
Using a Genetic Algorithm to Design and

Improve Storage Area Network Architectures

Elizabeth Dicke, Andrew Byde�, Paul Layzell, and Dave Cliff

Hewlett-Packard Labs Europe
Filton Road, Bristol, BS34 8QZ, UK

{andrew.byde|dave.cliff|paul.layzell}@hp.com

Abstract. Designing storage area networks is an NP-hard problem. Pre-
vious work has focused on traditional algorithmic techniques to automa-
tically determine fabric requirements, network topology, and flow routes.
This paper presents work performed with a genetic algorithm to both im-
prove designs developed with heuristic techniques and to create new de-
signs. For some small networks (10 hosts, 10 devices, and single-layered)
we find that we can create networks which result in savings of several
thousand dollars over previously established methods. This paper is the
first publication, to our knowledge, to describe the successful application
of this technique to storage area network design.

1 Introduction

As IT systems and employees become more geographically distributed and it
becomes more and more important to access shared data, Storage Area Networks

(SANs) become the choice of companies looking for efficient, distributed storage
solutions. A SAN is a set of fabric elements connecting a set of hosts – from
which data is requested – to a set of storage devices – on which data is stored (see
figures 2 & 3). The fabric elements are fabric nodes, which route data through
the network, ports on the nodes and links physically connecting the ports. A link
has a port at each end and a port is the terminal of at most one link. SANs allow
for efficient use of storage related resources such as hardware and maintenance
personnel, resulting in a storage solution that is more effective than local storage,
in addition to being more scalable.

Once purchased, installed, and configured appropriately, a SAN can be a
cost effective solution to the storage problem. Recent work has focused on auto-
mating this process, since solutions designed by hand to support specified data
flow requirements tend to over provision resources by a considerable margin [6].
Efficiency is an important issue because the physical components of a storage
area network can cost millions of dollars; An over-provisioned design can waste
anywhere from thousands to millions of dollars, depending on the size of the
network.

A SAN problem is specified by providing a list of hosts, a list of devices, a
list of possible types of fabric nodes, and a description of the network’s data flow

� to whom correspondence should be addressed.

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 1066–1077, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Using a Genetic Algorithm 1067

requirements. Each host, device, and fabric node has a cost, a maximum number
of ports that are available to accept links, and a maximum amount of data that
may pass through it, called its bandwidth. The network’s data flow requirements
are specified by a list of flows, each of which is defined by a source host, a
destination device, and a bandwidth requirement. A flow may not be routed
through a fabric element which does not have enough remaining bandwidth.

A SAN design specifies a list of each fabric element and its connectivity
along with a path for each flow. The aim of an automated SAN designer is to
find the cheapest SAN that supports the specified flows, while satisfying the port
constraints, bandwidth constraints and non-splitting of flows.

The problem of SAN design can be compared to that of design of other types
of networks, as well as the problem of routing data within those networks. Ho-
wever, SAN design is more difficult than other network design problems because
there are the additional limitations of not being able to split a data flow from
host through to device, the limited number of ports available on the nodes, the
limited amount of bandwidth associated with each node and port, and the fact
that the network topology is not pre-determined. It is NP-hard to find the mi-
nimal cost network[6], and best-known algorithms on state-of-the-art machinery
take days to complete for moderate sized problems.

Hewlett-Packard’s Appia project [6] has shown that traditional algorithmic
optimisation techniques can quickly specify a topology that both satisfies the
design requirements and competes with designs created by human SAN experts.
While able quickly to determine a possible SAN topology, the Appia algorithms
are not guaranteed to find the optimal solution. As a result of the need to find
a solution within minutes, the algorithms presented by the Appia group build
usable networks following heuristic procedures that have previously shown to
yield good networks.

This paper seeks to explore SAN design using genetic algorithms (GAs) to
produce well designed SANs. We will discuss work using a GA to evolve SAN
topologies which will result in both original buildable designs and improvements
to previous designs.

We will show that the use of a genetic algorithm can result in SAN ar-
chitectures which cost thousands of dollars less than designs created either by
traditional heuristic methods, or by Appia. This paper is, to the best of our
knowledge, the first publication to describe the successful application of these
biologically inspired techniques to SAN design.

