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Abstract. Choosing representations and operators that preserve loca-
lity between genotype and phenotype space is an important goal in EA
design. In the GA literature there has been considerable discussion of
this issue with respect to the choice between standard binary encoding
and Gray codes. In this paper we argue that an important and unap-
preciated aspect of such discussions is the degree to which locality pre-
servation is isotropic in phenotype space (i.e., independent of location in
phenospace). We show that using a traditional bit-flip mutation operator
with either of these two representations results in rather weak isotropic
locality. These insights lead to the design of a new binary mutation ope-
rator that increases isotropic locality. The results from an initial set of
experiments supports the hypothesis that this improvement in isotropic
locality leads to improvements in GA performance as well.

1 Introduction

It is well-known in the EC community that the choice of representation and
reproductive operators is critical to success of an application. One of the desirable
features of such choices is that locality is preserved when mapping between the
internal representation space (genospace) and the external application space
(phenospace). The classical example of this in the GA literature involves the
decision as to how best to map a problem into a binary representation. The
most straightforward approach to representing ordered sets of phenotypic objects
internally as binary strings is to assign the strings in order according to their
binary value: 00...00, 00...01, 00..10, ..., 11...10, 11...11. So, for example, the
interval [0.0,1.0] would be represented internally as binary strings whose length
is dictated by the desired level of precision € with the string 00...00 representing
the real number 0.0 and the string 11...11 representing the real number 1.0. The
most common mutation operator for binary representations is bit-flip mutation in
which individual bits are stochastically selected to be flipped (switched from zero
to one or vice versa). As a consequence, Hamming distance is the most natural
distance metric in genospace while Euclidean distance is the most natural one
for real-valued phenospaces.

The notion, then, of locality preservation is that small steps in one space
correspond to small steps in the other space. Clearly, this is true for real num-
bers such as 0.0 and 0.04€ and their corresponding strings 00...00 and 00...01.
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Improving the Locality Properties of Binary Representations 1187

However, it is clearly not true for the real numbers whose binary representations
are 01...11 and 10...00. In this case, achieving a small step in phenospace requi-
res a large step in genospace. In the GA literature the traditional name for this
phenomenon is a ”Hamming cliff”.

A standard way of resolving this issue is to switch to a Gray code represen-
tation in which adjacent points in phenospace are assigned bit strings that differ
in only a single bit position (see, for example, [I], [2] or [3]). Hence, every small
step in phenospace corresponds to a small step in genospace, but the reverse
is clearly not true since there are single bit flips that result in large steps in
phenospace.

The effect this can have on EA performance is easily seen by using a family
of artificially constructed Hamming cliff landscapes. This parameterized family
of landscapes, hcla, b, o], is defined as follows. Given a real-valued interval [a, b]
and a parameter o whose value lies somewhere in [a, b], then let:

z—(a+1)+b—a,z <=«
hela,b, o] (x) = {x_ga+1§,x>a

By varying a one can position the global maximum anywhere in [a, b]. In parti-
cular, setting o = (b—a)/2 places it immediately to the right of a large Hamming

cliff. Figure [T illustrates this by plotting hc[0, 31, 16](x). Higher dimension ver-
sions are easily constructed by summing n copies of a 1-dimensional version:

HCla,b,a,n)(z) = Z hela, b, o] (z)
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Fig. 2. Best-so-far performance of a stan-
dard GA with binary and Gray coding on
HC(CI|0,31,16, 3](x).

Fig. 1. Example of a 1-dimensional Ham-
ming cliff: he0, 31, 16](z).

Figure Pl illustrates how the performance of a standard GA, in terms of
average best-so-far (bsf) curves, can be improved by switching from a standard
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binary representation to a Gray code representation on a 3-dimensional version:
HCJ0,31,16,3](z). By contrast, when oz = b, no Hamming cliffs serve as barriers
to the global optimum and both representations work equally well (Figures

and @).
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Fig. 3. The hc|0, 31, 31](z) landscape.
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Fig. 4. Best-so-far performance of a stan-
dard GA with binary and Gray coding on
HC|0,31,31,3].

