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Abstract. We are interested in schema disruption behavior when chromosomes
are structured as binary trees. We give the definition of the disruption probability
dp(H) of a schema H, and also the relative diameter rel∆(H) of H. We show that
in the general case that dp(H) can far exceed rel∆(H), but when the chromosome
is a complete binary tree then the inequality dp(H) ≤ rel∆(H) holds almost
always. Thus the more compactly the tree chromosome is structured, the better is
the behavior to be expected from geneticism.

1   Introduction

The field of Genetic Algorithms (GAs) is a heuristic problem-solving paradigm which
is inspired by the machinations of evolution. There is some problem of interest at hand.
There are candidate solutions to the problem, some of which are better (or fitter) than
others. Usually the number of possible candidate solutions is enormous, too large to
search exhaustively. In GAs, a population of candidate solutions is maintained; this
population is a small sampling of the full solution space. The population is subjected to
such evolutionary forces as survival of the fittest, mating with crossover, and mutation.
The hope is that as the population evolves, fitter and fitter solutions will appear.

Candidate solutions differ one from another by having different property values for
certain properties that are pertinent to the problem at hand. We represent (identify) the
candidate solution with the property values that characterize it.

In classical Genetic Algorithms as invented by Holland [1] and popularized by
Goldberg [2], candidate solutions (which we will begin to refer to as individuals and
chromosomes) in the population are bits strings, all of the same length N. Thus, each is

an element of the Cartesian product space {0, 1}N. We here emphasize that the bits are
arranged in a linear sequence. For a theoretical analysis of the convergence behavior of
an evolving population, the notion of the schema is introduced. Let the symbol * be a
don’t-care symbol. Then a schema H (for hyperplane) is defined to be an element of

{0, 1, *}N. The positions in H which are the don’t-care symbol are termed the free
positions; the positions occupied by 0’s or 1’s are the fixed positions. A schema stands
for an entire subspace of the possible bit strings, namely, those bit strings which agree
with the schema at its fixed positions. An element of this subspace is termed a repre-
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sentative of schema H. The defining length δ(H) of a schema means the distance
between its outermost fixed positions. For example, δ( (*, *, 0, 1, *, *, *, 1, *) ) equals
5.

The term building block is used to signify a group of related bits, plus values (0’s or
1’s) for them, that enhance the fitness of an individual whose bits are so assigned.
Clearly, a schema gives the characterizing properties of a building block.

Under one-point crossover for mating by two parental chromosomes, we uniformly
randomly choose one of the N - 1 links between the N bits, cut both parents at that
same point, and the parental fragments that result are interchanged to form the two
children. A cutpoint is said to disrupt a schema if it falls between the two outermost
fixed positions. The disruption probability dp(H) is the probability that this occurs, and
clearly dp(H) equals δ(H) / (N - 1). The term disruption is appropriate, since if one par-
ent is a representative of H, and the cutpoint falls between the two outermost fixed
positions, then it is possible that neither child is again a representative of H. Thus,
building blocks can fall away under mating with crossover. Clearly the disruption
probability of a schema (or building block) is diminished if the pertinent bits are
located close together.

There is an obvious weakness of the standard linear arrangement of bits in a chro-
mosome: a bit has two nearest bits, not more. What if it is in the nature of the problem
at hand that a bit should be equally close to three, or four, or more, other bits?

We are interested in chromosomes whose bits are arranged in ways other than as a
linear sequence. In particular we are interested in chromosomes structured as binary
trees.

