
Three Evolutionary Codings of Rectilinear
Steiner Arborescences

Bryant A. Julstrom1 and Athos Antoniades2

1 St. Cloud State University, St. Cloud, MN 56301 USA
julstrom@eeyore.stcloudstate.edu

2 University of Nicosia, Nicosia, Cyprus
athos@athosonline.com

Abstract. A rectilinear Steiner arborescence connects points in the
Euclidean plane’s first quadrant and the origin with directed rectilinear
edges from the origin up and to the right. The search for arborescen-
ces of minimum total length is NP-hard and finds applications in VLSI
design. A greedy heuristic for this problem often returns near-optimum
arborescences. Three genetic algorithms encode candidate arborescences
as permutations of the points, as perturbations of the points’ locations,
and as perturbations of the points’ rectilinear distances from the origin.
In comparisons on twenty collections of 50 to 250 points in the first qua-
drant, the permutation-coded GA returns arborescences that are longer
than those of the greedy heuristic. The two perturbation-coded GAs re-
turn nearly identical results, their arborescences are consistently shorter
than those of the heuristic, and they preserve their advantage as the
number of points grows. These results support the usefulness of pertur-
bation codings in evolutionary algorithms for geometric problems like
the search for short rectilinear Steiner arborescences.

1 Introduction

An arborescence is a connected, directed graph that contains no cycles and in
which each vertex has at most one entering edge. Because an arborescence is
acyclic, one of its vertices has no entering edge. This vertex is the root, and
there is a directed path in the arborescence from it to every other vertex.

In a rectilinear Steiner arborescence (RSA), the vertices are points in the first
quadrant of the Euclidean plane and the origin. The origin is an RSA’s root,
and vertical and horizontal edges lead from it to all the points. On a path from
the origin, every edge leads either up or to the right; no edge ever turns back
toward either coordinate axis. Figure 1 shows a rectilinear Steiner arborescence
on twenty points in the first quadrant and the origin. Note that in an RSA, the
path connecting the origin to any point p has minimum length: the rectilinear
distance from the origin to p.

A minimum rectilinear Steiner arborescence (MRSA) is a RSA of minimum
total length. The minimum rectilinear Steiner arborescence problem, which seeks
a MRSA, has applications in VLSI design, where signals from a source must

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 1282–1291, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Three Evolutionary Codings of Rectilinear Steiner Arborescences 1283

(0,0)

Fig. 1. A rectilinear Steiner arborescence on 20 points in the first quadrant and the
origin

be delivered to terminals via rectilinear paths as quickly and economically as
possible [1]. Shi and Su [2] established that the MRSA problem is NP-hard.

Rao et al. [3] presented an elegant greedy heuristic, described in Section 2
below, for the problem. Córdova and Lee [4] extended this heuristic to points
in all four quadrants and observed that it often returns solutions that are very
nearly optimal. Leung and Cong [5] based a branch-and-bound exact algorithm
on the heuristic, and described another dynamic programming solution. Ram-
nath [6] described a new heuristic for the problem that he suggested extends
more effectively to three dimensions.

Given a collection of points in the plane, a rectilinear Steiner tree (RStT) is
a tree made up of vertical and horizontal line segments that connects them all;
rectilinear Steiner arborescences are a special case of RStTs. Several evolutionary
algorithms that seek short RStTs have been described [7] [8], but their codings of
RStTs are based on representations of simple spanning trees and do not adapt
well to RSAs. We describe and compare three codings designed to represent
RSAs. In the first coding, permutations of points dictate the order in which they
are greedily attached to growing arborescences.

The second and third codings are closely related and based on the heuristic
of Rao et al. Both of them encode RSAs as strings of real values that perturb
the points’ locations or distances. Such perturbations have been used in EAs for
other geometric problems, including the traveling salesman problem (Valenzuela
and Williams, 1997; Cohoon et al., 1998).

In the second coding, floating-point perturbations jiggle point locations, and
the heuristic of Rao et al. builds an arborescence based on the perturbed loca-
tions. In the third coding, perturbations are applied directly to the rectilinear
distances between points and the origin, and the heuristic of Rao et al. builds
an arborescence by examining the perturbed distances.

