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Abstract. Estimation of distribution algorithms (EDAs) are
population-based heuristic search methods that use probabilistic
models of good solutions to guide their search. When applied to
constrained optimization problems, most evolutionary algorithms use
special techniques for handling invalid solutions. This paper presents
PolyEDA, a new EDA approach that is able to directly consider linear
inequality constraints by using Gibbs sampling. Gibbs sampling allows
us to sample new individuals inside the boundaries of the polyhedral
search space described using a set of linear inequality constraints by
iteratively constructing a density approximation that lies entirely inside
the polyhedron. Gibbs sampling prevents the creation of infeasible so-
lutions. Thus, no additional techniques for handling infeasible solutions
are needed in PolyEDA. Due to its ability to consider linear inequality
constraints, PolyEDA can be used for highly constrained optimization
problems, where even the generation of valid solutions is a non-trivial
task. Results for different variants of a constrained Rosenbrock problem
show a higher performance of PolyEDA in comparison to a standard
EDA using rejection sampling.

1 Introduction

Estimation of distribution algorithms (EDA) are population-based optimization
methods that use probabilistic models to guide their search [1]. In contrast to ge-
netic algorithms (GA), EDAs do not use classical search operators, but crossover
and mutation are replaced by the following two steps:

1. A probabilistic model is built of selected solutions.
2. New random solutions are sampled from the probabilistic model.

EDAs have shown promising results [2,3]when used for combinatorial, discrete,
and continuous problems. When using EDAs for continuous real-world planning
and optimization problems, there are often a number of additional problem-
specific constraints which significantly affect the performance of optimization
algorithms [4]. For example, many variables in real-world problems have lower
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and upper bounds and the feasible regions of the search space are constrained
using linear inequality constraints [5]. Linear inequality constraints are a power-
ful approach for describing problem-specific knowledge, are common and well
understood in the field of mathematical programming, and form the basis of
many traditional optimization techniques. During the last few years many me-
thods have been proposed for handling constraints when using GAs or EDAs.
The most common are: (1) methods that repair invalid solutions, (2) methods
that use penalties, (3) methods which distinguish between feasible and infeasi-
ble solutions, and (4) methods that are based on decoders (compare [6]). The
general idea when dealing with constraints is to penalize invalid solutions.

The purpose of this paper is to develop a new EDA approach, PolyEDA, that
is able to consider linear inequality constraints without penalizing infeasible solu-
tions. PolyEDA is designed in such a way that no infeasible solutions are created
during the optimization process. Therefore, the different parts of an EDA like
the construction of a probabilistic model, or the sampling of new solutions, must
be modified such that the inequality constraints are satisfied. Consequently, Po-
lyEDA uses factorizations of truncated multi-normal distributions that consider
the inequality constraints for the building of probabilistic models. Furthermore,
the sampling of new solutions according to the given constraints is done using
Gibbs sampling [7,8]. Gibbs sampling allows us to sample inside the boundaries
of the polyhedral search space described using a set of linear inequality con-
straints by iteratively constructing a density approximation which lies entirely
inside the polyhedron. Therefore, the Gibbs sampler uses well known univariate
conditional distributions instead of calculating the highly complicated multiva-
riate constrained densities directly. In contrast to standard EDAs, PolyEDA is
able to optimize highly constrained optimization problems, and example results
on constrained Rosenbrock problems show a higher performance of PolyEDA in
comparison to a standard EDA using rejection sampling.

The paper is structured as follows. The following section introduces some
basic results from polyhedral theory that are relevant for linear inequality con-
straints. Section 2.2 outlines the Gibbs sampling approach for multivariate ran-
dom number generation considering linear constraints. In section 3, the functio-
nality of PolyEDA is outlined by discussing all of its elements, namely techniques
for sampling the first generation (Sect. 3.2), the principles of model-selection
(Sect. 3.3), the estimation of parameters (Sect. 3.4), and the generation of new
solutions (Sect. 3.5). In section 4, PolyEDA is applied to the constrained Rosen-
brock problem and its performance is compared to a standard EDA. The paper
ends with some concluding remarks and a short outlook into future work.