Experiments such as these suggest that switching to Gray coding can improve
performance when Hamming cliff barriers are encountered, and Gray coding
doesn’t seem to hurt performance much when no such barriers exist. Unfortun-
ately, one doesn’t need to look far to find counter examples. The Schwefel func-
tion [4] is a standard EC benchmark, and we shall consider it on a 2-dimensional
[0,5000] x [0,5000] landscape, designated here as Schwefel[0, 5000, 2]. Figure[d
shows the negative effect that using a Gray code has on the average best-so-far
performance of the same standard GA on this landscape.
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Fig. 5. Best-so-far performance of a standard GA with binary and Gray coding on the
Schwefel[0.5000,2] landscape.
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A survey of the EC literature produces a similar collection of mixed results
For example, [5] presents a statistical comparison of binary and Gray encodings
that suggests that Gray encodings are generally superior while an analysis in
[6] concludes just the opposite. Attempting to bring the theory more in line
with empirical experience, Whitley argues ([7]) for the benefit of Gray codes by
showing that Gray codes induce fewer local optima than the standard binary
encoding on a certain class of problems, arguably those of interest to the appli-
cation oriented researchers. By contrast, using a Markov model to study relative
performance of binary and Gray coding in genetic algorithms, it was shown in [§]
that Gray coding does not necessarily improve performance for functions which
have fewer local optima in Gray representation than in binary. In a subsequent
paper Whitley shows that there is a complementary bias in the Gray and binary
neighborhood structures and explores the possibility of using a combination of
the two [9].

The results presented in this paper approach this representation/operator
choice issue from a somewhat different perspective. Our sense is that a critical
feature of such choices is the extent to which they result in locality preser-
vation uniformly throughout phenospace, i.e., the notion of isotropic locality.
We show that both binary encodings when used in conjunction with standard
bit-flip mutation exhibit weak isotropic locality. This leads to the design of a
generalized bit-flip mutation operator which, when used with a standard binary
encoding, has better isotropic locality than either the binary or Gray code with
the standard bit-flip mutation operator. In addition, we present the results of a
preliminary set of experiments that shows a corresponding improvement in GA
performance as well.

2 Locality Properties of Encodings

Ideally, the choice of internal representation and reproductive operators would
result in a distance-preserving mapping between genospace and phenospace. This
is difficult to achieve in general. A less ambitious goal is to choose a mapping
that is locality preserving (i.e., small steps in genospace produce small steps in
phenospace and vice versa). We noted above that the primary motivation for
choosing a Gray code representation over the standard binary encoding was to
improve on this locality property. In this section we explore in more detail how
this is achieved.

2.1 Phenotypic Effects of 1-Bit-Flip Mutation

The simplest way to obtain insight into locality issues is to focus on the effect that
a one-bit-flip mutation in genospace has in phenospace. Suppose, for example,
that the phenospace consists of the interval [0.0,1.0] and the desired precision
results in a 9 bit encoding. Then, for each of the 2° phenotype values, one can plot
its change in value as a result of each one of the 9 possible 1-bit-flip mutation.
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delta due to 1 bit mutation
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Fig. 6. A scatter plot for 1-bit-flip muta- Fig.7. A scatter plot for 1-bit-flip muta-
tion with a standard binary encoding. tion using Gray code.

This analysis is presented in Figure [0l for the standard binary encoding and in
Figure [ for the Gray code representation.

In both cases single bit flips can produce large changes in phenotype values.
However, since we are focusing on locality issues, we have zoomed in on the small
phenotypic changes. Hence the Y range depicted is the (—0.2,0.2) sub-range and
not the entire range of (—1, 1). The degree of isotropic locality is represented by
the continuity of the horizontal lines. The lack of continuity indicates a depen-
dency on location (i.e., non-isotropy), while a continuous horizontal line depicts
the ability of produce a particular change in phenotype value regardless of loca-
tion in phenospace. Figures [l and [ show clearly that the Gray code produces
much more consistent locality (i.e., better isotropy) for small changes in pheno-
typic value, but at the expense of decreased isotropy as the size of the change in
phenotype values increases.