In the next section we will discuss previous work relating to network design
and routing of data through a network both in terms of other types of networks
and in relation to SANs specifically. In Section 3, we will introduce the specific
configuration and design of our genetic algorithm and discuss the results obtained
both with creation of a storage area network from scratch and given an input
of a previously designed network. We will then conclude with suggestions for
further work.

1068 E. Dicke et al.

2 Background

Automating SAN design is a relatively new research area and prior work specifi-
cally relating to Storage Area Networks is limited. In this section we will discuss
research undertaken in network topology and network routing, both of which
relate to SAN design. We will encompass work relating to both SANs and other
types of networks which may be similar in structure and constraints.

2.1 Previous Automated SAN Design Work

Much work has been done by the Decision Technologies Department and the
Storage Content and Distribution Department within HP Labs Palo Alto, in
order to automate the process of SAN design [6]. They have concentrated on
two different algorithms called FlowMerge and QuickBuilder, which each have
different strengths and weaknesses in terms of finding efficient solutions to the
SAN fabric design problem. Each will be described in brief, for more details,
see [6]. The FlowMerge algorithm begins with a SAN connecting each host to
its required device, given a set of flow specifications or requirements. This con-
figuration typically results in a large number of port violations (i.e. a node has
more links than available ports). These are gradually reduced by considering in-
dividual flowsets. Each flow is initially considered to be in its own flowset. With
each iteration of the algorithm, two flowsets are merged together, choosing an
appropriate fabric node, and links to connect hosts and devices appropriately.
Each iteration results in a reduction of the number of port violations, or, if that
is not possible, a reduction in the cost of the design. The algorithm continues
until there are no possible improvements on the design, or there are no other
flowsets that may be merged.

Ward, et al. [6] show that FlowMerge is one of the faster performing algo-
rithms for the smaller 10 host, 10 device networks, especially those which have
20 to 30 flows spread fairly evenly throughout the network.

The QuickBuilder algorithm also begins with a SAN connecting each host
to an associated device as given by a set of flow requirements. However in this
case, the initial SAN configuration includes assignment to a particular port on
each device. The configuration is then arranged into port groups, which consist
of all connected ports. Each port group is then analysed separately in order to
determine fabric node requirements.

While FlowMerge tends to find solutions with many small port groups, the
QuickBuilder algorithm tends to find SAN configurations with larger port groups
when necessary. This algorithm tends to result in cost effective designs for large
networks and those that are more densely populated. QuickBuilder is also faster
than the FlowMerge algorithm for large problems (10 times as fast for the largest
problems consisting of 50 hosts and 100 devices).

2.2 Automated Design of Other Types of Networks

There appears to be limited published work relating to automated design of
Storage Area Networks specifically, aside from that referenced above. Much of

Using a Genetic Algorithm 1069

the automated design work has been done for other types of networks, and will
be discussed in the following sections.

Automated network design is not a new research field. Several researchers
have attacked this problem with traditional techniques, for networks with vary-
ing constraints. However, there is no other network problem which also contains
all of the constraints placed on network design for SANs [6]. For example, Gavish
([3]) expresses the network design and routing problem as a combinatorial op-
timisation problem and uses Langrangean relaxation to obtain close to optimal
networks. However, although Gavish’s work includes restrictions on node cost
and does not allow flows to be split, it does not take into account node capacity
issues, as the SAN design problem must.

Network Design With a Genetic Algorithm. Intending to improve on
the work done with traditional techniques, several researchers have attemp-
ted network design with genetic algorithms. Chu et al. [1] describe work done
using Genetic Algorithms to design a degree-constrained minimal spanning tree
(DCMST). A minimal spanning tree is a collection of edges that joins together
all vertices in a set with a minimum sum of weighted edge values. The degree-
constrained modifier implies that there is a maximum number of edges connected
to a particular vertex. Like heuristic design of SANs, traditional programming
approaches to DCMST design do not scale well. As network size increases, the
number of constraints increases exponentially and realistic problems become dif-
ficult to solve with traditional mathematics. Encoding the connected components
of the network within the genome, both valid and invalid solutions are evolved
for a network of n nodes, where each node has varying degree constraints. Inva-
lid solutions may be specified by the genome, in which case an attempt will be
made to modify the network in order to make the solution viable. This process,
which they call chromosome repair, may or may not be successful in producing
a valid network. However, it acts as an effective local search mechanism for the
genetic algorithm. The fitness of each specified network is measured as the cost
of connecting the connected nodes together as specified. It was found that the
GA could produce more optimal solutions than the traditional minimisation al-
gorithms supplied, but at significantly higher computational cost. Knowles and
Corne [4] also use a genetic algorithm to design DCMSTs, however in their case,
they use a genome encoding that only permits generation of valid networks, ef-
fectively narrowing the search space to a much more manageable size. They find
similar results in that the GA outperforms other compared design methods.