Alternative bit arrangements have frequently been used in applications written up
in the literature. As for theoretical study, non-linear bit arrangements and a schema
theory for such, also have been studied. For instance, Greene [3] has a non-linear
schema theorem which may apply when the chromosome is structured as an arbitrary
connected graph. As for chromosomes structured as trees, study of schema theory for
them has principally come from those in the Genetic Programming (GP) community.
In GP approaches, individuals are programs, specifically functions, realized as expres-
sion trees. Mating with crossover consists of clipping out and exchanging subtrees
between the two parents. The individuals in a population can have quite different
shapes, which fact complicates a number of issues, such as, what will be the definition
of a schema, and what relation will hold between the locations of the cutpoints in the
two parents? For Koza [4], O’Reilly [5], O’Reilly & Oppacher [6], and Whigham [7],
schemas are expression fragments which incorporate don’t-care symbols, and which
are further characterized by not being anchored to some fixed position within the
expression tree and moreover can be instantiated multiple times within the same indi-
vidual. In Rosca [8], the innovation is that a schema is an expression fragment which is
anchored at the root of the expression tree.

Our own interest in non-linear bit arrangements did not originate from a prior inter-
est in genetic programming. Rather, our intuition has been that strictly linear bit
arrangements are simply too confining and too inflexible for GAs. Furthermore, we
envision a population of chromosomes that all have the same shape. From within the
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GP community, the work that comes closest to our own efforts is that of Poli & Lang-
don [9]. Their definitions of schema, mutation, and crossover are the closest carryover
to GP of the allied notions from standard GAs with linear bit arrangements. For Poli &
Langdon, a schema is a rooted tree of symbols, where the root is to correspond to the
root of an expression tree that is an individual in the population. Below, we will remark
on similarities between our present research and the approach of Poli & Langdon.

In this paper we are interested specifically in the disruption probability dp(H) of
schemas H in chromosomes structured as binary trees. Knowing about the value of
dp(H) must figure in the statement and proof of any schema theorem akin to the classic
one by Holland (confer [1] or [2]). A closed expression that exactly calculates dp(H)
for arbitrary H is likely hard to come up with. Hence we seek an expression which is
more easily calculated and which may be an upper bound for dp(H). An insight which
should be carried over from the linear case is that we should explore how dp(H) is
related to how closely situated together are the fixed positions of schema H.

2   Binary Trees

We assume the reader is familiar with binary trees. Trees consist of nodes, connected
by edges. All the binary trees we consider are finite. We use T to name a binary tree.
The level of a node: the root of the tree is at level zero; the level of a non-root node is
one greater than the level of its parent. A level is full if it contains the maximum possi-

ble number of nodes, which is 2level. A binary tree is full if its every level is full. A
binary tree is complete if its every level is full, except possibly the bottom level. (The
usual definition of complete insists that the leaves on the bottom level are packed
together without gaps off to the left, but we do not need this stipulation.)

There is a unique path between any two nodes in a binary tree. We define the dis-
tance between two tree nodes to be the length of that path. This notion of distance sat-
isfies the triangle inequality, dist(x, z) ≤ dist(x, y) + dist(y, z). Given a set S of nodes in
the tree, the diameter ∆(S) is the maximum distance between any two elements of S.

An individual whose bits are linked as the nodes in some binary tree is an easily
comprehended concept. A schema will be the obvious analogue from linear chromo-
somes: imagine replacing some of the bits (0’s or 1’s) with the don’t-care symbol. We
define the relative diameter rel∆(H) of a schema H to be the ratio ∆(fixed(H)) / ∆(T),
where fixed(H) is the set of fixed positions of H. We abbreviate ∆(fixed(H)) to simply
∆(H). Moreover, we sometimes will use the same name H to designate just the fixed
nodes of schema H. The relative diameter rel∆(H) captures the notion of how closely
together the fixed positions of H are situated in the host chromosome T.

We assume all our individuals have the same shape as binary trees. Cutting one
edge in a tree divides the tree into two connected subtrees; these fragments are to be
used to construct two children at crossover time.

Cutting a tree edge separates two nodes x and y if that edge is one lying in the
unique path between x and y; in this case x and y end up in different fragmental sub-
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trees. A cut separates a set S of tree nodes if there are two nodes in S which are sepa-
rated by the cut. A cut disrupts a schema H if it separates the fixed positions of H. We
intend to practice mating with crossover by uniformly randomly cutting one edge of
chromosomal tree T, and interchanging parental fragments to form the children. Hence
we will define the disruption probability dp(H) of schema H to be the fraction (number
of edges that disrupt H) / (total number of edges in T).