Genetic algorithms using the codings are compared to each other and to the
heuristic of Rao et al. on twenty instances of the minimum rectilinear Steiner
arborescence problem of 50 to 250 points. The GA that uses the permutation
coding cannot compete with the greedy heuristic, but the perturbation-coded
GAs, which take advantage of the heuristic, almost always improve on its al-

1284 B.A. Julstrom and A. Antoniades

ready short arborescences. The results of the two perturbation-coded GAs are
essentially identical, though the second perturbation coding uses less space.

The following sections of this paper describe the heuristic of Rao et al.; the
permutation coding of RSAs; the two perturbation codings of RSAs; the genetic
algorithms; and comparisons of the heuristic and the GAs.

2 A Greedy Heuristic

The heuristic of Rao et al. [3] greedily develops a short RSA on a collection of
points in the first quadrant and the origin. This presentation follows theirs, and
begins with some definitions.

For a point p = (px, py) in the first quadrant, let ‖p‖ = px + py; that is,
‖p‖ is the rectilinear distance from p to the origin. For two points p = (px, py)
and q = (qx, qy), let min(p, q) be the point (min{px, qx}, min{py, qy}). Figure 2
shows min(p, q) for two arrangements of p and q.

�

��

p

q

min(p,q)
�

� p

q = min(p,q)

Fig. 2. min(p, q) for two arrangements of p and q

One iteration of the heuristic identifies the points p and q for which
‖min(p, q)‖ is largest, replaces p and q by min(p, q), and appends the horizontal
and vertical segments connecting p and q to min(p, q) to the developing arbore-
scence. (One of these segments is degenerate when p and q share a horizontal or
vertical line.) The heuristic repeats this step until only the origin, which is one
of the points, remains.

An efficient implementation of the heuristic maintains a priority queue of the
points eligible to be merged and requires time that is O(n log n). An arborescence
that the heuristic finds is never more than twice as long as a shortest RSA [3].

3 A Permutation Coding

Prim’s algorithm [11] builds a minimum spanning tree in a weighted, connected,
undirected graph from an arbitrary vertex by repeatedly extending the tree with
the lowest-weight edge between a vertex in the tree and one not yet in it. In the
permutation coding, permutations of point labels represent RSAs via a decoding
algorithm based on Prim’s algorithm.

The decoder identifies the arborescence a permutation represents by begin-
ning with an arborescence consisting only of the origin. It attaches the points to

Three Evolutionary Codings of Rectilinear Steiner Arborescences 1285

the arborescence in their listed order, always increasing the arborescence’s length
as little as possible. The length of the resulting structure is the permutation’s
fitness, which we seek to minimize.

As in Prim’s algorithm, the decoder keeps track of the shortest legal connec-
tion from the growing arborescence to each point not yet in it. There are three
cases: an unconnected point’s nearest connection may be a point below it and
to its left, a horizontal segment below it, or a vertical segment to its left. When
a point joins the arborescence, the decoder uses this shortest connection.

In the first case, the decoder uses the horizontal and vertical segments whose
intersection lies nearer the line y = x, to facilitate shorter subsequent connec-
tions. The decoder records the segment or segments, accumulates their lengths,
and updates the shortest-connection information for the remaining unconnec-
ted points. Because updating occurs after each point joins the arborescence, the
decoder’s time, like that of Prim’s algorithm, is O(n2).

Figure 3 illustrates the operation of the decoder as it builds the arborescence
represented by the permutation (3 8 1 2 0 7 6 5 9 4). The origin is at the figure’s
lower left. The solid lines are the segments the decoder identified as it attached
the points 3, 8, 1, 2, and 0. The dotted lines indicate the segments added to
the arborescence as the decoder attaches the next three points. These points
illustrate the three cases listed above, in order.

(0,0)

0

1
2

3

4
5

6

7
8

9

Fig. 3. A snapshot as the decoding algorithm identifies the arborescence that the
permutation (3 8 1 2 0 7 6 5 9 4) represents. The solid segments attach the first five
points to the arborescence. The dotted segments will connect the next three

In particular, point 7 is joined to point 2, which is below point 7 and to the
left; one vertical and one horizontal segment make this connection. Next, point
6 is above a horizontal segment, to which a vertical segment joins it. Then point
5 is to the right of the recent vertical segment, to which the decoder connects
it with a horizontal segment. The remaining two steps will join point 9 to the
segment descending from point 6, and point 4 to point 5.

