
K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 1220–1232, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Robust and Efficient Genetic Algorithms with
Hierarchical Niching and a Sustainable Evolutionary

Computation Model

Jianjun Hu1 and Erik Goodman2

1,2Genetic Algorithm Research and Application Group( GARAGe)
1Department of Computer Science and Engineering

2Department of Electrical and Computer Engineering
Michigan State University, East Lansing, MI, 48823

{Hujianju, Goodman}@egr.msu.edu

Abstract. This paper proposes a new niching method named hierarchical
niching, which combines spatial niching in search space and a continuous tem-
poral niching concept. The method is naturally implemented as a new genetic
algorithm, QHFC, under a sustainable evolutionary computation model: the Hi-
erarchical Fair Competition (HFC) Model. By combining the benefits of the
temporally continuing search capability of HFC and this spatial niching capa-
bility, QHFC is able to achieve much better performance than deterministic
crowding and restricted tournament selection in terms of robustness, efficiency,
and scalability, simultaneously, as demonstrated using three massively multi-
modal benchmark problems. HFC-based genetic algorithms with hierarchical
niching seem to be very promising for solving difficult real-world problems.

1   Introduction

Genetic algorithms are widely applied to challenging engineering problems today.
However, there are still several undesirable properties with current genetic algo-
rithms. The first one is the lack of a quality guarantee of genetic search. For example,
genetic algorithms are usually sensitive to the population size in terms of their search
capability. Unfortunately, it is difficult to estimate the required population size, de-
spite the extant population sizing theory [1,2]. Too large a population size leads to
low efficiency, and one that is too small may simply fail to achieve satisfactory re-
sults. The second undesirable property is that once a genetic algorithm stagnates dur-
ing a search, it usually loses most of its search capability, and there is no good way to
rejuvenate the run in an efficient manner. Simple restart or strong mutations may
waste the computations spent before by destroying the building blocks in the popula-
tion. Weak mutations may perturb the solutions a little bit, but they cannot incur sig-
nificant move in search space once the framework of the individual is established.
The third problem of current genetic algorithms is the lack of robustness such as large
variation of the performance of several runs due to the opportunistic and convergent
nature of current genetic algorithms.
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In the past three decades, many niching techniques have been proposed, which
have greatly improved the scalability and robustness of genetic search for difficult
multi-modal problems [3]. However, due to the convergent nature of the current ge-
netic algorithm framework, these niching approaches still meet difficulty in many
hard problems. Based on a sustainable evolutionary computation framework and a hi-
erarchical niching mechanism, this paper proposes a new genetic algorithm, named
QHFC, which can significantly improve robustness, efficiency and scalability over
that of a representative modern niching approach.

The rest of the paper is organized as follows. In section 2, existing commonly used
niching techniques including temporal niching and spatial niching are surveyed, and
their three inherent difficulties are outlined. Section 3 then presents the ideas of the
sustainable evolutionary computation framework of HFC [4,5], which underlies the
design of a new genetic algorithm with hierarchical niching, QHFC to be described in
Section 4. A set of three well-known genetic algorithm benchmark problems are used
to evaluate QHFC in section 5 and the results are compared to genetic algorithms with
deterministic crowding and restricted tournament selection in terms of scalability, ef-
ficiency, and robustness. A conclusion is then drawn in Section 6 along with future
work to be done.

2   Related Work

The basic framework of genetic algorithms was laid down by John Holland in the
1960s, as summarized in his book [6], following the Darwinian evolution theory of
natural selection. Most of the early formulations of evolutionary computation em-
ployed the principle of survival of the fittest. But it turned out that incautious keeping
of the best individuals leads to bad performance, as population diversity is critical to
good evolutionary search. The most widely used techniques to maintain diversity to-
day are niching techniques, including many well-known methods—for example, De
Jong crowding [7], deterministic crowding [8], fitness sharing [9], sequential niching
[10] and restricted tournament selection [11]. Niching is useful for many application
cases of genetic algorithms. It can be used to maintain interim sub-solutions to find a
single final solution or to find multiple final solutions. It is also widely used as an ef-
fective mechanism to form and maintain diversity in genetic algorithms to solve hard
problems. Other methods like reducing selection pressure, selection noise and opera-
tor disruption do not typically result in a GA with strong niching behavior. Readers
are referred to Mahfoud [3] for an excellent and almost exhaustive review of niching
methods.