Given a schema H of tree T, we let TH denote the smallest subtree of T which con-
tains all the fixed positions of H. TH unequivocally exists, for it is the intersection of all
the subtrees of T which contain the fixed positions of H. (Our research was done inde-
pendently from Poli & Langdon [], but there is an overlap of ideas. The number of
edges that disrupt H  comes closest to what they term the defining length of a  tree
schema, and they give the name minimum tree fragment to TH.)

We state without proof the following results.

Proposition 1: (a) Each leaf of TH is an element of H;
(b) ∆(H) = ∆(TH), and rel∆(H) = rel∆(TH);
(c) The set of T-edges that separate H is the same as the set that separate TH;
(d) dp(H) = dp(TH).

We will be interested in if and when the relation dp(H) ≤  rel∆(H) holds. First we
observe that a linear sequence of bits (as in classical GAs) is in particular also a binary
tree of bits, and in this case dp(H) equals rel∆(H) and both equal δ(H) / (N - 1) where,
recall, δ(H) is the defining length of H and N is the number of bits in the sequence.

3 The General Case: Arbitrary Binary Trees

Proposition 2: There is no constant k > 0 which will make the inequality
hold for arbitrary schemas H in arbitrary binary trees T.

Proof: Consider the binary tree T illustrated in Figure 1. The left subtree Tl of
root r is a full binary tree of height h. The (fixed nodes of) schema H consists of the
nodes on the bottom level of subtree Tl. The rest of tree T besides Tl consists of the
root r and the depicted nodes trailing off from it in a line to the right; we term all
these (including r) as tail nodes and we let t  be the number of them. The smallest
subtree TH of T which contains (the fixed nodes of) H is the left subtree Tl, and it has

nodes and therefore edges. The tail nodes add another t edges

to tree T, and it follows that . We will soon choose , in

which case . Now consider the ratio

dp H( ) k rel∆ H( )⋅≤

2
h 1+

1– 2
h 1+

2–

dp H( ) 2
h 1+

2–

2
h 1+

2– t+
------------------------------= t h>

rel∆ H( ) 2h
h t+
-----------=
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 =  .

If we choose , then and hence ratio , which

can be made arbitrarily large. This proposition now follows.

4   Complete Binary Trees

Proposition 3: The inequality  holds for all schemas H and all
complete binary trees T, with the exception of certain small trees T, and certain sche-
mas H containing very large numbers of fixed positions.

Proof: Recall the notation, TH is the smallest subtree of T which contains (the

fixed positions of) H. If 1 is the value of the fraction = (number of edges that
separate TH) / (number of edges in T), it follows that TH = T, then

, then = 1, so that . Thus, the

interesting case is when the fraction  is strictly less than 1.
Given a certain diameter ∆, there are many schemas H which have that diameter.
Some are large and some are small, and the same can be said for the enclosing sub-
tree TH of H. Now imagine the diameter value as a given. We will find an upper

bound for fraction , by calculating the most that its numerator can be, and
then the least its denominator can be and still exceed the numerator.
The numerator of can be as large as the number of edges in the largest possi-
ble subtree TH whose diameter is the given diameter value. Let hd be a deepest node
of H. We introduce some notation: let h be the height of tree T; let d be the depth of
hd; let . Every node of TH must be within distance of any

t tail nodes

Fig. 1. Example of a wayward binary tree

root r

height h
fixed nodes of schema H

R dp H( )
rel∆ H( )
---------------------=

2
h 1+

2–

2
h 1+

2– t+
------------------------------ h t+

2h
-----------⋅

t 2
h 1+

=
2

h 1+
2–

2
h 1+

2– t+
------------------------------ 1

2
---≈ R

h t+
4h

-----------≈

dp H( ) rel∆ H( )≤

dp H( )

∆ H( ) ∆ T H( ) ∆ T( )= = rel∆ H( ) dp H( ) rel∆ H( )=

dp H( )

dp H( )

dp H( )

δ ∆ H( )= δ ∆ H( )=
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given element of H, in particular this is so for hd. We will count how many nodes can
possibly be in our chromosomal tree T, be no deeper than hd, and be at distance at
most δ from hd. Subtree TH can be as big as that set of nodes. (For emphasis let us
note that according to Proposition 1, also the set of fixed nodes of H can be that big.)
After we have determined TH, we will find the smallest complete binary tree T of

height h such that . These two, T and TH, will determine the largest that frac-

tion  can be, for the given diameter value.