Random permutations can be generated in time that is O(n). Though an
earlier permutation-coded GA for this problem [12] used Goldberg and Lingle’s
Partially Mapped Crossover [13], the crossover operator here is Reeves’ C1 [14],
which has also been described, with different names, by Smith [15] and Prosser
[16]. C1 chooses a crossover point at random and copies one parent into the

1286 B.A. Julstrom and A. Antoniades

offspring up to that point. It then copies the remaining values in order from the
second parent into the offspring’s remaining positions. C1’s time is O(n).

Mutation chooses two positions at random in its one parent permutation and
exchanges the points at those positions, thus exchanging the times at which the
decoder appends the points to the arborescence. Copying the parent into the
offspring requires linear time.

4 The Long Perturbation Coding

In this coding, a sequence of 2n floating-point perturbations, two for each point,
represents a rectilinear Steiner arborescence. Identifying a genotype’s RSA requi-
res two steps. The first perturbs the points’ locations: if c[·] is a genotype and
p = (px, py) is the ith point, p is temporarily replaced by (px+c[2i], py+c[2i+1]).
The second applies the heuristic of Rao et al. to the perturbed point locations,
but the segments it records and their lengths (thus the length of the RSA) are
based on the original coordinates. The length of the RSA is the genotype’s fitn-
ess. Because the number of values in a genotype is twice the number of points,
we call this the long perturbation coding.

Random genotypes consist of values from a normal distribution N(0, σ1).
k-point or uniform crossover can be used with these genotypes. Mutation per-
turbs the values in the parent genotype with values from a normal distribution
N(0, σ2). The standard deviations σ1 and σ2 of the two normal distributions
depend on the magnitudes and ranges of the points’ coordinates.

5 The Short Perturbation Coding

In the long perturbation coding, the only effect of the perturbations a genotype
lists is to modify the rectilinear distances from the points to the origin. This
modifies the pairs of points the decoder chooses to merge and the order in which
it merges them. The same effect can be had more economically by coding the
changes in the points’ rectilinear magnitudes directly.

In the second perturbation coding, then, a genotype is a sequence of n
floating-point values, one for each point. The rectilinear Steiner arborescence
a genotype represents is identified by adding each point’s value to its rectilinear
distance from the origin. For a merged point min(p, q), the change in distance is
the sum of the changes associated with p and q. The heuristic of Rao et al. uses
the modified rectilinear distances to construct the RSA. Because the number of
values in a genotype is n rather than 2n, we call this the short perturbation
coding.

Again, random genotypes are built of values from a normal distribution
N(0, σ1). Positional crossover operators like k-point crossover are appropriate,
and mutation modifies each value in a parent genotype with values from a nor-
mal distribution N(0, σ2). The values of the standard deviations again depend
on the magnitudes and ranges of the points’ coordinates.

Three Evolutionary Codings of Rectilinear Steiner Arborescences 1287

6 Three Genetic Algorithms

Three generational genetic algorithms seek short rectilinear Steiner arborescen-
ces using the permutation, long perturbation, and short perturbation codings
and their respective operators. All the GAs initialize their populations with ran-
dom genotypes. They choose parents in tournaments without replacement and
generate each offspring by applying either crossover or mutation, never both. The
GAs are 1-elitist: they preserve the one best genotype of the current generation
unchanged into the next. They run through a preset number of generations, then
report the shortest RSA represented in their populations.

When applied to a problem instance with n points, each GA’s population
contained n genotypes. Each selection tournament compared two random con-
testants, and a tournament’s winner always became a parent. The probability
that crossover generated each offspring was 70%, and the probability of mutation
therefore 30%. The GAs ran through 3n generations.

7 Comparisons

The heuristic of Rao et al., the permutation-coded GA, the long-perturbation-
coded GA, and the short-perturbation-coded GA were compared on twenty in-
stances of the rectilinear Steiner arborescence problem. The instances are found
in Beasley’s [17] OR-Library1, where they appear as instances of the Euclidean
Steiner problem. The instances consist of random points in the unit square. The
library lists fifteen instances of each of many sizes; the present algorithms were
exercised on five instances each of n = 50, 70, 100, and 250 points.