The notation and symbols we use throughout this paper are based on the
notation used in the IDEA-Framework (see [3]).

2 Polyhedrons and Gibbs Sampling

2.1 Polyhedral Theory

In most linear programming approaches, the feasible search space is described
by using a set of linear inequality constraints. Using certain assumptions, the set
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of points in the search space that is feasible under a finite set of inequalities is a
polyhedron. Many classical optimization methods like the simplex algorithm [9],
cutting planes, or branch and cut techniques [10], are based on such a polyhedral
description of the search space. The mathematical grounding of these approaches
is the polyhedral theory. We introduce some basic definitions [10] from polyhedral
theory that are relevant for PolyEDA and which are used in the later sections.

Definition 1. A polyhedron P ⊆ Rn is a set of points that satisfy a finite
number of linear inequalities. The linear inequalities are described using P =
{y ∈ Rn : Ax � c}, where (A, c) is an m × (n + 1) matrix.

Definition 2. A polyhedron is a convex set.

Thus, the set of points that are feasible under a set of linear inequalities is a
convex polyhedron. In the following we want to use linear inequalities with the
structure

a � Dy � b, (1)

where the (n × n) matrix D has rank n. The vectors a and b are (n × 1) each.
Equation 1 allows the formulation of maximal n linearly independent inequali-
ties. Because each system of linear inequalities can be transformed into a system
with the structure Ax � c the set of points that are feasible under (1) is a convex
polyhedron.

2.2 Gibbs Sampling

Gibbs sampling is a statistical method that allows us to generate random va-
riables from highly complicated distributions without calculating their density
functions. Complex calculations like the recurrent evaluation of normal integrals
can be replaced by a series of computational easier calculations. Gibbs sampling
was introduced by [7]. Later, the approach was modified and improved by [11].
A good introduction into Gibbs sampling can be found in [12]. In this paper, the
Gibbs sampler is used to generate random variables from multivariate normal
distributions that are subject to linear constraints [13].

The Gibbs Algorithm. The following paragraphs describe how Gibbs sam-
pling can be used for creating multivariate random numbers.

We assume that we want to draw an n−dimensional random vector x =
(x1, x2, . . . , xn)′ from a multivariate density f(x). In addition, we assume (e.g.
due to the complexity of the density function) that there is no method available
for performing this task directly. Gibbs sampling can be used if all of the following
conditional distributions are known:

xi| {x1, . . . , xi−1, xi+1, . . . , xn} ∼ Pi(x1, . . . , xi−1, xi+1, . . . , xn), (2)

where i = 1 . . . n and Pi denotes the conditional distribution of xi given all other
variables xj (j �= i). A second condition for using Gibbs sampling is that a
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method is available that allows the efficient generation of random numbers from
the conditional distributions Pi.

Based on these assumptions we can describe the functionality of Gibbs sam-
pling: Let x0′

be a n−dimensional (starting) point in the multivariate distribu-
tion f(x). Then, Gibbs sampling iteratively creates the random variables:

x1
i |

{
x1

1, . . . , x
1
i−1, x

0
i+1, . . . , x

0
n

} ∼ Pi(x1
1, . . . , x

1
i−1, x

0
i+1, . . . , x

0
n) ∀(i = 1 . . . n)

(3)
Having done this for the first time, exactly n random numbers have been gene-
rated. The creation of these n random number is the first iteration of the Gibbs
sampling algorithm. The following iterations are carried out exactly the same.
Therefore, after generating the i’th random number of the j’th iteration, we
have:

xj
i |

{
xj

1, . . . , x
j
i−1, x

j−1
i+1 , . . . , xj−1

n

}
∼ Pi(x

j
i , . . . , x

j−1
i−1 , xj−1

i+1 . . . , xj−1
n ) (4)

After completing the jth iteration, the random vector has the following structure:

xj′
= (xj

1, . . . , x
j
n)′ (5)

The central element of Gibbs sampling is that with growing j the distribution
of xj′

converges against the correct multivariate distribution of x [14].
It should be noted, that it is not necessary to calculate this multivariate den-

sity directly. Instead, random numbers are drawn from conditional distributions.
As this is often less complex, Gibbs sampling has become a popular method in
many areas of statistics. The second aspect is that this vector does not consti-
tute a complete sample, but merely an n−dimensional point of the multivariate
density f(x). In order to generate a sample of size k, the above steps can be
repeated k times. Alternative methods for generating samples of a specific size
can be found in [12].