Niching methods can be classified by their underlying mechanisms [3]. According
to the fitness functions employed, they can be categorized as single-environment ap-
proaches (such as crowding and sharing) and multiple-environment approaches (such
as implicit fitness sharing [12], and multi-objective function optimization). Since
multi-environment approaches are usually specific to special types of problems, we
are only interested in single-environment niching approaches in this paper. According
to whether niching is achieved across space or over time, we have spatial niching and
temporal niching. The former includes the widely used crowding and sharing, which
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form and maintain multiple niches within the space of a single population. The latter
form and maintain multiple niches over time. Only one temporal niching approach,
called sequential niching [10], has received attention in the literature to date.

Many experimental comparisons and analytical analyses have been conducted to
evaluate the advantages and disadvantages of existing niching methods [13, 14, 15].
Mahfoud [13] showed that sequential niching is weak on easy problems and also in-
capable of solving hard problems due to its lack of cooperation of individuals in
niches and the increasing difficulty to find remaining optima. Fitness sharing is a
widely used approach and is very strong if used with intelligent scaling and appropri-
ate setting of the sharing radius parameters, both of which, however, are difficult to
achieve; bad results have therefore been reported [14,15]. An undesirable property of
both sequential niching and fitness sharing is that they modify the search landscape
and thus may incur false optima and other unexpected search behaviors. It turns out
that deterministic crowding is one of the best spatial niching approaches. It is capable
and easy-to-use and its performance has been confirmed by several comparative
studies [13, 14]. Compared to fitness sharing, deterministic crowding succeeds with
smaller subpopulations and can often find global optima for hard problems [13]. As-
suming the selection pressure for high-fitness leads to premature convergence, Hutter
[16] proposed a Fitness Uniform Selection Scheme (FUSS) to preserve genetic diver-
sity. However, this approach suffers from insufficient selective pressure for exploita-
tion and unbalanced fitness distribution of the search space. More detailed compari-
son of FUSS and other diversity maintaining mechanisms with HFC framework [4] is
described in [5].

However, there are several difficulties in applying genetic algorithms to practical
real-world problems, which lead to situations in which current spatial niching ap-
proaches tend to fail miserably. The first constraint of using a genetic algorithm is that
we can often use only a very limited population size, at least relative to the size that
various sizing methods indicate is needed. However, as spatial niching methods work
by spreading the population out across much of the search space, and there are a huge
number of local optima, an enormous population size is usually needed to achieve a
satisfactory search solution. This has been proved by the population sizing theory as-
sociated with deterministic crowding [3]. However, too large a population size leads
to a large number of evaluations, which is usually undesirable. This dependence on
population size is even made worse by the fact that each niche has to be supported by
multiple individuals to search effectively around it.

As a result of the limited population size, spatial niching methods normally fail to
maintain a stable subpopulation at low-fitness area of the search space. For example,
fitness sharing tends to focus on several high-fitness niches during the later stages of
search. The consequence of the loss of low-fitness-level search is that the genetic al-
gorithm may lose the chance of discovering some essential building blocks or other
beneficial genetic material in later search stages, focusing instead on building blocks
discovered during the very limited sampling experiments in the early search stage.
The reason is that the increasingly high average fitness of the population makes it al-
most impossible to maintain effective search niches at very low fitness levels. This
principle is can be interpreted in biological terms as the cost of specialization, or ad-
aptation limiting diversification: adaptation to a specific niche (corresponding to high
fitness in a genetic algorithm) theoretically constrains a population's ability to subse-
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quently diversify into other niches [17]. It is in this sense that the ordinary genetic al-
gorithm model is convergent. The progress of fitness corresponds to an entrenching
process; the more progress a genetic algorithm makes, the less opportunity it has to
find radically new, beneficial structures and then possibly better solutions.

Another difficulty of current spatial niching methods is the uneven pace of prog-
ress in the various niches in the early stages. It is often the case that some early-
discovered niches tend to attract most of the individuals of the population, while other
niches with higher fitness do not attract enough individuals to explore their search
domains and expose their potential.

To handle the three difficulties mentioned above—the limited population size, loss
of exportation capability, and unbalanced pace of progress of different niches—a new
niching approach is needed, based on a new evolutionary algorithm model. In the
following section, a new niching method, called hierarchical niching, is proposed.  It
combines the benefits of both spatial niching and temporal niching, and is imple-
mented in a new sustainable evolutionary search model called the Hierarchical Fair
Competition (HFC) model.