The perturbation-coded GAs applied two-point crossover. With the long per-
turbation coding, the standard deviations of the initializing and mutating normal
distributions were σ1 = 0.020 and σ2 = 0.010 when n = 50 and 70, σ1 = 0.010
and σ2 = 0.005 when n = 100, and σ1 = 0.004 and σ2 = 0.002 when n = 250.
With the short perturbation coding, the two standard deviations were always
half of these values. The standard deviations are small because the ranges of the
points’ coordinates are small and, as the results below show, the points need not
“move” far to obtain shorter RSAs.

The heuristic of Rao et al. was run once on each instance, and the GAs were
each run 40 independent times. Table 1 summarizes the results of these trials.
For each instance, the table lists the size and number of the instance and the
length of the RSA identified on it by the heuristic of Rao et al. For each genetic
algorithm applied to each instance, the table lists the length of the shortest
RSA the GA discovered, the mean of the 40 RSA lengths from its trials, and the
standard deviation of those lengths.

Based on these results we make five observations. First, the permutation-
coded GA cannot compete effectively with the heuristic of Rao et al., particularly
on the larger instances. On the 50-point instances, the GA’s shortest arborescen-
ces are sometimes slightly shorter than those returned by the heuristic, but on
1 mcsmga.ms.ic.ac.uk/info.html

1288 B.A. Julstrom and A. Antoniades

Table 1. Results of the trials of the heuristic of Rao et al. and the three genetic
algorithms. For each instance, the table lists its number of points, number, and the
length of the heuristic’s RSA. For each GA on each instance, it lists the length of its
best RSA and the mean X and standard deviation s of the GA’s 40 RSA lengths

Instance Rao Permutations Long Perturbations Short Perturbations
n num et al. best X s best X s best X s

50 1 7.163 7.115 7.294 0.144 7.072 7.075 0.006 7.072 7.074 0.004
2 6.576 6.569 6.855 0.171 6.524 6.534 0.009 6.524 6.525 0.002
3 6.589 6.665 6.970 0.187 6.590 6.590 0.002 6.590 6.590 0.000
4 6.509 6.384 6.657 0.159 6.272 6.281 0.010 6.271 6.273 0.002
5 6.771 6.800 7.064 0.140 6.687 6.687 0.002 6.687 6.687 0.002

70 1 7.971 8.045 8.328 0.151 7.836 7.853 0.017 7.837 7.851 0.016
2 7.594 7.789 8.015 0.174 7.501 7.505 0.007 7.501 7.502 0.003
3 7.483 7.610 8.115 0.215 7.462 7.470 0.010 7.462 7.462 0.001
4 7.835 7.894 8.165 0.194 7.643 7.661 0.011 7.643 7.655 0.009
5 7.121 7.231 7.587 0.193 7.114 7.125 0.009 7.114 7.118 0.003

100 1 8.870 9.127 9.418 0.155 8.869 8.869 0.002 8.869 8.869 0.000
2 9.161 9.400 9.753 0.191 9.003 9.006 0.003 9.003 9.004 0.001
3 9.039 9.324 9.715 0.212 9.027 9.029 0.002 9.027 9.029 0.001
4 9.408 9.272 9.658 0.156 9.046 9.050 0.006 9.049 9.055 0.009
5 8.840 9.141 9.570 0.198 8.810 8.810 0.001 8.810 8.810 0.000

250 1 14.158 14.811 15.373 0.247 13.993 13.998 0.006 13.995 14.010 0.005
2 14.358 14.880 15.346 0.189 13.977 13.987 0.005 13.984 13.998 0.008
3 13.953 14.635 15.100 0.241 13.802 13.808 0.006 13.807 13.822 0.009
4 14.277 14.881 15.296 0.187 14.017 14.024 0.006 14.023 14.050 0.016
5 14.442 15.031 15.455 0.179 14.222 14.231 0.006 14.227 14.243 0.009

average its RSAs range from 1.8% to 5.8% longer, and the GA’s relative perfor-
mance deteriorates as the instances grow. On the 250-point instances, its shor-
test RSAs average 4.3% longer than the heuristic’s, and its average RSA lengths
range from 6.9% to 8.6% longer. Though the permutation coding’s Prim-based
decoding algorithm greedily joins points to arborescences with short connections,
it is not as effective as the heuristic of Rao et al. The permutation-coded GA
carries out a lot of computation for no discernible benefit.