Sampling from Truncated Multinormal Distributions. The method ou-
tlined in the previous paragraphs can be used to generate random vectors ac-
cording to complex multivariate distributions. In the following paragraphs, we
explain a Gibbs sampler for generating i.i.d. (identically, independently distri-
buted) random vectors from multivariate normal distributions that are subject
to linear constraints. The algorithm has been developed by [13]. For technical
and mathematical details on truncated multinormal distributions compare [15,
p. 204].

Supposing we want to generate n−dimensional random vectors x that fol-
low a multivariate normal distribution, but at the same time consider linear
inequality constraints:

x ∼ N (µ,Σ), s.t. a � Dx � b, (6)

where x = (x0, x1, . . . , xn−1) and N (µ,Σ) is the n−variate multinormal dis-
tribution with mean vector µ and covariance matrix Σ. Furthermore, −∞ and
+∞ may be elements of a and b and the matrix D is (n×n) and of rank n. This
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allows the formulation of maximal n linearly independent inequality relations-
hips. Generating random numbers from (6) is equal to the generation of random
numbers from

z ∼ N (0,T ), α � z � β (7)

with
T = DΣD′, α = a − Dµ, and β = b − Dµ. (8)

The vector x can be calculated from z as

x = µ + D−1z

Many different methods have been developed for the sampling of random va-
lues from the distribution described by 7. An overview of such methods can be
found in [16]. A problem all methods have to solve is that, in general, iterated
calculations of the normal integral are necessary when sampling random num-
bers according to equation 7. Also, these methods are most often incapable of
generating i.i.d. samples. By using a Gibbs sampler, i.i.d. samples from 7 can be
generated without performing iterated calculations of the normal integral [13].
A necessary condition for using a Gibbs-sampler is previous knowledge regar-
ding the conditional distribution of one random variable xi on all other random
variables xj , (i �= j). These conditional distributions are truncated univariate
normal. As a result, when using a Gibbs sampler the recurrent evaluation of
normal integrals can be replaced by repeated sampling from a truncated univa-
riate normal distribution. This is a less complex problem, and highly efficient
techniques for this purpose exist [13].

3 PolyEDA: Combining EDAs with Linear Constraints

This section describes PolyEDA, an EDA that is able to consider a set of li-
near inequality constraints during optimization. It uses a continuous problem
representation and a solution is represented by the vector y = (y1, y2, . . . , yn)′.
PolyEDA is the result of combining EDA with a system of linear inequalities of
the type

a � Dy � b. (9)

The set of n−dimensional points that satisfy (9) is a polyhedron (compare section
2.1). PolyEDA is able to sample new solutions according to the boundaries of
this search space and to consider problem-specific knowledge. Modeling problem-
specific knowledge as a set of linear inequality constraints is a common technique
in evolutionary computation [6] and mathematical programming [17].

To consider linear constraints in PolyEDA, the elements of the EDA (model
selection, parameter estimation, and sampling) must be modified. The following
sections outline the necessary adaptations.

3.1 Probabilistic Model

In PolyEDA we use a probabilistic model that consists of factorizations of trun-
cated multinormal distributions. This probabilistic model is based on multiva-
riate normal factorizations as used in the IDEA-Framework [3] and additionally
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incorporates a set of linear inequality constraints. The truncated distributions
reflect the constrained nature of the search space. All n−dimensional points that
are feasible under the linear inequality constraints have positive, non-negative
probabilities. All infeasible points have a probability of 0. Then, the model can
be formulated as

P(v,θ)(Y )(y) =






1
Pr(y ∈ S)

|v|−1∏

i=0

PN
(µvi

,Σvi
)(Yvi)(y) ; y ∈ S

0 ; y /∈ S

(10)