Either diameter is even or it is odd. And either or . In our proof we
will consider four cases. We will give full details for two of the cases and leave the
details of the other two cases to the reader.

Case I: even : (See Figure 3 for guidance.) Consider the path of length , con-
sisting of ancestor nodes from hd towards the root of T; denote the nodes on this path
as hd = v0, v1, v2, ..., vδ. Subtree TH could contain all the nodes in a full subtree,

T T H⊇

dp H( )
δ δ d≤ δ d>

δ d≤ δ

height δ/2

height δ/2 -2

height δ/2 -3

hd = v0

vδ/2

vδ/2 +2

vδ/2 +1

vδ -2

vδ -1

vδ

root r

Fig. 2. δ is even, δ d≤
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rooted at and having height . Similarly, TH could contain all the nodes in a

full subtree, rooted at the second child of , and having height . Sim-

ilarly for a full subtree, rooted at the second child of , and having height

. And so on, back to a full subtree, rooted at the second child of , and

having height 1; then a full subtree of height 0 that consists exactly of the second
child of , and, finally, node by itself, of course. How many nodes have we

to count? There are the full subtrees we have identified, and also the

ancestor nodes , ..., which are not inside the identified subtrees. The

sizes of the full subtrees are the exceptional size , then sizes

, , down to . Altogether the number of nodes we are

tallying is = =

. This latter value is the most nodes that TH can have, hence the most

edges that can be in TH is one less, or .
Continuing with Case I, we now consider host chromosomal tree T. If the depth d of
node hd is less than the height h of T, then to be a complete tree of height h, T can be

as small as having only one node on level h, in which case T has nodes and there-

fore edges. But if the depth d of hd equals the height h of T, then since we

have allowed TH to be as big as containing the full subtree of height rooted at

node , it follows that T will be required to have at least nodes on its bot-

tom level h. Then T must have at least nodes and hence at least

edges. Ergo, is bounded above by if , but

bounded above by , if .

Since T is complete but not necessarily full, is either or ; in either

event, .

Putting our two bounds together, and for now focusing on the possibility that ,

our task is to determine if or when , or equivalently, if or when

vδ 2⁄ δ 2⁄

vδ 2⁄ 1+ δ 2⁄ 2–

vδ 2⁄ 2+

δ 2⁄ 3– vδ 2–

vδ 1– vδ

δ 2⁄ δ 2⁄
vδ 2⁄ 1+ vδ

2
δ 2⁄ 1+

1–

2
δ 2⁄ 1–

1– 2
δ 2⁄ 2–

1– 2
1

1–

2
δ 2⁄ 1+

2
δ 2⁄ 1–

2
δ 2⁄ 2– … 2

1
+ + +( )+ 2

δ 2⁄ 1+
2

δ 2⁄
2–( )+

3 2
δ 2⁄⋅ 2–

3 2
δ 2⁄⋅ 3–

2
h

2
h

1–

δ 2⁄

vδ 2⁄ 2
δ 2⁄

2
h

2
δ 2⁄

1–+

2
h

2
δ 2⁄

2–+ dp H( ) 3 2
δ 2⁄⋅ 3–

2
h

1–
--------------------------- d h<

3 2
δ 2⁄⋅ 3–

2
h

2
δ 2⁄

2–+
-------------------------------- d h=

∆ T( ) 2h 2h 1–

rel∆ H( ) δ
2h
------≥

d h<

3 2
δ 2⁄⋅ 3–

2
h

1–
--------------------------- δ

2h
------≤
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. Define the function f by . At issue is if or when

. Since function f is near-exponential, certainly this latter inequal-

ity will hold if is not too near its maximum value of , except the inequality may

possibly fail for small values of h. On the other hand, in Case I, and so

is not near .
We used a computer program to examine if or when the inequalities

, for , and

, for

held, for T heights h in the range from 2 to 100 (T of height 1 amounts to trivialities),
and found the following results. There were only three failures, involving trees of
heights 2 and 3.