Raidl and Julstrom [5] also use a GA but for designing a bounded-diameter
minimum spanning tree (BDMST). A bounded-diameter tree is one which has
a maximum number of edges connecting any two vertices in the graph. They
also restrict their generated genomes to only specify valid networks. With this
type of network, this GA implementation can outperform the other compared
heuristic techniques.

Design of DCMSTs and BDMSTs is similar to SAN design in that both re-
quire connecting nodes when each node has a limited amount of connections
available. Both problems also require the minimisation of some cost value. Addi-
tionally Chu, et al. allow the production of invalid networks. However the SAN

1070 E. Dicke et al.

design problem has the added issue of the data flow through the network. Each
component in the network has its own limit on the amount of bandwidth it
has available. Moreover a SAN does not need to be fully connected. Valid, cost-
effective solutions will not have all nodes connected to each other. A flow must
not be split between separate fabric elements (i.e. the network is non-bifurcated).
Furthermore, with SAN design the set of nodes is not known in advance.

3 Methods

We now describe the specific implementation of the genetic algorithm used.
We will then present the results of experiments to both further optimise Appia
designs and to create new networks. We will show that for small networks, op-
timisation of Appia designs is possible and we can save over 40% of the original
FlowMerge cost. We will also show that it is possible to design networks with
a direct-connection initialised GA, although the performance does not always
equal that of the Appia improved designs.

3.1 Genome Encoding

We commence with a list of flow requirements for the desired SAN (see Table
1 for an example), and a pool of available fabric nodes, containing a number of
different types1, each node having its own unique identification number, ranging
for convenience from 1 to n where n is the number of fabric nodes available.

The genome encoding used here is limited to expression of single-layered
networks only. It contains one locus for each flow requirement as specified in the
list. Each locus specifies as an integer the fabric node, if any, that the flow from
host to device should be routed through. A direct connection is specified with a
fabric node number of 0.

For example, if we have a fabric node pool of two switches, four flows (as
defined in Table 1), three hosts, and two devices, we would represent a possible
solution as in Figure 1(a). In this example, there is a direct connection between
host0 and device0.

3.2 Solution Evaluation

A candidate network is created from the genome representation in several steps.
First, we determine which fabric nodes from the pool are being used (that is
those that have flows routed through them). For example, The network built

1 In this paper we consider two types of fabric node: switch and hub. For our purposes,
a hub differs from a switch in three ways: the cost of the fabric node itself, the cost
of the ports on the fabric node, and the amount of incoming bandwidth that the
fabric node can handle. The hub itself is cheaper than a switch node. Ports on a hub
do not cost anything, but the ports on a switch do. However, a switch’s bandwidth
is only limited to the sum of bandwidth supported by its ports, a hub has additional
incoming bandwidth restrictions that are less than the bandwidth supported by the
ports.

Using a Genetic Algorithm 1071

Table 1. Flow requirements for an arbitrary example SAN design problem. There are
three hosts, and two devices

Name Source Destination Bandwidth Required (MB)

flow0 host0 device0 1.0e07

flow1 host1 device1 5.4e07

flow2 host0 device1 6.8e07

flow3 host2 device1 9.7e07

host2
device1

host0
device0

host0
device1

host1
device1

0 11 2

(a)

host2
device1

host0
device0

host0
device1

host1
device1

0 11 1

(b)

host2
device1

host0
device0

host0
device1

host1
device1

0 11 0

(c)

Fig. 1. Possible genomes representing a solution for the SAN design problem whose
flow requirements are specified in Table 1. The fabric node pool has two switches.
Genomes (b) and (c) are mutations of (a) where the gene at locus ‘host0-device1’ is
mutated