S = { y | a � Dy � b } (11)
where a solution is represented by a vector y = (y0, y1, . . . , y(n−1))′ of random
variables. y can be separated into subsets of random variables and all subsets
follow multivariate truncated normal distributions. Random variables of different
subsets are independent of each other; random variables in the same subset
depend on each other. For indicating the different subsets we use node vectors
vi. The entries of each node vector are the indices of the variables of one subset
(all variables that depend on each other) and vi ∧ vj = () for all i �= j. This
means, that each random variable occurs only in one node vector. The partition
vector v consists of all vi and describes the structure of the whole factorization.
The set of parameters θ consists of the mean vectors µvi

and covariance matrices
Σvi of each node vector.

The matrix D is (n × n) and of rank n. Individual elements of a and b
must be real values, using ±∞ is not allowed. This allows the formulation of n
inequality constraints.

3.2 Sampling the Initial Population

In EDA, the first population is sampled uniformly over all possible solutions.
Therefore, when using the model from equation 10, we have to uniformly sam-
ple i.i.d. solutions inside the polyhedron, which is described by the inequality
constraints a ≤ Dy ≤ b. To the best of our knowledge, currently no efficient
method is available for doing this. Thus, for sampling the initial population, we
use rejection sampling, which means that we sample uniformly inside a cube that
entirely covers the polyhedron. We calculate lower and upper bounds for each
of the yi and all randomly sampled solutions that lie outside the polyhedron
are rejected and sampled again; all solutions that lie inside the polyhedron are
accepted and make up the initial population.

As the performance of rejection-sampling depends mainly on its acceptance
rate, we seek to maximize the number of accepted solutions by choosing close bo-
unds for the yi. The smallest rectangular region that entirely covers the polyhe-
dral search space can by calculated by the Fourier-Motzkin-elimination (see [18]).
This technique eliminates variables from the inequality system a ≤ Dy ≤ b. In
order to generate the lower and upper bounds ai and bi for the random variable
yi, all variables yj , j �= i are eliminated from the system, leaving a single ine-
quality ai � yi � bi. Doing this n times we get n inequalities which are used as
lower and upper bounds for the sampling of the initial population.
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3.3 Model Selection

In the model selection step, the structure v of the factorization that fits best
to the current population is searched. If linear inequalities are considered, the
factorization is subdivided into a variable part and a fixed part. The variable
part depends on statistical properties of a population and describes the inter-
actions between the variables due to the fitness function. The fixed part of the
factorization depends on the linear inequalities and describes the interactions
between different elements of v.

To generate the variable part of the factorization, we use the greedy facto-
rization selection method outlined in [3]. This heuristic method uses local search
steps, beginning with a univariate factorization. The decision between two can-
didate factorizations is based on a negative log-likelihood metric that penalizes
complexity of the factorization. The variable part of the factorization has to be
generated in every iteration of the EDA. It reflects the dependencies between
the random variables in the current area of the search space.

The fixed part of the factorization can be generated from the inequality
system a ≤ Dy ≤ b. To do this, the rows of the matrix D have to be examined.
Let the sets Sj (j = 1 . . . n) denote the columns in which the matrix D has entries
�= 0 in the jth row. Then, all variables y(Sj) depend on each other following a
truncated multivariate distribution.

The first n node vectors are determined by the n sets of variables y(Sj).
Then, it is checked whether the same random variables occur in more than one
node vector vi. If this is the case, these vectors are merged and duplicate entries
are deleted. This step is repeated, until every random variable appears in only
one node vector. It should be noted, that the fixed part of the factorization
needs only to be generated once. Since the matrix D does not change during
the optimization, the fixed part can be generated before the optimization and
the fixed factorization remains unchanged in later generations. It reflects the
dependencies that are necessary in order to consider the linear constraints.

After generating the variable and the fixed part of the factorization, these
two parts are combined to create the complete factorization. All dependencies
between the variables that are a result of the fixed parts of the factorization
are considered first. Then, the interactions that come from the variable part
are considered by checking whether they do not already occur in the fixed part.
Finally, it is examined whether some random variables occur in more than one
node vector. If this is the case, these vectors are merged and duplicated entries
are deleted. This step is repeated until every random variable appears in only
one node vector.