2.2 Quantifying Isotropic Locality

The scatter plots in the previous section are visually suggestive that a key diffe-
rence between the two encodings is the degree to which the ability to take small
steps in phenospace varies as a function of where one is in phenospace. The
reverse of this, the notion of isotropic locality is - more formally - the ability
to take certain steps independent of location in phenospace. We can quantify
the degree to which an encoding is isotropic by calculating the probability of
taking a step of size § using 1-bit-flip mutation for each point in phenospace,
and then looking at the mean and variance of these probabilities. This approach
is illustrated in Figures[] and @] using the same setup as in the previous section.

For clarity Figures[8 and @]zoom in on the first 31 possible (positive) changes
in phenotypic value. They use box plots to display the mean, standard deviation,
and maximum and minimum values of the probability distributions for each
of the included positive changes 6. Hence, the degree of isotropic locality is
represented by the variances of the probability distributions (high variance means
low isotropy).
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By comparing these two figures one can see clearly the isotropic differences
between the two encodings. For the standard binary encoding (Figure [§) notice
the high variances associated with the first, second, fourth, etc. values for §
which correspond precisely to the existence of Hamming cliffs. By contrast the
Gray code probability distributions for the same step sizes have zero variance
(Figure @).

Further comparison of these two figures shows that the improvements in lo-
cality obtained for Hamming cliffs using the Gray encoding are obtained at the
expense of a reduction elsewhere. Notice how the variances oscillate as one in-
creases the value of § with the maximum probability values remaining uniformly
high throughout the entire range.

These observations raise the question as to whether it is possible to improve
isotropy in a more consistent and uniform manner that incorporates the good
features of both representations while avoiding the bad ones. We answer that
question in the affirmative in the next section.

3 A Bit Level Mutation Operator with Isotropic Locality

One possible approach to answering this question would be to invent a new
type of binary representation. In this paper we explore an alternative approach,
namely, by retaining the standard binary representation and modifying the bit-
flip mutation operator.

Using the standard binary encoding of an interval [a,b] at a particular level
of precision results in an internal representation of points in [a, b] as bit strings
of length I. When a particular bit k£ is mutated, the classical bit-flip has the
phenotypic effect in [a, b] of adding or subtracting a quantity proportional to 2¥.
The choice of addition or subtraction is dictated by the current value of bit &
and this is precisely the reason for the lack of isotropy noted in the previous
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section. This fact suggests that isotropy could be improved by simply breaking
this coupling.

We achieve this decoupling by modifying the standard bit-flip mutation ope-
rator as follows. When bit k is selected to be mutated, the binary value 2% is
genotypically added/subtracted independently of the current value of bit k. The
choice of addition vs. subtraction is determined by flipping an unbiased coin.
This results in exactly the same effects as standard bit-flip operation if bit & is
a zero and addition is selected, or if bit k£ is a one and subtraction is selected.
The remaining two cases are handled by performing standard binary addition or
subtraction with overflow and underflow conditions ignored.

For example, suppose we are representing [a, b] using 6-bit genotypes. Then,
whenever bit 3 of a genotype is selected for mutation, a value of 001000 will
be added to or subtracted from the binary value of the genotype undergoing
the mutation, with the choice between addition or subtraction being determined
for each such mutation by the flip of an unbiased coin. Hence, if the genotype
undergoing a mutation at bit 3 is 010101, the result of applying the new (decou-
pled) mutation operator would be 011101 if addition were selected and 001101
in case of subtraction. Similarly, mutating the fifth bit of a genotype results in
the addition or subtraction of 000010.

If multiple bits in the same genotype are selected for mutation, the appli-
cation of this operator is sequential and cumulative (one can prove that the
order in which bits undergo mutation is irrelevant). Extending this operator to
multi-dimensional problems requires that each dimension be mapped into an
independent binary gene allowing this new mutation operator to handle each
gene (dimension) independently at the bit string level. In other words, over-
flow /underflow conditions do not propagate beyond gene boundaries.

3.1 Locality Properties of Decoupled Mutation

To see whether or not this decoupling idea truly improves isotropic locality, we
performed the same analysis as we did earlier for bit-flip mutation using standard
binary and Gray encodings. Figures [0l and [Tl present the results.