3   Hierarchical Niching and the HFC Sustainable Evolutionary
Search Model

The basic idea of hierarchical niching is to introduce a continuous version of temporal
niching together with spatial niching to address the three difficulties outlined in the
previous section. Hierarchical niching here refers to a type of niching technique that
maintains continuing search at all (absolute) fitness levels, each of which is subject to
a spatial niching technique. It is naturally implemented under a sustainable continuing
evolutionary computation model, Hierarchical Fair Competition [4,5,18].

HFC employs an assembly-line structure in which subpopulations are hierarchi-
cally organized into different fitness levels [4]. Offspring of a given level are exported
to higher levels if their fitness qualifies them for migration. The openings that create
are filled by individuals imported from lower levels or generated by mutating other
individuals of the same level. The bottom level continuously generates raw genetic
material to explore for new building blocks, which are eventually exported to higher
fitness levels. The motivation of HFC is to maintain effective search at all fitness lev-
els to sustain the search process indefinitely and thus remove the problem of insuffi-
cient sampling and limited population size.  The continuing search capability of HFC
is achieved by ensuring a continuous supply and incorporation of genetic material in a
hierarchical manner, and by culturing and maintaining, but continually renewing,
populations of individuals of intermediate fitness levels. It also has the effect of re-
ducing the selection pressure within each subpopulation while maintaining the global
selection pressure to help ensure exploitation of good genetic material found. When
each subpopulation (level) in an HFC algorithm is updated by application of a spatial
niching technique, the hierarchical niching is established.

Hierarchical niching handles the three difficulties mentioned in Section 2 as fol-
lows. Since the available population size is too limited to accommodate all local op-
tima simultaneously, hierarchical niching resorts to the continuing search at lower fit-
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ness levels to ensure sequential identification of useful building blocks. This is differ-
ent from sequential niching in the fact that hierarchical niching only allows partial
import of recently discovered building blocks from lower levels, which promotes re-
combination of building blocks discovered early and later. This is in sharp contrast to
sequential niching. The issue of loss of explorative capability is handled by the HFC
model. In HFC, the lowest fitness level can continuingly generate genetic diversity
and export good building blocks to upper levels, so the search power of the genetic
algorithm is sustained, and it exhibits no tendency to converge. And because of the
mixing of late-discovered building blocks and early-discovered building blocks, HFC
works much better than other naïve sustainable search strategies like restarting or
multiple runs, in which random genetic material essentially just perturbs current indi-
viduals by destroying its building blocks rather than discovering new building blocks.
The insufficient sampling and unbalanced pace of progress problems are all handled
by the continuing search capability of the HFC model, since lower-level search may
go on indefinitely if needed.

Based on hierarchical niching and the HFC model, we have developed a genetic
algorithm named QHFC (Q means “quick”), which can achieve significant perform-
ance improvement compared to a GA employing another state-of-the-art niching
technique, deterministic crowding and restricted tournament selection. The spatial
niching used in the current version of QHFC is deterministic crowding, so the demon-
stration illustrates that QHFC can improve significantly on deterministic crowding
alone.

4   The QHFC Algorithm with Hierarchical Niching

QHFC algorithm is designed based on the HFC sustainable evolutionary computation
model, the hierarchical niching concept, and the adaptive breeding strategy. Like the
multi-population implementation of HFC, the whole population is divided into several
levels, each accommodating individuals with fitness within a certain fitness range, ex-
cept in special situations (to be explained in Table 1 at the end).  The QHFC algo-
rithm can be viewed as a set of cooperating GA agents, each searching at a different
fitness level, from the lowest (base) level to the top level. Hierarchical niching is im-
plemented as follows: the top level works as a generational GA with deterministic
crowding; all other levels update as steady-state GAs with deterministic crowding.

Compared to previous HFC genetic algorithms, one of the most important innova-
tions of QHFC is the adaptive breeding strategy implemented using potency testing
(discussed next). It provides a generic mechanism to maintain automatically the bal-
ance of exploration and exploitation. More specifically, it allows the algorithm to
search as greedily as possible, so long as the greedy strategy is sustainable. For easy
problems, the top level automatically gets more breeding opportunities and the search
is very aggressive. For hard problems where sustained diversity is a necessity, lower
levels are automatically bred more frequently to provide the needed influx of diverse
individuals for higher levels.