3.4 Estimation of Parameters

The set of parameters that has to be estimated consists of the mean vector µ
and the covariance matrix Σ. Well-known maximum likelihood estimators exist
for the estimation of µ and Σ from a sample S = (S0,S1, . . . ,S|S|−1) [15].
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µ̂vi
=

1
|S|

|S|−1∑

j=0

(Sj)vi , (12)

Σ̂vi =
1

|Sj |
|S|−1∑

j=0

((Sj)vi − µ̂vi
)((Sj)vi

− µ̂vi
)′ (13)

Unfortunately, these estimators are designed for estimation from (multi)normal
samples and do not consider truncated normal samples. Nonetheless, we use these
estimators in PolyEDA being fully aware of the fact that modified estimators
need to be developed that consider the truncation of the distributions. We believe
that developing estimators that consider truncated distributions would result in
a significant enhancement of PolyEDA.

3.5 Sampling New Solutions

The sampling of new solutions according to equation 10 is not trivial as i.i.d.
random vectors must be generated from multinormal distributions that consider
the linear inequality constraints a ≤ Dy ≤ b. Therefore, PolyEDA uses the
Gibbs sampling algorithm outlined in section 2.2 for sampling new solutions.
This ensures that only feasible solutions are sampled and new populations lie
entirely inside the given boundaries of the search space. As a result, PolyEDA
does not need to use penalties to consider linear inequality constraints.

4 Experiments

In the following paragraphs PolyEDA is exemplarily applied to some versions of
the Rosenbrock problem. We want to illustrate how PolyEDA considers linear
inequality constraints during optimization in the probabilistic model and we
show that the direct sampling of feasible solutions results in higher performance
in comparison to standard EDAs using rejection sampling. We are aware of the
fact that to fully evaluate the performance of PolyEDA more exhaustive tests on
a large number of different test problems are necessary. However, as the emphasis
of this paper is on introducing and explaining the functionality of PolyEDA we
postpone exhaustive tests until future publications.

4.1 Problem Definition

The Rosenbrock’s function is a highly non-linear function that is commonly used
for the test of numerical optimization methods. Rosenbrock’s function is defined
as

minimize: f(y) =
l−2∑

i=0

[
100

(
yi+1 − y2

i

)2
+ (yi − 1)2

]
, (14)

where l is the dimensionality of the problem. The optimal solution y� has fitness
f(y�) = 0 and is located at y�

i = 1 (i = 1 . . . l). In our test problem Rosenbrock’s
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function is defined for yi ∈ [−5.12; 5.12]. We used three test problems of dimen-
sion 10, 20, and 40. In each of these test problems, l linear inequalities of the
following type have to be considered:

1.0 � yi � 2.0 ∀i = 1 . . . l (15)

These inequalities make up a rectangular feasible region. The optimal solution
of Rosenbrock’s function is at the edge of the search space.

4.2 Experimental Results

In our experiments, we compared a standard EDA to PolyEDA outlined in sec-
tion 4.1. For both EDAs we used a population size of N = 300 of which the 100
best solutions are selected. A statistical model (compare section 3.1) is build
from these 100 best solutions and in the next generation 300 offspring are gene-
rated according to this model using a sampling algorithm. In PolyEDA we used
Gibbs sampling as described in section 2.2 for the creation of new solutions. The
number of iterations j that has been used by the Gibbs sampler to approximate
the truncated distributions has been set to j = 100.

Both, the standard EDA and PolyEDA use factorizations of multivariate
normal distributions as outlined in [3]. The only difference lies in considering
the linear inequalities. PolyEDA considers the linear inequality constraints when
sampling new solutions by using Gibbs-sampling. In the standard EDA new
solutions are sampled using the unconstrained multi-normal distributions and
neglecting the linear constraints. To consider the additional constraints newly
generated solutions that are infeasible are rejected and not considered for the
creation of the statistical model (rejection-sampling). This means, that invalid
solutions (solutions that were infeasible under the linear inequalities outlined in
section 4.1), were rejected and sampled again (until the population is filled).

