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Abstract. In this paper, a novel multi-objective orthogonal simulated annealing
algorithm MOOSA using a generalized Pareto-based scale-independent fitness
function and multi-objective intelligent generation mechanism (MOIGM) is
proposed to efficiently solve multi-objective optimization problems with large
parameters. Instead of generate-and-test methods, MOIGM makes use of a sys-
tematic reasoning ability of orthogonal experimental design to  efficiently
search for a set of Pareto solutions. It is shown empirically that MOOSA is
comparable to some existing population-based algorithms in solving some
multi-objective test functions with a large number of parameters.

1   Introduction

Many real-word applications usually involve simultaneous consideration of multiple
performance criteria that are often incommensurable and conflict in nature. It is very
rare for these applications to have a single solution, but rather a set of alternative so-
lutions. These Pareto-optimal solutions are those for which no other solution can be
found which improves along a particular objective without detriment to one or more
other objectives. Multi-objective evolutionary algorithms (MOEAs) for solving mul-
tobjective optimization problems gain significant attention from many researchers in
recent years [1]-[8]. These optimizers not only emphasize the convergence speed to
the Pareto-optimal solutions, but also the diversity of solutions. Niching techniques,
such as fitness sharing and mating restriction, are employed for finding uniformly
distributed Pareto-optimal solutions [2]-[3], and elitism is incorporated for improving
the convergence speed to the Pareto front [4].

In recent years, many MOEAs employing local search strategies for further im-
proving convergence speed have been successively proposed [4]-[7]. Population-
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based MOEAs have a powerful ability to extensively explore candidate solutions in a
whole search space and painstakingly exploit candidate solutions in a local region, in
parallel. In the neighborhood of each individual, it is beneficial for MOEAs to use
local search strategies to exploit better solutions. However, local search strategies
increase computation time in each generation. In order to avoid wasting time in un-
necessary local searches, MOEAs must choose good individuals from the population
for further exploiting non-dominated solutions [8]. However, it is difficult to deter-
mine which individual is good for exploit.

Knowles and Corne [5] proposed a non-population based method, Pareto archived
evolution strategy (PAES), to find a Pareto font. It employs a local search strategy for
the generation of new candidate solutions, and utilizes elite set information to aid in
the calculation of the solution quality. However, the local search strategy is based on
generate-and-test methods that cannot efficiently solve large multi-objective optimi-
zation problems (MOOPs) with a large and complex search space.

Recently, an efficient sigle-objective orthogonal simulated annealing algorithm
OSA is proposed [9]. High performance of OSA mainly arises from an intelligent
generation mechanism (IGM) which applies orthogonal experimental design to speed
up the search. IGM can efficiently generate a good candidate solution for next move
of OSA by using a systematic reasoning method. In this paper, a novel multi-objective
orthogonal simulated annealing algorithm MOOSA using a generalized Pareto-based
scale-independent fitness function and multi-objective IGM (MOIGM) is proposed to
efficiently solve multi-objective optimization problems with large parameters. Instead
of generate-and-test methods, MOIGM makes use of a systematic reasoning ability of
orthogonal experimental design to  efficiently search for a set of Pareto solutions. It is
shown empirically that MOOSA is comparable to some existing population-based
algorithms in solving some multi-objective test functions [1] with a large number of
parameters.

2   Orthogonal Experimental Design [9]

MOOSA with a multi-objective intelligently generation mechanism (MOIGM) is
based on orthogonal experimental design (OED). The basic concepts of OED are
briefly introduced in Section 2.1. The orthogonal array and factor analysis of OED
used in MOIGM are described in Section 2.2.

2.1   Concepts of OED

An efficient way to study the effects of several factors simultaneously is to use OED
based on orthogonal array and factor analysis [10], [11]. Many design experiments use
OED for determining which combinations of factor levels to use for each experiment
and for analyzing the experimental results. The factors are the variables (parameters),
which affect the chosen response variables (objective functions), and a setting (or a
discriminative value) of a factor is regarded as a level of the factor. The term ‘main
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effect’ designates the effect on the response variable that one can trace to a design
parameter [10].