Potency here is defined as the capability of a fitness level in HFC to produce off-
spring with fitness high enough for export to higher HFC levels. This mechanism for
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maintaining the potency of all but the top level works as follows: starting from the
level just below the top level, breeding is conducted successively in each level, mov-
ing toward the lower levels, using steady-state breeding methods, while tracking the
number of offspring produced that are eligible for promotion (migration to the next-
higher fitness level). If a given number of promotable offspring are not produced
within a specified number of evaluations at a given level, then a “catch-up” procedure
is conducted: a specified fraction of that level’s individuals is replaced by individuals
taken from (and removed from) the next lower level, and popsize genetic operations
and evaluations are performed. (popsize is the size of the population at the receiving
fitness level.)  Then, in turn, the openings created at the next lower level are immedi-
ately filled with individuals removed from the level below that, etc., until, at the low-
est level, the openings are filled by new randomly generated individuals.  However,
except for the further genetic operations and evaluations performed at the level where
the "catch-up" procedure was initiated,  further genetic operations and evaluations are
not performed as part of this “ripple down” filling of openings.  This “double loop”
procedure assures that each level, before it next breeds, has either recently produced
individuals worthy of promotion to the next level or has received new individuals
from the next lower level, thus ensuring its potency to export higher-level individuals.
This mechanism for sustaining the potency of search does not require evaluating any
measure of the distance among genotypes or phenotypes, and could also be applied to
GP and other sorts of problems.

The QHFC algorithm is summarized in Table 1 at the end. Compared with HFC-
GP [4] and AHFC-GP [5], QHFC has many fewer parameters to specify, and the ad-
mission thresholds are automatically adjusted.

5   Experiments

As discussed in Section 2, we are interested in hard problems with a large number of
local optima, typically massively multimodal, with deception. These factors can often
expose the limitation of current niching methods if used with a conventional evolu-
tionary computation model. Here, three widely-used massively multimodal and/or de-
ceptive GA test problems are used to evaluate the performance of QHFC with hierar-
chical niching, and the performance is compared to the modern niching methods
deterministic crowding [8] and restricted tournament selection [11], whose perform-
ances have been deemed excellent by several other researchers [13,14].

The three benchmark problems used here include:
1) f3deceptive: order-3 deceptive problem [19], with problem sizes n=60, 90,

120, 150, 180, 240, 300

This deceptive function is composed of separable building blocks of order 3 and
has one global optimum at 111…1 and a deceptive attractor at 000…0. There are
many local optima in the landscape of this function.

2) 6bipolar: order-6 bipolar deceptive problem [19], with problem sizes n=60,
90, 120, 150, 180, 240, 300
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This deceptive function is composed of separable building blocks of order 6 and
has one global optimum at 111…1 and a deceptive attractor at 000…0. There are
many local optima in the landscape of this function.

3) trap5: order-5 trap problem [19], with problem sizes n=60, 90, 120, 150, 180,
240, 300

This deceptive function is composed of separable building blocks of order 5 and
has one global optimum at 111…1 and a deceptive attractor at 000…0. There are
many local optima in the landscape of this function.

We compared QHFC with one generational GA with deterministic crowding (DC),
described in [8], and one steady state GA with restricted tournament selection (RTS)
[11]. Since it is difficult to find an appropriate scaling factor and niching radius,
evaluation of and comparison with fitness sharing is not reported. But since fitness
sharing belongs to the same category of spatial niching techniques and also lacks the
capability of maintaining low-level search at later evolutionary stages, we expect that
hierarchical niching with QHFC could also improve on the effectiveness of fitness
sharing in the same way as it improves deterministic crowding demonstrated below.

Three criteria are used to evaluate the performance of the genetic search:
• Scalability: within a given number of functional evaluations (1,000,000),

what is the maximum problem size it can solve to optimum in at least 85%
(27) of the total 30 runs?

• Efficiency:  for the problem sizes that both QHFC and DCGA can solve,
what is average number the evaluations needed to find the global optimum?

• Robustness: What is the fitness variation at the end of 1,000,000 evaluations
and what is the variance of the number of evaluations needed to find a global
optimum when it is possible (for simplicity, we assume that all failed runs
will find the global optima in the next evaluation and use 1,000,000 as the
needed evaluations to find a global optimum)? How many runs out of 30
have found the global optimum solution?

The experimental parameters are set as follows:
For QHFC, in all the experiments, with different population sizes and different

problem sizes, a single set of parameters was used.
L: 5          γ : 0.8         breedTopFreq: 2       detectExportNo: 2
percentRefill:  0.25       catchupGen: 20        noprogressGen: 2

All three algorithms were tested with the same set of parameters for all problems and
all problem sizes. The population size for all experiments was 500. All experiments
were allowed a generous maximum of 1,000,000 evaluations, and each experiment
was repeated 30 times. The per-bit mutation probability for the genetic algorithm with
DC and RTS was 0.005, and was zero for QHFC. The window size of RTS was 20,
and the tournament size was 2. Note that by adaptive potency testing, QHFC achieves
adaptive mutation implicitly. The results of the experiments are summarized in Fig. 1:
a-f.