Fig. 2. SANs built from the specification given in Figure 1, from left to right (a), (b),
and (c). The solid line represents a direct connection between a host and a device. The
dashed lines are links that connect to a fabric node on one end or the other. Each link
has a capacity of 10e07MB. Each host and device has two available ports. The switch
has 16 available ports. In each network device1 therefore has a port violation of 1

from the genome in Figure 1(c) only uses one of the fabric nodes, while the
network represented by the genome in Figure 1(a) uses two. Next, the number
of links needed to support the flows is determined. For each flow, its path is
determined from the genome specification. If the flow is routed directly between
its host and device, a link is created between its source and destination. If the
flow is routed through a fabric node, the algorithm first checks to see if there
is already a link between the specified source and fabric node that can support
the bandwidth needed by the flow. If there is, then that link is used, otherwise a
new link is created between the source and fabric node. For link allocation, we
will only be constrained by available bandwidth; we will permit port violations
at this stage. Following this method, the genomes in Figure 1 would be built as
illustrated in Figure 2.

1072 E. Dicke et al.

Once a network has been built, the topology and routing of the flows can then
be evaluated. A formula for the overall cost C associated with the production
of a particular design is given by Equation 1.

C = w1cm + w2phd + w3pf + w4b. (1)

The terms cm, phd, pf and b are normalisations of, respectively, the monetary cost
of each of the components necessary, the number of host/device port violations,
the number of fabric node port violations, and the amount of bandwidth which
is required but not available. The constants wn, which are set at the start of
each run, allow the relative importance of each term to be configured.

The terms cm, phd, pf and b are normalised to lie between 0 and 1 by dividing
by an over-approximation of their worst-case values. The worst-case monetary
cost cmw

is approximated with the formula expressed in Equation 2, in which
nh, nd and nf are the number of hosts, devices, or flows in the problem and ch,
cd, cl, cf and cp is the monetary cost of a host, device, fibre cable, fabric node,
or port.

cmw
= (nh ∗ ch) + (nd ∗ cd) (2)

+ (nf ∗ 2)(cl + max(cP))

+ (nf)(max(cf))

Each component element of the evaluation function corresponds to a constraint
on the design of the network. The number of port violations and amount of over-
allocated bandwidth are each a measurement of the ‘badness’ of un-buildable
solutions.

3.3 The Genetic Algorithm

A GA with rank selection, single-point crossover (probability 0.05), and elitism
was used for all runs. When mutation occurs at a particular locus (probability
0.01), a random number is chosen between 0 and n, to represent a new route for
a flow. A mutation always results in a new value for a particular gene.

4 Experimental Results

The GA was tested using two different initialisation methods. The first is to
initialise each member of the population so that each flow requirement is met
by directly connecting its source host to its destination device. This method is
called “direct connection initialisation”. This is similar to the initial step in the
FlowMerge algorithm. The second method is to initialise each genome with a
buildable, though potentially sub-optimal solution from one of the Appia algo-
rithms. This method is called “Appia initialisation”. In each case, over successive
generations, the GA will evolve new networks, routing the flows through availa-
ble fabric nodes.

Using a Genetic Algorithm 1073

4.1 Test Data

The Appia project [6] has generated a set of random test cases classified into
nine distinct groups. Each test case has a possible solution, though the optimal
solution is not necessarily known. Each group has two specific characteristics,
one which represents the number of hosts and the number of devices, and the
other which categorises the number of flows between host, device pairs. There
were three possible categories of size: problems with 10 hosts and 10 devices, 20
hosts and 100 devices, and 50 hosts and 100 devices. The results presented in
this paper are only for 10 by 10 problems. The flows were then characterised by
three labels: sparse (a few number of flows generally uniformly distributed across
possible host-device pairs), dense (a large number of flows generally uniformly
distributed) or clustered (a small number of host-device pairs carry most of the
flow requirements).

This same test set was applied to the GA described above, in order to measure
its effectiveness against the more traditional algorithms developed and applied in
the Appia project. Each grouping of sparse, clustered, and dense problems was
numbered from 1 to 30. The first 10 represent problems whose hosts/devices
have a higher maximum percentage of port saturation (i.e the proportion of the
maximum bandwidth that may be used on a particular host or device). The last
10 have a higher number of maximum flows per individual host or device.

