
Actuator Noise in Recombinant Evolution
Strategies on General Quadratic Fitness Models�

Hans-Georg Beyer

Department of Computer Science XI,
University of Dortmund, D-44221 Dortmund, Germany

hans-georg.beyer@cs.uni-dortmund.de

Abstract. This paper addresses the influence of actuator noise on the
steady state behavior of multirecombinant evolution strategies (ES) on
general quadratic fitness functions. Actuator noise degrades the ES’s abi-
lity to locate the global optimizer. After a certain transient time the ES
approaches a steady state behavior characterized by an expected fitness
deviation from the global optimum. This expected value is calculated and
the predictions are compared with ES runs on quadratic test functions.

1 Introduction

Actuator noise is a phenomenon widely observed in practice when trying to con-
trol the behavior of a device or machine by a set of control parameters which
cannot be tuned exactly. While the control parameters can be prescribed exactly,
its actual realization on the machine is disturbed by random perturbations such
as vibrations (ground motion, turbulence effects, etc.) or other sources of noise
(e.g., resistor noise, recombination noise, burst noise in electronic devices like re-
sistors or transistors). If one wants to optimize the performance of such devices
or machines, taking the actuator noise into account, one has to deal with goal
functions which are intrinsically random functions. That is, optimizing such fun-
ctions by neglecting its randomness can lead to a false optimal object parameter
set.

Another problem domain with similar implications concerns robust design
and optimization. Here one seeks to find optimal solutions which are robust
with respect to random perturbation of design parameters [4,13,14]. The main
application area is in the field of coping with production tolerances. There is
only a limited degree of accuracy by which devices can be produced. Optimizing
the design of a device has to serve two goals: On the one hand the device’s per-
formance, production costs, etc. should be maximal/minimal, on the other hand
it must be “producable”, i.e., the production process must allow for production
tolerances. This can be achieved at the level of product design by superimpo-
sing random perturbations on the design variable modeling the impact of the
production tolerances. Therefore, the aim of the design optimization process is
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basically not finding an optimum solution represented by a sharp peak in the
fitness landscape, but rather optimal solutions which are less sensitive to small
changes of the design parameters.

It is widely believed that evolutionary algorithms (EA) are good at such
design tasks. These algorithms seem rather suited for finding large optimum at-
tractors than finding the “needle in the haystack” peak. Up to now, there are
only a few references addressing the question whether this “folklore” belief can
be substantiated by hard and provable facts. Most investigations done on this
topic are mainly of empirical nature [4,13] or consider special one-dimensional
cases [14] without analyzing the EA’s behavior on the test functions propo-
sed. Only recently an attempt has been made to understand the behavior of
evolution strategies (ES) on simple N -dimensional test functions disturbed by
actuator noise [3,12]. These investigations revealed interesting behaviors such as
(actuator) noise-induced bistabilities on a unimodal fitness landscape [12] and
the appearance of an optimum localization error on a sphere model with actua-
tor noise [3]. In this paper we apply a technique proposed in [3] to investigate
the behavior of (µ/µI , λ)-ES1 on general quadratic fitness functions disturbed
by actuator noise. The results to be presented here extend the findings obtained
for the simple (i.e. symmetrical) sphere model to a more realistic situation of a
general quadratic fitness model. Such models can be regarded as local attractor
models of real-world objective functions.

The rest of the paper is organized as follows. First, we will introduce the
actuator noise model. Second, the steady state condition for the (µ/µI , λ)-ES
on this fitness model will be derived. In Section 4 we compare the theoretical
predictions with real ES runs. Finally, in the concluding section a short summary
will be given including an outlook to future research.