Fig. 1 (a)-(c) shows the average number of evaluations to find the global optimum
or to fail because of reaching the limit of 1,000,000 evaluations. It is clear that for all
three problems, QHFC found the global optimum with the fewest evaluations, the dif-
ference being especially significant in the case of large problem sizes.  QHFC also
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won by having the smallest variation in the number of evaluations needed to find the
global optimum. Fig. 1(d)-(f) presents the number of successful runs out of 30 for the
three tested niching techniques. The RTS method performed the worst, solving well
only for problem size 60 for the three problems, and its performance degraded dra-
matically when the problem size increased. The DC method was better, but also suf-
fered severely from the limit of the population size. When the problem size reached a
threshold, the DC performance also degraded dramatically, as shown in (d-f). For the
f3deceptive and 6bipolar problems of size 300, DC only achieved a success rate of
50%. None of the DC runs succeeded for trap5 with a problem size of 300. We also
find that genetic algorithms with DC and RTS are very sensitive to the mutation rates
for the benchmark problems. When we set the bit mutation probability as 0.00005, re-
stricted tournament selection works much better than deterministic crowding, but both
are still much worse than QHFC. It is extraordinary that for all three problems, QHFC
achieved excellent scalability and solved the problems reliably even at a problem size
of 300. Further experiments showed that the performance of QHFC in solving even
larger problem sizes degraded very slowly. In fact, experiments (not presented in de-
tail here for lack of space) showed that while DC needed a population size of 4000 to
solve a 256-bit HIFF problem [20] with ½ success rate, QHFC solved it reliably with
a population size of only 200 for 27 runs out of 30.

We also compared the efficiency of QHFC with the Bayesian Optimization Algo-
rithm (BOA) [19]. For the f3deceptive problem of size 180, BOA needed 160,000
evaluations, while QHFC took an average of 162,717 for 30 runs. For the 6bipolar
problem of size 180, BOA took 150,000 evolutions while QHFC needed, on average,
134,966 evaluations. For the trap5 problem of size 180, BOA required 220,000
evaluations, while QHFC took only 145,700 evaluations. Remember that QHFC uses
the simple two-point crossover, while BOA explicitly learns the building blocks in
these decomposable benchmark problems. It is clear that for decomposable problems
with tight building blocks, QHFC with simple crossover is very competitive with
BOA. However, BOA works for arbitrary ordering of the variables, in which case the
2-point crossover used in QHFC simply fails, even with the help of the hierarchical
niching of QHFC. This demonstrates that the design of representation, linkage learn-
ing, and operator design are critical to effective genetic search.  It also suggests the
possibility of enhancing of BOA-type methods with a hierarchical niching mecha-
nism.

6   Discussion and Conclusions

Robustness, efficiency and scalability are among the most desirable qualities of ge-
netic algorithms. This paper proposed a genetic algorithm, QHFC, which can signifi-
cantly improve these three performance criteria without significant additional com-
puting effort.  The proposed hierarchical niching technique combines the ideas of
spatial niching and temporal niching to avoid the pitfalls of insufficient sampling,
limited population size, and loss of low-level search capability, all of which contrib-
ute to the limited search capability of spatial niching techniques. It should be pointed
out that hierarchical niching—the idea of implementing spatial niching at each level
of the HFC model—is very different from another temporal niching method, sequen-
tial niching. The former achieves good search by promoting the cooperation of niched
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Fig. 1.  Comparison of hierarchical niching (QHFC), deterministic crowding (DC), and re-
stricted tournament selection (RTS) in terms of scalability, robustness and efficiency. It is clear
that for simple problems or when the problem size is small enough for a population size of 500
is sufficient, DC and RTS work as well as QHFC. However, both DC and RTS suffer from the
limited population size and fail for more difficult problems. QHFC clearly has better scalabil-
ity, robustness, and efficiency.
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individuals in all levels, while in the latter method, individuals in the previous run
stage cannot help and usually hinder the discovery of later solutions. Compared to
spatial niching, hierarchical niching here does not lose the search capability at low
fitness levels, while spatial niching methods such as fitness sharing and deterministic
crowding are strongly limited by population size and eventually lose search capability
at low fitness levels. Another feature of hierarchical niching is that the niching tech-
nique used within each level could easily be some method other than the deterministic
crowding used in this paper.