Orthogonal array is a factional factorial matrix, which assures a balanced compari-
son of levels of any factor or interaction of factors. In the context of experimental
matrices, orthogonal means statistically independent. The array is called orthogonal
because all columns can be evaluated independently of one another, and the main
effect of one factor dose not bother the estimation of the main effect of another factor
[11]. Factor analysis using the orthogonal array’s tabulation of experimental results
can allow the main effects to be rapidly estimated, without the fear of distortion of
results by the effects of other factors. Factor analysis can evaluate the effects of solu-
tion factors on the evaluation function, rank the most effective factors, and determine
the best level for each factor such that the evaluation function is optimized.

Orthogonal experimental design can provide near-optimal quality characteristics for
a specific objective. Furthermore, there is a large saving in the experimental effort.
OED uses well-planned and controlled experiments in which certain factors are sys-
tematically set and modified, and then main effect of factors on the response can be
observed. OED specifies the procedure of drawing a representative sample of experi-
ments with the intention of reaching a sound decision [10]. Therefore, OED using
orthogonal array and factor analysis is regarded as a systematic reasoning method.

2.2   Orthogonal Array and Factor Analysis

The three-level orthogonal array (OA) used in intelligent generation mechanism is
described as follows. Let there be N factors with three levels for each factor. The
number of total experiments is 3N for the popular “one-factor-at-once” study. All the
optimization parameters are generally partitioned into N groups.

Table 1. Orthogonal array L9(3
4)

Factor i
Experiment

 no. j
1 2 3 4 Fitness value fj

1 1 1 1 1 f1

2 1 2 2 2 f2

3 1 3 3 3 f3

4 2 1 2 3 f4

5 2 2 3 1 f5

6 2 3 1 2 f6

7 3 1 3 2 f7

8 3 2 1 3 f8

9 3 3 2 1 f9

One group is regarded as a factor. To use an OA of N factors with three levels, we
obtain an integer ( ) 12log33 += NM , build a three-level OA LM(3(M-1)/2) with M rows and
(M-1)/2 columns, use the first N columns, and ignore the other (M-1)/2-N columns.
Table 1 illustrates an example of OA L9(3

4). OA can reduce the number of experi-
ments for factor analysis. The number of OA experiments required to analyze all solu-
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tion factors is only M, where 2N+1 ≤M ≤6N-3. An algorithm of constructing OA can
be found in [12]. After proper tabulation of experimental results, the summarized data
are analyzed using factor analysis to determine the relative effects of levels of various
factors as follows.

Let fj denote a fitness value of the combination corresponding to the experiment j,
where j = 1, …, M. Define the main effect of factor i with level k as Sik where i = 1,
…, N and k = 1, 2, 3:

Sik ∑
=

=
M

j 1

fj · AFj,                                                   (1)

where AFj = 1 if the level of factor i of experiment j is k; otherwise, AFj = 0. Consid-
ering the case that the a fitness value is to be minimized, the level k is the best one
when Sik=min{Si1, Si2, Si3}. The main effect reveals the individual effect of a factor.

After the best one of three levels of each factor is determined, an intelligent combi-
nation consisting of all factors with the best levels can be easily derived. OED is ef-
fective for development design of efficient search for the intelligent combination of
factor levels, which can yield a high-quality a fitness value compared with all values
of 3N combinations, and has a large probability that the reasoned value is superior to
those of M representative combinations.

3   Multi-objective Orthogonal Simulated Annealing Algorithm
MOOSA

MOOSA with MOIGM based on orthogonal experimental design (OED) can effec-
tively solve intractable engineering problems comprising lots of parameters. A
MOIGM uses a generalized Pareto-based scale-independent fitness function (GPSIFF)
to efficiently evaluate the performance of solutions. GPSIFF evaluation procedure is
described in Section 3.1. An MOIGM operation is briefly introduced in Section 3.2.A
MOOSA using MOIGM is described in Section 3.3.

