, 1994.
- M. X. Goemans and D. P. Williamson. The primal-dual method for approximation algorithms and its application to network design problems. In D. S. Hochbaum, editor, *Approximation algorithms for NP-hard problems*, pages 144–191. P. W. S. Publishing Co., 1996.
- D. S. Johnson, M. Minkoff, and S. Phillips. The prize-collecting Steiner tree problem: Theory and practice. In *Proceedings of 11th ACM-SIAM Symposium on Discrete Algorithms*, pages 760–769, San Francisco, CA, 2000.
- G. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, and R. Weiskircher. A new lower bounding procedure for the prize-collecting Steiner tree problem. Technical Report TR-186-1-04-01, Vienna University of Technology, 2004.
- G. Klau, I. Ljubić, P. Mutzel, U. Pferschy, and R. Weiskircher. The fractional prize-collecting Steiner tree problem on trees. In G. D. Battista and U. Zwick, editors, *ESA 2003*, volume 2832 of *LNCS*, pages 691–702. Springer-Verlag, 2003.
- 11. A. Lucena and M. Resende. Strong lower bounds for the prize-collecting Steiner problem in graphs. Technical Report 00.3.1, AT&T Labs Research, 2000.
- K. Mehlhorn. A faster approximation for the Steiner problem in graphs. Information Processing Letters, 27:125–128, 1988.
- P. Moscato. Memetic algorithms: A short introduction. In D. Corne and et al., editors, New Ideas in Optimization, pages 219–234. McGraw Hill, England, 1999.
- 14. G. R. Raidl and J. Gottlieb. On the importance of phenotypic duplicate elimination in decoder-based evolutionary algorithms. In S. Brave and A. S. Wu, editors, *Late Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference*, pages 204–211, Orlando, FL, 1999.
- G. R. Raidl and B. A. Julstrom. Edge-sets: An effective evolutionary coding of spanning trees. *IEEE Trans. on Evolutionary Computation*, 7(3):225–239, 2003.
- 16. A. Segev. The node-weighted Steiner tree problem. Networks, 17:1–17, 1987.