Table 1.   QHFC Genetic Algorithm with HierarchicalNiching
Procedure do_potency_testing ( l  )

l  is the level for potency testing
catchup_evaluation ?  0
exportedIndividual ?  0

while catchup_evaluation  <  catchupGen* || lP and exportedIn dividual < detectExportNo

randomly pick two individuals from level l
crossover, mutate, and evaluate

if fitness of offspring > 1l
admf + ,

promote it (them) to level 1l +  (replacing randomly any but the best individual or other
individuals just promoted) and call import_from_below to replace its (their) closest
parent(s)

exportedIndividual ? exportedIndividual  +1
else

do deterministic crowding with the 4 -member fa mily
endif
end while
if  fail to promote detectExportNo individuals
return not success
else
return success
Procedure end

Procedure import_from_below ( l, nImport, victimList  )

l : the level into which to import new individuals from next lower level
nImport: the number of individuals to import from next lower level
victimList : a list of indices  of individuals which will be replaced by the imported new
individ uals

if l =0

randomly generate nImport  new individuals and import into (lowest)  level l
else

randomly choose nImport  individuals from  level 1l − to replace individuals in victimList  .
If victimList  is empty, randomly choose victim individual from current level. Put the

indices of the new immigrant i ndividuals from level 1l − into the level 1l −
newVictimList,  whose openings will ev entually be filled with i n dividuals from level

2l − (this assures the replacement of individuals removed from level 1l − )
call import_from_below ( l -1, nImport , newVicti mList)
Procedure end
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 Parameters: 

Total population size | |tP  L: number of subpopulations (levels) of QHFC 

γ : size factor parameter,  the ratio of higher level archive size w.r.t next lower level archive 

size 1| | | | .k kP P γ− =  

breedTopFreq: number of generations to breed top level between potency testing of lower 
levels (via breeding) 
detectExportNo: number of individuals from a level that must be promoted for the level to be 
considered potent 
catchupGen: maximum evaluations in any but top level, normalized by level’s popsize, for 
potency test 
percentRefill:  percentage of this level’s popsize to import from next lower level when there is 
no progress in the top level, or when lower levels fail potency test (do not furnish  

detectExportNo qualified immigrants within specified number of evaluations) 
noprogressGen: maximum number of generations without any fitness progress in top level 
before triggering importing of percentRefill individuals from next lower level 
QHFC Main procedure 
1. initialization 

rancomly initialize and evaluate the HFC subpopulations 
calculate the average fitness of the whole population and set it as the admission fitness of 

the bottom level, minf , which is fixed thereafter 

remove individuals with fitness less than minf , and equally distribute the rest of 

the individuals among the levels, according to fitness, thereby determining the 
admission threshold of each level 

    generate random individuals to fill the openings in each archive 
2. while  termination_condition is false 

breed the top level for breedTopFreq generations using generational deterministic 
crowding and applying mutation after each crossover 
if no progress on best fitness of the whole population for noprogressGen 
generations, call import_from_below,  but ensuring the best individual is not 

replaced if average fitness of top level > 2 1L
admf −  - 2L

admf − , adjust admission 

thresholds by evenly allocating fitness range to each level:  

 min max min( ) /k
admf f k f f L= + −   for k=0 to L-1 

where 
k

admf  is the admission fitness of level k, maxf is the maximum fitness of the 

whole population 
    //potency testing 

for each level from L-2 to 0 
   call do_potency_testing 
       if not succeed 

call import_from_below to replace (at random) percentRefill percentage of the 
current level, breed one generation at this level 

         endif 
  end for 
end while 
End Main 
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The significant performance gain in terms of search sustainability, efficiency, and ro-
bustness of QHFC again demonstrates the usefulness of hierarchical niching and of
the hierarchical fair competition (HFC) model for sustainable evolutionary search.
These algorithms seem to be especially useful for large-scale long-term artificial
evolution experiments such as topologically opened synthesis of electric circuits,
mechatronic systems, etc.

Our future work will include an experimental comparison study of QHFC with
FUSS [16] and fitness sharing with different parameter configurations such as the
population sizes. Although our previous work [21] shows that depending on large
population size to maintain diversity is not a scalable solution to premature conver-
gence problem, more experiments with more test problems would be helpful to further
justify this hypothesis.
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