3.1   Use a Proposed GPSIFF

The fitness values for a set P of participant solutions to be evaluated are derived using
a GPSIFF evaluation procedure at the same time in an objective space. GPSIFF makes
direct use of general Pareto dominance relationship to obtain a single measurement of
solutions. Simply, one solution has a higher score if it dominates more solutions. On
the contrary, one solution has a lower score if more solutions dominate it.

Let a fitness value of a candidate solution be a tournament-like score obtained from
all participant solutions in P. The fitness value of X can be given by the following
score function:

score(X) ={ }PBPAXBAXtsPcBqApcqp ⊆⊆===+− and,,..,, ≺≺ ,

(2)
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where ≺  stands for domination, c is the size of P, p is the number of solutions of a set
A which can be dominated by X, and q is the number of solutions of a set B which can
dominate X in the objective space. It is noted that the GPSIFF scores for the non-
dominated solutions as well as dominated solutions are not always identical.

GPSIFF uses a pure Pareto-ranking fitness assignment strategy, which differs from
the traditional Pareto-ranking methods, such as non-dominated sorting [16] and Zitzler
and Thiele’s method [1]. GPSIFF can assign discriminative fitness values to not only
non-dominated individuals but also dominated ones.

3.2   Multi-objective Intelligently Generation Mechanism MOIGM

Consider a parametric optimization function of m parameters. According to a current
solution X=[x1, …, xm]T where xi is a parameter value, an MOIGM generates two tem-
porary solutions X1=[ 1

1x , …, 1
mx ]T and X2=[ 2

1x , …, 2
mx ]T from perturbing X, where 1

ix

and 2
ix  are generated by perturbing xi as follows:

iii xxx +=1  and iii xxx −=2 , i=1, …, m.                                  (3)

The values of x =[
1x ,…, 

mx ]T are generated by Cauchy-Lorentz probability distribu-

tion [21].
Using the same division scheme for X, X1, and X2, partition all the m parameters

into N non-overlapping groups with sizes li, i=1, …, N, such that

∑
=

N

i
il

1

= m.                                                           (4)

The proper value of N is problem-dependent. The larger the value of N, the more
efficient the MOIGM is if the interaction effects among groups are weak. If the exist-
ing interaction effect is not weak, the larger the value of li, the more accurate the esti-
mated main effect is. Considering the trade-off, an efficient bi-objective division crite-
rion is to minimize the interaction effects between groups and maximize the value of
N. To efficiently use all columns of OA, N is generally specified as
N=(   13 )12(log3 −+m )/2 and the used OA is L2N+1(3

N) excluding the study of intractable
interaction effects. The N-1 cut points are randomly specified from the m-1 candidate
cut points which separate solution parameters.

 MOIGM employs an elite set E to hold a limited number of non-dominated solu-
tions and aims at efficiently combining good parameters from solutions X, X1, and X2

to generate a good candidate solution Q  for the next move. Let H be the number of

objectives for the problem. How to perform an MOIGM operation on X with m pa-
rameters for a GPSIFF fitness value F and objective function values f 1, …, f H is de-
scribed as follows:
Step 1: Generate two temporary solutions X1 and X2 using X from Equ. (3).
Step 2: Adaptively divide each of X, X1, and X2 into N groups of parameters where

each group is treated as a factor.
Step 3: Use the first N columns of an OA LM(3(M-1)/2), where  )12(log33 += NM .
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Step 4: Let levels 1, 2 and 3 of factor i represent the ith groups of X, X1, and X2,
respectively.