Case II: odd . (See Figure 4 for guidance.) Note that since hd is a deepest node

3 2
δ 2⁄⋅ 3–

δ 2⁄
--------------------------- 2

h
1–

h
--------------≤ f n( ) 2

n
1–

n
--------------=

3 f δ 2⁄( )⋅ f h( )≤
δ 2h

δ d h≤ ≤ δ
2h

3 2
δ 2⁄⋅ 3–

2
h

1–
--------------------------- δ

2h
------≤ even δ d h<≤

3 2
δ 2⁄⋅ 3–

2
h

2
δ 2⁄

2–+
-------------------------------- δ

2h
------≤ even δ d≤ h=

δ d>

height δ 2⁄ 1–
hd = v0

vd -1

root r = vd

Fig. 3. δ is odd, δ d>

height δ 2⁄ 3–

height δ 2⁄ 2–

v δ 2⁄

v δ 2⁄

v δ 2⁄ 1+

height δ - d

height δ -d -1

in H, . This time we consider the path of length , consisting of ancestord δ 2⁄≥ d
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nodes from hd back to the root r of T; denote the nodes on this path as hd = v0, v1, v2,
..., vd = r. (See Figure 4.) Subtree TH could contain all the nodes in a full subtree,

rooted at and having height = . Similarly, TH could con-

tain all the nodes in a full subtree, rooted at the second child of
, and having height . Similarly

for a full subtree, rooted at the second child of , and having height

. And so on, back to a full subtree, rooted at the second child of ,

and having height ; and, finally, a full subtree, rooted at the second child of T’s

root , and having height . Thus, TH could contain the

nodes , ..., , plus the nodes in full subtrees of heights

, ..., . The number of nodes in TH could be as great as

= . The num-

ber of edges in TH would be one less, or . Reasoning as in

Case I, we see that  will be no greater than  provided

, for  when , and

, for  when .

At this point we can observe that in the event that the depth of equals the

height of T, and the diameter of H equals , then the second inequality

fails, since fraction simplifies to 1, whereas is

strictly less than 1.
A computer program which examined tree heights in the range from 2 to 100
revealed all the failure instances just commented upon. Beyond those, the run
revealed only four other particular failures of the relation and
they involved trees of heights 3, 4, and 5.
Let us contemplate the failures that are arising when and . We
calculated the largest that TH can be. TH can achieve our bound, but only if H con-
tains as fixed nodes all the nodes on the bottom levels of the full subtrees we cited, in

which case H contains =

fixed nodes. When and , this means H contains fixed

nodes, which is slightly more than half of the = nodes
in chromosome T. We generally expect building blocks to be smaller portions of the

v δ 2⁄ δ 2⁄ δ 2⁄ 1–

v δ 2⁄ 1+ v δ 2⁄= δ δ 2⁄ 2+( )– δ 2⁄ 2–=

v δ 2⁄ 1+

δ 2⁄ 3– vd 1–

δ d–

r vd= δ d– 1– d δ 2⁄–

v δ 2⁄ vd d δ 2⁄– 1+

δ 2⁄ 1– δ d– 1–

d δ 2⁄– 2
δ 2⁄

1–( ) … 2
δ d–

1–( )+ +( )+ 2
δ 2⁄ 1+

2
δ d–

– 1–

2
δ 2⁄ 1+

2
δ d–

– 2–

dp H( ) rel∆ H( )