PolyEDA and the standard EDA with rejection-sampling have been compa-
red on all three instances of the constrained Rosenbrock function. We performed
15 runs for every problem instance. Fig. 1 shows the mean of the average fitness
of the best solution in a population (left) and the average fitness of the popula-
tion (right) over the number of generations for different sizes of the Rosenbrock
function.

The plots show that PolyEDA outperforms a standard EDA using rejection
sampling for the constraint Rosenbrock problem. Although both approaches use
the same population size (N = 300), PolyEDA results in better results in terms
of average population fitness as well as average best fitness. Obviously, using
a probabilistic model and a sampling technique that considers the given linear
constraints is advantageous and lead to more efficient EDAs.

Standard EDAs using rejection sampling have the problem that many of the
sampled individuals are infeasible. Table 1 shows the average ratio of infeasible
solutions to all generated solutions. The results are averaged over all fifteen
runs and all generations. When applying standard EDA with rejection sampling
to the 40-dimensional constraint Rosenbrock function, more than 60 percent of
all generated solutions are infeasible which results in a great overhead. This
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(a) l = 10

-1400

-1200

-1000

-800

-600

-400

-200

 0

 0  2  4  6  8  10  12

fit
ne

ss

generations

PolyEDA
EDA with rejection sampling

-3000

-2500

-2000

-1500

-1000

-500

 0

 0  2  4  6  8  10  12

fit
ne

ss

generations

PolyEDA
EDA with rejection sampling

(b) l = 20
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(c) l = 40

Fig. 1. The plots show the mean of the average fitness of the best solution (left) and
the average fitness of a population (right) over the number of generations. Results are
presented for the constraint Rosenbrock function of size l = 10 (Fig. 1(a)), l = 20
(Fig. 1(b)), and l = 40 (Fig. 1(c)). The constraints are chosen such that the optimal
solution is at the edge of the feasible solution space. The results show that PolyEDA
outperforms a standard EDA using rejection sampling independently of the size of the
problem.
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Table 1. Average percentage of infeasible solutions

dimension l 10 20 40
rejection sampling 8.58 % 23.1 % 60.8 %
PolyEDA 0 %

situation can become even worse for highly constraint optimization problems.
This problem of standard EDAs illustrates the advantage of PolyEDA which did
not generate a single infeasible solution.

5 Conclusions and Further Work

This work presented the functionality of PolyEDA, an EDA that is able to con-
sider linear inequality constraints during the optimization without penalizing
infeasible solutions. In section 2.1 the paper reviewed some foundations of po-
lyhedral theory and Gibbs sampling which are necessary for PolyEDA. Section
3 explained in detail PolyEDA and focused on the different aspects like sam-
pling of the first generation, model selection, the estimation of parameters, and
the generation of new solutions from the probabilistic model. Finally, section 4
compared exemplarily the performance of PolyEDA to a standard EDA using
rejection sampling for some variants of the constrained Rosenbrock function.

PolyEDA is a new type of EDA that allows us to directly consider linear
inequality constraints. It was designed in such a way that it avoids the creation
of infeasible solutions. The used probabilistic model is based on factorizations of
multivariate truncated normal distributions. In this model, all solutions that are
feasible under the linear inequality constraints have positive probabilities, solu-
tions that are infeasible have a probability of zero. For the sampling of feasible
solutions from this model, a Gibbs sampler is used. Gibbs sampling allows the
generation of random values from the multivariate truncated distribution with-
out calculating their density. By using a Gibbs sampler, the complex calculation
of the density can be avoided and replaced by the generation of random values
from univariate truncated normal distributions.

This paper illustrated exemplarily the performance of PolyEDA for some
small examples of the constraint Rosenbrock problem. In further work, Poly-
EDA should be applied to a larger variety of linearly constraint optimization
problems and also compared to different other techniques that can be used for
solving constrained optimization problems. Furthermore, PolyEDA should be
continuously improved. The work presented here focused on the sampling of so-
lutions from multivariate truncated distributions by using Gibbs sampling and
neglected a proper estimation of truncated distributions. This aspect should be
addressed in future work.
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