2 The Actuator Noise Model

The actuator noise model was introduced in [3] to account for object parameter
fluctuations like actuator jittering which are beyond the control of the user
and the optimization algorithm, respectively. The model considered was the
quadratic sphere. This paper investigates an arbitrary N -dimensional quadratic
function Q(y) (to be maximized)

Q(y) := bTy − yTQy (1)

with the N -dimensional real-valued vectors b and y and the symmetric (positive
definite) matrix Q. Given an object (or actuator) vector y, the actually observed
objective value, i.e. the fitness, is defined by the actuator noise model

Fa(y) := Q(y + z), where z ∼ N (0, ε21). (2)

That is, each object parameter component is disturbed by independent normally
distributed random events zi with the same standard deviation ε.
1 For the definitions of the evolution strategies used, see Appendix A.
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3 Determination of the Steady State of the ES

The analysis of the steady state behavior follows the decomposition technique
proposed in [3]. The basic idea is to transform the random function Fa(y) in such
a way that it appears as a sum of two parts, one carrying the stochastics and the
other being deterministic. That is, the transformed problem appears as a fitness
function with additive fitness noise. This transformation is admissible because
the ES acts as a black-box algorithm which only uses the fitness information
but not structural information from the fitness function. If we were able to make
the transformation in such a way that we obtain a fitness noise model already
analyzed then we are done. Therefore, the aim of the next section is to derive such
a (approximative) model. As a result we will obtain the general quadratic model
with (approximately) normally distributed fitness noise. Treating this model in
Section 3.2 using techniques from [2] will yield the desired expected steady state
fitness deviation from the global optimum.

3.1 Reducing the Actuator Noise Model to the General Quadratic
Noisy Fitness Model

In order to obtain an approximative fitness noise model one has to decompose
(2) into a deterministic part in terms of (1) and a normally distributed additive
noise term. Since the (µ/µI , λ)-ES with isotropic mutations is considered, it is
reasonable to express the fitness model and its decomposition in the eigensystem
of the matrix Q. Let qi be the eigenvalues of Q and ei the corresponding eigen-
vectors of length 1, i.e. qiei = Qei, the entire actuator noise model (1), (2) can
be rewritten by a principal axes transformation as

Fa(y) =
N∑

i=1

[bi(yi + zi) − qi(yi + zi)2]

Fa(y) =
N∑

i=1

[biyi − qiy
2
i ] +

N∑

i=1

[(bi − 2qiyi)zi − qiz
2
i ], (3)

where zi ∼ N (0, ε2) and bi = eT
i b, yi = eT

i y. Since it is the aim to decompose
Fa(y) in such a manner that

Fa(y) � E[Fa|y] + N (0, Var[Fa|y]) + . . . , (4)

one has to calculate E[Fa|y] and Var[Fa|y]. For the first conditional moment we
easily obtain (recall E[zi] = 0, E[z2

i ] = ε2,
∑

qi = Tr[Q])

E[Fa|y] =
N∑

i=1

[biyi − qiy
2
i ] −

N∑

i=1

qiz2
i = Q(y) − ε2Tr[Q]. (5)

For Var[Fa|y] one obtains (recall that E[z3
i ] = 0, E[z4

i ] = 3ε4,
∑

q2
i = Tr[Q2])

Var[Fa|y] =
N∑

i=1

Var[(bi − 2qiyi)zi − qiz
2
i ]
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Var[Fa|y] =
N∑

i=1

[
E[((bi − 2qiyi)zi − qiz

2
i )2] − (E[(bi − 2qiyi)zi − qiz

2
i ])2

]

=
N∑

i=1

[
(bi − 2qiyi)2ε2 + 2q2

i ε4]

= ε2
N∑

i=1

(bi − 2qiyi)2 + 2ε4Tr[Q2].