Second, the results of the two perturbation-coded GAs are very similar, par-
ticularly on the smaller instances. Their mean results differ more than their best
results, but those differences are still small relative to the standard deviations of
the sets of RSA lengths. On the 250-point instances, the long-perturbation-coded
GA enjoys a small but consistent advantage over the short-perturbation-coded
GA, but in general it makes little difference to the perturbation decoding algo-
rithm whether the choices of points to merge are modified by jiggling the points’
positions or their distances from the origin.

Third, both perturbation-coded GAs almost always return shorter arbores-
cences than those discovered by the heuristic of Rao et al. Their shortest arbo-
rescences are shorter than the heuristic’s arborescences on every instance except

Three Evolutionary Codings of Rectilinear Steiner Arborescences 1289

the third with 50 points, and the average lengths of their trials’ arborescences
are shorter than the heuristic’s results on every instance except that one and, for
the long-perturbation-coded GA only, one more. This illustrates the effectiveness
of the heuristic of Rao et al. and suggests that perturbation codings should be
effective in GAs for other geometric problems for which good heuristics exist.

Fourth, the advantage of the perturbation-coded GAs over the heuristic is
small. On none of the instances does it exceed 3.9% (the long-perturbation-
coded GA on the fourth 100-point instance), and it is usually less. This supports
Córdova and Lee’s observation [4] that the heuristic of Rao et al. often identi-
fies short RSAs. It also explains the small standard deviations of the initializing
and mutating distributions of both perturbation-coded GAs. The test instances’
points lie in the unit square, and the heuristic is effective, so only small per-
turbations of points’ locations or distances from the origin are necessary to find
slightly shorter arborescences.

Last, the performance of the perturbation-coded GAs does not deteriorate as
the instances get larger. The lengths of the GAs’ arborescences are on average
1.0% to 1.6% shorter than the heuristic’s RSAs, regardless of the size of the
instances.

The genetic algorithms are, of course, much slower than the heuristic of Rao
et al. The perturbation-coded GAs execute the heuristic on every evaluation;
with population size n and running through 3n generations, they perform 3n2

such evaluations.
Figure 4 shows, for the first 250-point instance, the rectilinear Steiner ar-

borescence found by the heuristic of Rao et al. and the best RSAs found by
the three GAs. As reported in Table 1, the heuristic’s RSA has length 14.158.
The permutation-coded GA’s RSA has length 14.811, 4.6% longer than the heu-
ristic’s RSA. The long-perturbation-coded and short-perturbation-coded GAs
trees have lengths 13.993 and 13.995, about 1.2% shorter than the heuristic’s
RSA.

8 Conclusion

A rectilinear Steiner arborescence connects the plane’s origin to points in its
first quadrant with horizontal and vertical directed edges that lead up and to
the right. The search for RSAs of minimum total length, an NP-hard problem,
has applications to VLSI design.

The greedy heuristic of Rao et al. identifies arborescences that are often near-
optimum. Three genetic algorithms encode RSAs as permutations of their points,
as perturbations of the points’ locations, and as perturbations of the points’
rectilinear distances from the origin. The permutation-coded GA uses a Prim-like
decoder to identify the RSAs that permutations represent. The two perturbation-
coded GAs decode sequences of perturbations via the greedy heuristic.

In tests on twenty sets of 50 to 250 points, the permutation-coded GA iden-
tified arborescences longer than those returned by the greedy heuristic, and its

1290 B.A. Julstrom and A. Antoniades

(a) (b)

(c) (d)

Fig. 4. On the first instance with n = 250 points: The RSA identified by the heuristic
of Rao et al. (a); it has length 14.158, and the shortest RSAs found by the permutation-
coded GA (b) (14.811), the long-perturbation-coded GA (c) (13.993), and the short-
perturbation-coded GA (d) (13.995)

disadvantage grew with the number of points. Changing this GA’s parameter va-
lues or crossover operator might improve its performance, but it is unlikely that
it can ever compete effectively with the greedy heuristic. The two perturbation-
coded GAs returned nearly identical results that almost always improved the
heuristic’s, and they maintained this advantage on the larger instances. These
results illustrate both the effectiveness of the greedy heuristic and the usefulness
of perturbation codings in evolutionary algorithms for geometric problems like
the search for short rectilinear Steiner arborescences.