Step 5: Add M combination experiments of the OA into E. Compute Fj and hf of the

generated combinations corresponding to the experiment j, where h=1, ...,H
and j = 2, …, M. Note that Fj and hf  are the fitness value of F(X) and the hth

objectives function value of f (X), respectively.
Step 6: Compute the main effect G

ikS  using GPSIFF. Determine the best one of three

levels of each factor based on the main effect G
ikS , where i = 1, …, N and k =

1, 2, 3.
Step 7: The solution Q is formed using the combination of the best groups from the

derived corresponding solutions.
Step 8: Compute the main effect h

ikS  using the one of objective fitness values. Deter-

mine the best one of three levels of each factor based on the main effect h
ikS ,

where h = 1, …, H, i = 1, …, N and k = 1, 2, 3. The solutions Q1, …, QH are
formed.

Step 9: Add Q and Q1, …, QH  solutions into E. Recompute the value of F for all
non-dominated solution in E.

Step 10: Q  is selected from the best one of M-1 combination experiments except X, Q

and Q1, …, QH  according the GPSIFF fitness value, except that Q  is not

equal X.
For an MOIGM operation, the number of objective function evaluations is M+H
which includes M-1 evaluations for combinations of OA experiments, one for the
evaluation of Q, and H evaluations for Q1, …, QH.

3.3   Procedure of MOOSA

MOOSA is based on a simulated annealing algorithm (SA) for solving multi-objective
optimization problems. There are four choices must be made in implementing a SA
algorithm for solving an optimization problem: 1) solution representation, 2) objective
function definition, 3) design of the generation mechanism, and 4) design of a cooling
schedule. The choices 1 and 2 are problem-dependent. Designing an efficient genera-
tion mechanism plays an important role in developing SA algorithms. Generally, there
are four parameters to be specified in designing the cooling schedule: 1) an initial
temperature T0, 2) a temperature update rule and 3) a stopping criterion of the SA
algorithm.

MOOSA employs an elite set E which maintains the non-dominated solutions and
MOIGM to efficiently search for a good candidate solution for the next move. Let a
variable value Ns be the number of trials with the same solution X, a constant 

sN  be

the max number of trials with the same solution. Without lose of generality, consider
the case that the fitness value F(X) and H objective function values f1, …, fH are to be
minimized. The proposed MOOSA is described as follows:
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Step 1: (Initialization) Randomly generate an initial solution X and compute F(X) and
f1, …, fH. Initialize the temperature T=T0, NT=N0, and cooling rate CR.
Count=0, Ns=0.

Step 2: (Update Elitism) Remove the dominated solutions in E.
Step 3: (Selection) If the solution X is not improved during 

sN  iterations (i.e.

Ns= sN ), randomly select a solution X from E and reset Ns =0.

Step 4: (Generation) Perform an MOIGM operation using X to generate a candidate
solutionQ . Set X =X.

Step 5: (Acceptance criterion) Accept Q  to be the new solution X with probability

P( Q ):
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 −−
>
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T
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XFQFif

QP HH
         (5)

If a new solution X is equal to an old solution X , increase the value of Ns by
one.

Step 6: (Decreasing temperature) Let the new values of T be CR×T.
Step 7: (Termination test) If a pre-specified stopping condition is satisfied, stop the

algorithm. Otherwise, go to Step 2.
Let G be the number of iterations. The complexity of MOOSA is G×(M+H) function
evaluations.

4   Simulation Results

The coverage ratio of two non-dominated solution sets, A and B, obtained by two
algorithms is used for performance comparison of the two algorithms, which is de-
fined as follows [1]:

B

abBbAa
BAC

};;{
),(

∈∈
=  ,                                           (6)

where ab  means that b is weakly dominated by a. The value C(A,B)=1 means that

all solutions in B are weakly dominated by A. On the contrary, C(A,B)=0 denotes that
none of solutions in B is weakly dominated by A. Because the C measure considers the
weakly dominance relationship between two sets A and B, C(A, B) is not necessarily
equal to 1-C(B,A).