= 4ε2
N∑

i=1

q2
i

(
yi − bi

2qi

)2

+ 2ε4Tr[Q2]. (6)

Taking into account that the optimal state ŷ of Q(y) is easily obtained from (5)

ŷi =
bi

2qi
and Q̂ := max[Q] =

N∑

i=1

b2
i

4qi
, (7)

one gets Var[Fa|y] = 4ε2 ∑N
i=1 q2

i (yi − ŷi)2 + 2ε4Tr[Q2]. This can be written in
vector notation

Var[Fa|y] = 4ε2‖Q(ŷ − y)‖2 + 2ε4Tr[Q2]. (8)

Inserting (5) and (8) into (4) yields finally

Fa(y) � Q(y) − ε2Tr[Q] + ε
√

4‖Q(ŷ − y)‖2 + 2ε2Tr[Q2]︸ ︷︷ ︸
=σδ

N (0, 1). (9)

Note, the constant term −ε2Tr[Q] (w.r.t. y) in (9) is without relevance for the
derivation of the evolution criterion because this term does not depend on the
location in the object parameter space. While this is true for the derivations
to be presented below, the effect of this term with respect to the attainable
objective function values is of considerable importance because it degrades the
maximal fitness independent of the ES used. Even if one were able to determine
the optimal object parameter vector ŷ, the expected value of the maximal fitness
(7) Q̂ will still be reduced by the term ε2Tr[Q].

3.2 Deriving the Evolution Criterion

Due to the (approximate) decomposition (9) we have reduced our problem to a
case already known: Equation (14) in [2] characterizes the steady state behavior
of the (µ/µI , λ)-ES on an arbitrary ellipsoidal function Q(y) with Gaussian
fitness noise of strength σδ

‖Q(ŷ − y)‖2 ≥ σδTr[Q]
4µcµ/µ,λ

(10)
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where cµ/µ,λ is the progress coefficient (for its definition, see Appendix B). Ta-
king the expectation in (10) one first obtains

E[‖Q(ŷ − y)‖2] ≥ E[σδ]Tr[Q]
4µcµ/µ,λ

. (11)

Since the expected value expression E[σδ] cannot be calculated analytically from
(9), the approximation

E[σδ] � ε
√

4E[‖Q(ŷ − y)‖2] + 2ε2Tr[Q2] (12)

must be used leading to an implicit evolution criterion

E[‖Q(ŷ − y)‖2] ≥ εTr[Q]
4µcµ/µ,λ

√
4E[‖Q(ŷ − y)‖2] + 2ε2Tr[Q2]. (13)

This criterion can be resolved for E[‖Q(ŷ−y)‖2]. After squaring (13), and solving
the quadratic inequality one gets

E[‖Q(ŷ − y)‖2] ≥ ε2Tr[Q]2

8µ2c2
µ/µ,λ



1 +

√

1 +
8µ2c2

µ/µ,λTr[Q2]

Tr[Q]2



 . (14)

The quantity E[‖Q(ŷ − y)‖2] is not directly observable, therefore, we consider
now the expected fitness deviation from the optimum state ŷ. Defining ∆F as

∆F := Fa(ŷ) − Fa(y), (15)

one obtains using (2) and (3)

∆F = Q(ŷ + z) − Q(y + z)

= Q(ŷ) − Q(y) + 2
N∑

i=1

qi(yi − ŷi)zi. (16)

Taking the expected value, one ends up with

E[∆F ] = E[ Q(ŷ) − Q(y)︸ ︷︷ ︸
=:∆Q

]. (17)

That is, we have reduced the calculation of E[∆F ] to that of E[∆Q], i.e, to the
expected fitness deviation of the general ellipsoidal model with Gaussian fitness
noise.

In order to calculate E[∆Q] we rewrite E[‖Q(ŷ − y)‖2] using the principal
axes transformation

E[‖Q(ŷ − y)‖2] =
N∑

i=1

q2
i E[(yi − ŷi)2]. (18)
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Now using the equipartition assumption taken from [2]

E[(yi − ŷi)2] =
E[∆Q]
Nqi

(19)

that holds at the steady state, Eq. (18) becomes

E[‖Q(ŷ − y)‖2] =
N∑

i=1

q2
i

E[∆Q]
Nqi

=
Tr[Q]

N
E[∆Q]. (20)

Inserting this in (14), we finally obtain with (16) the expected fitness deviation
at the steady state

E[∆F ] ≥ Nε2Tr[Q]
8µ2c2

µ/µ,λ



1 +

√

1 +
8µ2c2

µ/µ,λTr[Q2]

Tr[Q]2
.