2
δ 2⁄ 1+

2
δ d–

– 2–

2
h

1–
--------------------------------------------------- δ

2h
------≤ odd δ d> d h<

2
δ 2⁄ 1+

2
δ d–

– 2–

2
h

2
δ 2⁄

2–+
--------------------------------------------------- δ

2h
------≤ odd δ d> d h=

d hd

h δ 2h 1–

2
δ 2⁄ 1+

2
δ d–

– 2–

2
h

2
δ 2⁄

2–+
--------------------------------------------------- δ

2h
------ 2h 1–

2h
---------------=

dp H( ) rel∆ H( )≤

d h= δ 2h 1–=

2
δ 2⁄ 1–

2
δ 2⁄ 2– … 2

δ d– 1–
+ + + 2

δ 2⁄
2

δ d– 1–
–

d h= δ 2h 1–= 3 2
h 2–⋅

2
h

2
δ 2⁄

2–+ 3 2
h 1–⋅ 2–
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chromosome than that. Put another way, the failures arising when and

 are ones for quite atypically large schemas.

Case III: odd : Then  will be no greater than  provided

, for , and

, for

A computer program which examined if and when these inequalities held, for T
heights h in the range from 2 to 100, revealed only three failures, involving trees of
heights 2 and 3.

Case IV: even : Then  will be no greater than  provided

, for  when , and, and

, for  when .

We ran a computer program which examined if and when these inequalities held, for
T heights h in the range from 2 to 100, with the following results. Invariably the first
inequality failed when and . This class of failure, like that of
Case II, arises when H contains a very large number of fixed nodes, approximately
half the nodes of host chromosomal tree T. Beyond this class of failure, there were
altogether only four other particular failures, and they involved trees of heights 3, 4,
and 5.

Clearly there is a lesson to be learned from Propositions 2 and 3. The example tree
given in the proof of Proposition 2 is irregular, a clump connected to a long string of
bits, and for it dp(H) can be made much greater than rel∆(H). Proposition 3 shows us
that dp(H) is much better behaved when the binary tree is compact. If one is going to
structure one’s chromosome as a binary tree, then it is better to use as compact a tree as
possible.

5   Conclusion

It is reasonable to say that schema disruption probability is better behaved the more
closely it is related to how closely together are situated the fixed positions of the
schema. That is, dp(H) is better behaved the more closely it is approximated or domi-
nated by rel∆(H).

d h=

δ 2h 1–=

δ d≤ dp H( ) rel∆ H( )

2
δ 2⁄ 1+

3–

2
h

1–
-------------------------------- δ

2h
------≤ odd δ d h<≤

2
δ 2⁄ 1+

3–

2
h

2
δ 2⁄

2–+
------------------------------------- δ

2h
------≤ odd δ d≤ h=

δ d> dp H( ) rel∆ H( )

3 2
δ 2⁄⋅ 2

δ d–
– 2–

2
h

1–
---------------------------------------------- δ

2h
------≤ even δ d> d h<

3 2
δ 2⁄⋅ 2

δ d–
– 2–

2
h

2
δ 2⁄

2–+
---------------------------------------------- δ

2h
------≤ even δ d> d h=

h d 1+= δ 2d=
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This paper contains two informative results, in Propositions 2  and 3. They show
that if one is going to link the bits of a chromosome in the structure of a binary tree,
then it is best to make the tree as compact as possible (in the context of the problem at
hand).

The results of this paper are ones from a larger paper we are writing, in which we
explore more types of trees and other issues as well. We will submit the larger paper
elsewhere.

More generally we are interested in schema disruption behavior in chromosomes
structured in other than the classical way as a linear sequence. After trees we plan to
explore chromosomes that are 2- or 3- (or n-) dimensional grids. An example of the

latter is to use as nodes the set { | are integers between 0 and K},
then connect each node to each of its up to six neighbors in the axial directions. To cut
such a chromosome in two, we could use random planes in 3-space, or random planes
which are parallel to an axis, or some other way. These considerations await further
exploration.
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