Recently, Deb [18] has identified several problem features that may cause difficul-
ties for multi-objective algorithms in converging to the Pareto-optimal front and
maintaining population diversity in the current Pareto front. These features are multi-
modality, deception, isolated optima and collateral noise, which also cause difficulties
in single-objective GAs. Following the guidelines, Zitzler et al. [1] constructed six test
problems ZDT1-ZDT6 involving these features, and investigated the performance of
various popular MOEAs. The empirical results demonstrated that SPEA outperforms
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NSGA [7], VEGA [13], NPGA [2], HLGA [14] and FFGA [22] in small-scale prob-
lems. Each of the test functions is structured in the same manner and consists of three
functions f1, g, h [18]:

Minimize F(X) = ( f1(X), f2(X)),                                                   (7)
subject to f2(X) = g(x2, … , xm)‧h(f1(x1), g(x2, … , xm)),
where X = [x1, x2, … , xm]T.

where f1 is a function consisted of the first decision variable x1 only, g is a function of
the remaining m-1 variables, and the two variables of the function h are the function
values of f1 and g. These test problems are listed in Table 2. ZDT5 is excluded because
MOOSA uses real numbers for encoding.

Table 2. Test problems.

Test
Problems

Objective functions Domain xi
Optimal
solutions

ZDT1

1 1

2 1

2

1 1

( )

( ) ( ) ( ( ) , ( ) )

( ) 1 9 / ( 1)

( ( ) , ( ) ) 1 /

m

ii

f X x

f X g X h f X g X

g X x m

h f X g X f g

=

=
= ×

= + ⋅ −

= −

∑
[ ]0,  1 ,

1, , .
ix

i m

∈
=

[ ]1 0,  1 ,

0,

2, , .
i

x

x

i m

∈
=

=

ZDT2

( )

1 1

2 1

2

2

1 1

( )

( ) ( ) ( ( ) , ( ) )

( ) 1 9 / ( 1 )

( ( ) , ( ) ) 1 ( ) / ( )

m

ii

f X x

f X g X h f X g X

g X x m

h f X g X f X g X

=

=
= ×

= + ⋅ −

= −

∑
[ ]0,  1 ,

1, , .
ix

i m

∈
=

[ ]1 0,  1 ,

0,

2, , .
i

x

x

i m

∈
=

=

ZDT3

( )

1 1

2 1

2

1
1 1 1

( ) ( ) ( ( ), ( ))

( ) 1 9 /( 1)

( )
( ( ), ( )) 1 ( ) / ( ) ( )sin 10

( )

m

ii

f x

f X g X h f X g X

g X x m

f X
h f X g X f X g X x

g X
π

=

=
= ×

= + ⋅ −

= − −

∑
[ ]0,  1 ,

1, , .
ix

i m

∈
=

[ ]1 0,  1 ,

0,

2, , .
i

x

x

i m

∈
=

=

ZDT4

1 1

2 1

2

2

1 1

( ) ( ) ( ( ), ( ))

( ) 1 1 0 ( 1) ( 1 0 co s(4 ))

( ( ), ( )) 1 ( ) / ( )

m

i ii

f x

f X g X h f X g X

g X m x x

h f X g X f X g X

π
=

=
= ×

= + − + −

= −

∑

[ ]1 0,  1  ,

[ 5,  5],

=2, , .
i

x

x

i m

∈
∈ −

[ ]1 0,  1 ,

0,

2, , .
i

x

x

i m

∈

=
=

ZDT6

( )

6
1 1 1

2 1

0 .2 5

2

2

1 1

1 e x p ( 4 ) s in (6 )

( ) ( ) ( ( ) , ( ))

( ) 1 9 (( ) /( 1))