 . (21)

Equation (19) provides also an estimate for the steady state variance of an
yi component. Considering (19), one sees that

Var[yi] =
E[∆F ]
Nqi

, (22)

therefore, using (19) we are able to estimate the variances of the parents at the
steady state measured in principal axis directions.

While E[∆F ] describes the expected deviation of Fa from the optimum state
with actuator noise, testing the correctness and approximation quality of the
equal sign in (21) can be easier performed by measuring the average of the
difference ∆̃F defined by

∆̃F := Q(ŷ) − Fa(y). (23)

Here, ŷ is given by (7). Using (2) and the first line in (16), one gets

∆̃F = Q(ŷ) − Q(ŷ + z) + ∆F. (24)

Since

Q(ŷ + z) = bTŷ − ŷTQŷ︸ ︷︷ ︸
=Q(ŷ)

+ (bT − 2ŷTQ)︸ ︷︷ ︸
=0

z − zTQz (25)

(24) becomes

∆̃F = zTQz + ∆F. (26)

Now taking the expectation, one finally obtains

E[∆̃F ] = ε2Tr[Q] + E[∆F ]. (27)



660 H.-G. Beyer

As one can see, the average deviation from the optimum without actuator noise
comprises two terms: the constant term ε2Tr[Q] independent of the ES used
and a strategy specific part E[∆F ] given by the equal sign in (21). E[∆̃F ] can
be easily tested in ES runs: Since Q(ŷ) is known for the models considered, it
suffices to calculate the mean fitness over all offspring generated after reaching
the vicinity of the steady state.2

4 Comparision with Experiments

The behavior of the (µ/µI , λ)-ES on the actuator noise function class (1), (2)
have been tested on three ellipsoidal test functions given in Table 1 for dimen-
sionality N = 30 and N = 100. Q1 and Q2 are axes-parallel ellipsoids. Q3 has

Table 1. Definitions and properties of the actuator noise test functions.

Q1 Q2 Q3

Q(y) := −∑N

i=1 iy2
i −∑N

i=1 i2y2
i −∑N

j=1

(∑j

i=1 yi

)2

(Q)i,k = iδij i2δij min[N − i + 1, N − j + 1]
Tr[Q]N=30 = 465 9455 465
Tr[Q2]N=30 = 9455 5273999 144305
Tr[Q]N=100 = 5050 338350 5050
Tr[Q2]N=100 = 338350 2050333330 17003350

a certain non-parallel orientation. Since we are using (µ/µI , λ)-ES (see Appen-
dix A for its definition) with isotropic mutations, the orientation of the ellipsoid
does not influence the performance of the strategy. However, Q3 possesses a do-
minating eigenvalue, such that the shape of this ellipsoid resembles a distorted
discus.

Similar to observations made on the behavior of ES on ellipsoidal test func-
tions with fitness noise in [2], the σ control rule based on cumulative step-length
adaptation (CSA) [6,7,8,9] does not work well on the test functions when the
non-sphericity gets too large. This is shown in Fig. 1. The CSA-ES is not able to
get close to the steady state but exhibits premature convergence: The mutation
strength σ quickly reaches values too small for further object parameter evolu-
tion. There is a remedy to prevent this behavior by keeping σ above a certain
limit σ0. However, choosing σ0 is a nontrivial task. Clearly, one should consider
the covariance matrix adaptation (CMA-ES, [8]) instead, however, this is beyond
the scope of this paper.