Three Evolutionary Codings of Rectilinear Steiner Arborescences 1291

References

1. Cong, J., Khang, A.B., Leung, K.S.: Efficient algorithms for the minimum shortest
path Steiner arborescence problem with applications to VLSI physical design. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 17
(1998) 24–39

2. Shi, W., Su, C.: The rectilinear Steiner arborescence problem is NP-complete.
In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms. (2000)
780–786

3. Rao, S.K., Sadayappan, P., Hwang, F.K., Shor, P.W.: The rectilinear Steiner
arborescence problem. Algorithmica 7 (1992) 277–288

4. Córdova, J., Lee, Y.H.: A heuristic algorithm for the rectilinear Steiner arbore-
scence problem. Technical Report TR-94-025, Department of Computer Science,
University of Florida (1994)

5. Leung, K.S., Cong, J.: Fast optimal algorithms for the minimum rectilinear Steiner
arborescence problem. In: Proceedings of the International Symposium on Circuits
and Systems. (1997) 1568–1571

6. Ramnath, S.: New approximations for the rectilinear Steiner arborescence problem.
IEEE Transactions on Computer-Aided Design 22 (2003) 859–869

7. Julstrom, B.A.: Encoding rectilinear Steiner trees as lists of edges. In Lamont,
G.B., Yfantis, E.A., Haddad, H., Papadopoulos, G.A., Carroll, J., eds.: Proceedings
of the 16th ACM Symposium on Applied Computing, New York, ACM Press (2001)
356–360

8. Julstrom, B.A.: A hybrid evolutionary algorithm for the rectilinear Steiner pro-
blem. In Barry, A., ed.: 2003 Genetic and Evolutionary Computation Workshop
Program, Chicago, IL (2003) 49–55

9. Valenzuela, C.L., Williams, L.P.: Improving simple heuristic algorithms for the
traveling salesman problem using a genetic algorithm. In Bäck, T., ed.: Proceedings
of the Seventh International Conference on Genetic Algorithms, San Francisco, CA,
Morgan Kaufmann Publishers (1997) 458–464

10. Cohoon, J.P., Karro, J.E., Martin, W.N., Niebel, W.D.: Perturbation method
for probabilistic search for the traveling salesperson problem. In: Applications
and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation.
Volume 3455 of Proceedings of SPIE. SPIE Press (1998) 118–127

11. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Technical Journal 36 (1957) 1389–1401

12. Julstrom, B.A., Antoniades, A.: Two hybrid evolutionary algorithms for the rectili-
near Steiner arborescence problem. In: Proceedings of the 2004 ACM Symposium
on Applied Computing, Nicosia, Cyprus (2004)

13. Goldberg, D.E., Robert Lingle, J.: Alleles, loci, and the traveling salesman problem.
[18] 154–159

14. Reeves, C.R.: A genetic algorithm for flowshop sequencing. Computers and Ope-
rations Research 22 (1995) 5–13

15. Smith, D.: Bin packing with adaptive search. [18] 202–207
16. Prosser, P.: A hybrid genetic algorithm for pallet loading. In: Proceedings of the

8th European Conference on Artificial Intelligence, London, Pitman (1988)
17. Beasley, J.E.: OR-library: Distributing test problems by electronic mail. Journal

of the Operational Research Society 41 (1990) 1069–1072
18. Greffenstette, J.J., ed.: Proceedings of the First International Conference on Ge-

netic Algorithms. In Greffenstette, J.J., ed.: Proceedings of the First International
Conference on Genetic Algorithms, Hillsdale, NJ, Lawrence Erlbaum (1985)

	Introduction
	A Greedy Heuristic
	A Permutation Coding
	The Long Perturbation Coding
	The Short Perturbation Coding
	Three Genetic Algorithms
	Comparisons
	Conclusion