( ( ) , ( )) 1 ( ) / ( )

m

ii

f x x

f X g X h f X g X

g X x n

h f X g X f X g x
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There are m parameters in each test problem. Each parameter in chromosomes is
represented by 30 bits. The experiments in Zitzler’s study indicate that the test prob-
lems ZDT4 and ZDT6 cause difficulties to evolve a well-distributed Pareto-optimal
front. In their experiments, the reports are absent about the test problems with a large
number of parameters. As a result, the extended test problems with a large number of
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parameters (m=63) are further tested in order to compare the performance of various
algorithms in solving large MOOPs. Thirty independent runs were performed using
the same fitness evaluations for various algorithms, Neval = 25000. The parameter
settings of VEGA, NPGA, NSGAII [24] and SPEA2 [23] are the same in [1], summa-
rized as follows: the generations is 250, the crossover rate is 0.8, the mutation rate is
0.1, tdom=10, the sharing factor σshare is 0.4886, and the population size is 100. The
population size and the external population size of SPEA2 are 80 and 20. Let the
parameters of MOOSA be 

sN =10, CR=0.99, T0=150.

The direct comparisons of each independent run between MOOSA and all com-
pared MOEAs based on the C metric for 30 runs are depicted in Fig. 1. The average
numbers of non-dominated solutions for various algorithms is shown in Table 3.

Table 3. The average number of non-dominated solutions for 30 runs of various algorithms.

MOOSA SPEA2 NSGAII NPGA VEGA
ZDT1 174.53 68.23 61.73 16.33 13.90
ZDT2 194.93 40.53 35.33 9.16 5.53
ZDT3 100.30 78.87 65.20 17.10 12.60
ZDT4 4.90 4.83 3.83 6.10 4.80
ZDT6 21.17 9.90 9.57 6.90 5.27

Fig. 1. Box plots based on the cover metric for multi-objective parametric problems. The left-
most box plot relates to ZDT1, the rightmost to ZDT6. Each rectangle refers to algorithm A
associated with the corresponding row and algorithm B associated with the corresponding
column and gives six box plots representing the distribution of the cover metric C(A, B). The
scale is 0 at the bottom and 1 at the top per rectangle.
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For test problems ZDT1, ZDT2 and ZDT3, MOOSA, SPEA2 and NSGAII evolved
well-distributed Pareto fronts, and MOOSA is very close to the Pareto-optimal fronts.
For the multimodal test problem ZDT4, only MOOSA obtained a better Pareto front
which is much closer to the Pareto-optimal front than those of the other algorithms.
The well-distributed non-dominated solutions resulted from that OGM has well-
distributed by-products which are candidate non-dominated solutions at that time. For
ZDT6, MOOSA also obtained a widely distributed front and MOOSA’s solutions
dominate all the solutions obtained by the other algorithms. Finally, it can be observed
from [1] and our experiments that when the number of parameters increases, difficul-
ties may arise in evolving a well-distributed non-dominated front. Moreover, it is
observed that VEGA obtained some excel solutions in the objective f1 in some runs of
ZDT2 and ZDT6. This phenomenon agrees with [19], [20] that VEGA may converge
to solution champion solutions only.

As shown in Table 3, the average number of non-dominated solutions obtained by
MOOSA are more than the one obtained by others algorithms. As shown in Fig. 1, the
quality of solutions obtained by MOOSA is superior to those of SPEA2, NSGAII,
NPGA, and VEGA in terms of the number of non-dominated solutions, the distance
between the obtained Pareto front and Pareto-optimal front, and the distribution of
solutions.

5   Conclusions

In this paper, a novel multi-objective orthogonal simulated annealing algorithm
MOOSA using the generalized Pareto-based scale-independent fitness function and
orthogonal experimental design-based multi-objective intelligently generation mecha-
nism (MOIGM) is proposed to efficiently solve multi-objective optimization problems
(MOOPs) with a large number of parameters. The performance of MOOSA mainly
rises from MOIGM. It uses uniform samples and systematic reason methods instead of
generate-and-test methods, and thus MOOSA can efficiently find out a set of Pareto-
solutions. It was also shown through the test functions that the performance of
MOOSA is superior to some existing MOEAs in a limited computation time.
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