4.2 Results

Direct Connection Initialisation. The GA was initialised with genomes re-
presenting a network with all direct connections. It was then run for 1000 ge-
nerations with a population size of 100. The weights corresponding to Equation
1 were set to (w1, . . . , w4) = (1, 10000, 1000, 100). Since the weighting is ap-
plied after the normalisation, this tiered weighting ensures that a solution with
host/device port violations is always worse than one without host/device port
violations, even if the solution with no host/device port violations has the maxi-
mum possible number of fabric node violations. The idea is that as solutions are
evolved the number of host or device port violations will be decreased first until
there are none. Only then will a focus on decreasing the number of fabric node
port violations occur, and so with bandwidth and then monetary cost. This en-
sures that the GA will find buildable solutions first, and only then will monetary
cost become a consideration.

We ran the GA for each of 30 sparse problems, 30 clustered problems, and 30
dense problems for a 10 host, 10 device problem. The GA generated a buildable
solution in 62% of the problems. There were 27 buildable sparse solutions, 29
buildable clustered solutions but only 10 buildable dense solutions.

Table 2 compares the average solution monetary cost of each algorithm, for
those cases where the GA was able to construct a solution.

Figure 4 shows the percent improvement of the GA’s solutions over the Appia
solutions for those cases in which the GA was able to find a solution within 1000
generations. In some cases, the direct connection initialised GA is able to create
better networks than either of the Appia algorithms, especially for problems
characterised as clustered or dense. But in general it is outperformed by them.

1074 E. Dicke et al.

Fig. 3. On the left, an example of a network designed by the GA initialised with direct
connections. After 1000 generations, monetary cost is $52,470. The network on the
right is the corresponding Appia QuickBuilder solution, cost is $28,470.

Table 2. Comparison between average solution monetary costs for direct-connection
initialised GA, FlowMerge, and QuickBuilder Algorithms. Negative values indicate the
GA did not perform as well as the specified Appia algorithm

Average Cost min(FM,QB)-GA

Type n GA FM QB Average Standard Deviation

Sparse 27 $65,088 $46,629 $51,113 $-21,023 $17,584

Clustered 29 $50,512 $50,309 $54,912 $-2,004 $20,844

Dense 10 $88,470 $100,404 $147,700 $11,934 $27,308

% improvement

fr
eq

ue
nc

y

−250 −200 −150 −100 −50 0 50 100

0
5

10
15

20

Fig. 4. Percent improvement of direct-connection initialised GA evolved networks over
the lower of the Appia QuickBuilder or FlowMerge costs

Appia Initialisation. The GA approach to SAN design appears to be most
effective when initialised with a design which has been provided by one of the
Appia algorithms. To illustrate this, we initialised each member of the population

Using a Genetic Algorithm 1075

with the cheaper solution produced by either the FlowMerge or QuickBuilder
algorithm. The GA then evolved modified solutions, resulting in equal or lower
cost designs. In many of these cases, the GA can find a solution that is less
expensive than the cheapest Appia solution.

For these experiments, we used the same 30 sparse, 30 clustered, and 30
dense sample problems as in the direct connection initialised experiments de-
scribed in Section 4.2. The weights in Equation 1 were, however, changed to
(w1, . . . , w4) = (1, 10, 15, 1). This puts slightly more emphasis on the fabric node
port violations, over the host/device port violations. This GA was able to find
better solutions 71% of the time. That is, in 23 of the 30 sparse problems, 18 of
the 30 clustered problems, and 16 of the available 20 dense problems2. Table 3
shows the quantified ability of the GA to redesign the SAN topology and routing
so that the monetary cost of the new SAN is cheaper.

Table 3. Comparison between average solution monetary costs for Appia initialised
GA, FlowMerge, and QuickBuilder Algorithms

Average Cost min(FM,QB)-GA

Type n GA FM QB Average Standard Deviation

Sparse 30 $45,142 $48,735 $53,923 $1,286 $1,423

Clustered 30 $46,328 $51,722 $57,206 $3,713 $7,550

Dense 20 $90,280 $94,766 $126,146 $4,062 $3,864

These improvements over the Appia algorithms, summarised in Table 3 are
shown graphically in Figure 5. The improvement in design over the Appia so-
lutions results generally from a slight re-arrangement in flows in order to take
advantage of already available components. For example, a GA solution to sparse
problem 1 takes advantage of an available path through an existing switch, in-
stead of creating an additional direct connection between a host and its corre-
sponding device. The use of an already available route is cheaper than the use
of an unnecessary host or device port and additional link and in this case, gives
savings of $620.