By comparing these two figures with the earlier ones (Figures Bl- @), one can
see clearly the rather dramatic improvement in isotropic locality as reflected by
the horizontal bars in Figure [0 and the lack of variance in the box plots in
Figure [Tl What remains to be seen is whether this improvement has a positive
effect on performance.

4 Empirical Studies

To assess the effects that improved isotropic locality has on performance, we
performed an initial set of empirical studies using a standard generational GA
(popsize=100, 2-point crossover, fitness-proportional selection, and a mutation
probability of 1/1). We varied the representation and mutation operator as fol-
lows:
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Fig. 10. A scatter plot for decoupled mu-
tation with a standard binary encoding.

— Study 1 used the standard binary encoding and the standard bit-flip muta-
tion operator.

— Study 2 used a Gray code representation and the standard bit-flip mutation
operator.

— Study 3 used the standard binary representation with the decoupled muta-
tion operator.

The set of landscapes used for these initial studies were HCJ[0,31,16,3],
HC[0,31,31,3], and Schwefel[0,5000,2]. In all cases, 100 independent runs were
performed and the results were averaged to obtain both mean and variance.

4.1 Hamming CIliff Landscape Results

Figures [I2] - [IH] present the results on the artificial Hamming cliff landscapes in
terms of the effect on best-so-far performance curves. Figures and [I3] plot
just the average best-so-far curves. What is striking is that the effects of the
decoupled mutation operator operating on a standard binary representation are
nearly identical to those of standard bit-flip mutation operating on a Gray code
representation. Figures [[4] and [[5] include one standard deviation error bars to
indicate the statistical advantage that both have over and EA using bit-flip
mutation with a standard binary representation.

4.2 Schwefel Landscape Results

Unlike the artificial Hamming cliff landscapes, the Schwefel function provides
a more realistic landscape on which to evaluate performance. Figure [T6 shows
the average best-so-far curves of the 3 studies on Schwefel[0,5000,2]. If we
compare that with Figure Bl we see a rather striking result. On this landscape the
decoupled mutation operator performed somewhat better than bit-flip mutation
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with a standard binary representation, and much better than bit-flip mutation
on a Gray code representation.

Figures[Id and [ include one standard deviation error bars and suggest why
this is the case. The improved uniformity of the locality properties of decoupled
mutation allow significantly more opportunity for local exploitation than bit-flip
with a binary representation, resulting in faster and more consistent convergence
to the global optimum. By contrast, the locality improvements of the Gray code
representations are obtained at the cost of higher bias towards global exploration
- with much less effectiveness.

5 Conclusions

We have illustrated some statistical properties of the effects of 1-bit-flip mutation
under binary and Gray code encodings. These findings better highlight the trade-
off introduced by adopting a Gray code mapping in order to improve operator
locality, and result in a better understanding as to when Gray code mappings fail
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to outperform the standard binary mapping. This, in turn, inspired the design
and implementation of the decoupled bit-flip mutation operator that has better
isotropic locality properties. That is, the probability distribution of inducing a
certain step size ¢ from a single application of the 1-bit-flip mutation operator,
taken for all points in phenospace has zero variance. This property is necessary
for the absence of any Hamming cliff anomalies. In addition the decoupled bit-
flip mutation has a negative exponentially modulated propensity towards global
exploration. This property is inherited from the classical bit-flip mutation and is
unlike the Gray code mapping which has the same propensity uniformly modu-
lated. Because of this, the decoupled bit-flip mutation is able to maintain a more
effective balance between exploitation and effective exploration throughout the
run.

6 Future Work

We are considering several continuations of this work, grouped in two major
categories. The first area concerns itself with further study and better under-
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standing of various properties and dynamics of the decoupled bit-flip mutation
as introduced. Clearly, the results presented here are preliminary in nature and
additional insights are likely to be obtained by extending this analysis and empi-
rical study to various other landscapes. The second area revolves around exten-
ding the decoupled bit-flip operator to other phenospaces beyond the bounded
numerical parameters. We are particularly interested in identifying the essential
statistical properties of this operator that would permit the creation of a formal
mechanism of such extension. An immediate first step is addressing rank orde-
red spaces, but a much more interesting extension would be to address partially
ordered phenotypes.
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