Other improved solutions will result in the use of a smaller number of fabric
nodes, which leads to a more significant cost savings. For example, Figure 6
shows an Appia solution and a resulting improved solution found by the GA for
clustered problem 1. The improved solution uses one less switch resulting in a
monetary cost difference between the two designs of $33, 220.

The experiments described in this paper have concentrated solely on input
designs which were single layered. More complex multi-layer designs were not
considered. This has limited us to the exploration of relatively simple SANs.

2 The remaining 10 dense problems had Appia solutions which were for multi-layer
networks. Since our genome representation only encompasses single layer networks
there was no way to initialise the population with these solutions. Therefore, there
was no data collected on improvement of Appia generated designs for these particular
dense networks.

1076 E. Dicke et al.

% improvement

fr
eq

ue
nc

y

0 10 20 30 40 50

0
5

10
15

Fig. 5. Percent improvement of Appia initialised GA evolved networks over the lower
of the Appia QuickBuilder or FlowMerge costs

Fig. 6. On the left, SAN designed by the Appia FlowMerge algorithm at a cost of
$80,990. On the right, a lower monetary cost SAN designed by a GA given the design
on the left as input. The monetary cost savings is $33,320

However, the above-described results have shown that in many cases, we can
improve the design of a SAN generated by Appia to decrease the monetary cost
needed to support the required flows. For a detailed exploration of the nature of
the fitness landscapes produced in this work, the reader is referred to [2].

5 Conclusion

We have found that a GA which encoded single layered networks could evolve
buildable networks for small, 10 host by 10 device problems. These solutions,
when evolved from a directly connected network, do not generally outperform
the Appia FlowMerge solutions, but can, about half of the time, outperform
the QuickBuilder solutions. However, when the GA is initialised with an Appia

Using a Genetic Algorithm 1077

solution, in most cases it can quickly evolve a better solution, and is hence of
immediate utility as a tool for SAN optimisation. The use of either technique
can result in solutions which provide significant monetary cost savings over Ap-
pia designed networks. There are several different directions in which the work
presented here could be taken in the future. First in terms of the problem repre-
sentation and solution space, we made a specific decision that we limit possible
solutions to include only single-layer networks. This may prevent the GA im-
plementation from finding a more optimal solution. We now intend to extend
the approach to multi-layered networks. We also demonstrated that the GA was
an effective tool for optimising already designed networks. One of the problems
in SAN design is that flow requirements have a tendency to change over the
life-time of a SAN solution. The GA presented here should also be an effective
tool for re-designing SANs when the requirements change, including an increase
in the number of flows.

References

1. Chao-Hsien Chu, G. Premkumar, Carey Chou, and Jianzhong Sun. Dynamic de-
gree constrained network design: A genetic algorithm approach. In Proceedings of
GECCO-99 (Genetic and Evolutionary Computation Conference 1999), pages 141–
148, 1999.

2. Elizabeth Dicke, Andrew Byde, Dave Cliff, and Paul Layzell. Using a genetic al-
gorithm to design improved storage area network architectures. Technical Report
HPL-2003-221, HP Laboratories, Bristol, November 2003.

3. Bezalel Gavish. Topological design of computer communication networks - the
overall design problem. European Journal of Operational Research, 58:149–172,
1992.

4. Joshua Knowles and David Corne. A new evolutionary approach to the degree-
constrained minimum spanning tree problem. IEEE Transactions on Evolutionary
Computation, 4(2):125–134, July 2000.

5. Gunther R. Raidl and Bryant A. Julstrom. Greedy heuristics and an evolutionary
algorithm for the bounded-diameter minimum spanning tree problem. In G. Lamont
et al., editor, Proceedings of the 2003 ACM Symposium on Applied Computing, pages
747–752, 2203.

6. Julie Ward, Michael O’Sullivan, Troy Shahoumian, and John Wilkes. Appia: auto-
matic storage area network fabric design. In Proceedings of the FAST 2002 Confe-
rence on File and Storage Technologies, pages 203–217, January 2002.

	1 Introduction
	2 Background
	2.1 Previous Automated SAN Design Work
	2.2 Automated Design of Other Types of Networks

	3 Methods
	3.1 Genome Encoding
	3.2 Solution Evaluation
	3.3 The Genetic Algorithm

	4 Experimental Results
	4.1 Test Data
	4.2 Results

	5 Conclusion