Figure 2 compares the predictive quality of (27) using (21) with ES runs. The
data points (displayed as dots) have been obtained by recording the fitness values
2 This assumes that the mutation strenght σ is sufficiently small. If this is not fulfilled,

the fitness of the parental centroid must be evaluated at each generation in order to
obtain ∆̃F .
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Fig. 1. Evolution dynamics of the (20/20I , 60)-ES on the test function Q2, N = 30,
with actuator noise strength ε = 0.1. Adaptation of mutation strength σ is by σSA-ES
(left-hand side) and by CSA (right-hand side). One observes the typical behavior of
EAs on noisy problems: The fitness values reach a certain steady state distribution the
expected value of which deviates from the optimum.

of the parental centroid states over a number of 200,000 generations starting
after a number of generations g0 (transient time for reaching the vicinity of the
steady state). Since CSA-ES can exhibit premature convergence, the σSA-ES
has been used. As one can see, the theory predicts the steady state behavior
of the ES on Q1 and Q2 well (leaving aside the cases µ = 1 and µ/λ ≈ 1).
Unfortunately this does not hold for Q3. In [2] the same test functions have
been investigated, however, disturbed by fitness noise. There the authors found
a good predictive quality on Q3. Therefore, the reason for the deviations observed
must be in the approximative decomposition (4): It has been assumed that the
stochastics can be well approximated by a normal distribution. While this is
indeed correct for Q1 and Q2 (actually, both functions reach normality exactly
for N → ∞) this is not the case for Q3. As have already been mentioned, Q3
has an eigenvalue spectrum where the ratio of the largest eigenvalue q1 to the
second largest eigenvalue q2 approaches 9 (from below) as N → ∞. This is in
contrast to Q1 and Q2 where this ratio goes to 1. Even worse, considering the
ratio q1/

∑N
i=2 qi one finds (numerically) that it approaches ≈ 4.279. In other

words, the isolated large eigenvalue q1 prevents Q3 from reaching normality for
N → ∞ by violating the Lindeberg condition (see, e.g., [5]) and the central limit
theorem of statistics does not apply. That is why, we do not observe an improved
prediction quality for the N = 100 case compared to N = 30. The fitness noise
produced by Q3 has a high degree of skewness. The corresponding theory for
non-Gaussian noise remains still to be developed.

5 Conclusions and Outlook

In this paper the impact of actuator noise on the steady state behavior of
(µ/µI , λ)-ES optimizing general quadratic fitness functions has been analyzed. It
has been shown that the decomposition method of [3] together with the equipar-
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Fig. 2. Dependence of the expected fitness error E[∆̃F ] on the parent numbers µ =
1, 2, 4, 6, 10, 15, 20, 25, 30, 35, 40, 45, 50, 54, 56, 58, 59 given fixed offspring number λ =
60. The vertical bars indicate the measured ± standard deviation of ∆̃F . Missing data
points are due to divergence (for µ/λ near 1) and premature convergence (for µ = 1),
respectively. The curves are the predictions made by (27) using the equal sign in (21).

tition assumption of [2] can be used to predict accurately the final fitness error
(provided that the fitness noise induced is approximately normally distributed).

From the results obtained one can derive recommendations concerning the
population sizing in order to get a minimal steady state fitness error E[∆̃F ]:
Looking at Fig. 2 one sees that – assuming normality of the actuator induced
fitness noise (i.e., skipping Q3) – µ/λ = 1/2 yields minimal E[∆̃F ]. On the other
hand, µ/λ = 1/2 is not the optimal population ratio for maximal progress toward
the steady state. From sphere model theory we know that for N → ∞ the ratio
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µ/λ ≈ 0.27 should be preferred. Taking the behavior on Q3 into account, a good
population ratio compromise seems to be in the interval 0.2 . . . 0.3.

The results obtained might have more far-reaching implications. Consider the
general quadratic fitness model as a local attractor model of real-world objective
functions under actuator noise. The long term behavior of an ES at the end
of an evolution process might be well described by such a fitness model and
the steady state predictions of the theory might be valid for more complicated
objective functions. Therefore, additional investigations are needed to determine
the limitations of the model analysis presented.

As has been mentioned, the CSA-ES using isotropic mutations is not good
at these ellipsoidal test functions with noise. It is reasonable to use non-isotropic
mutations instead. This leads to the problem of adapting a full covariance matrix
describing the distribution of the mutations. This is usually done by the CMA
method [8]. Investigating the behavior of the CMA-ES should be one of the next
steps in future research.
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A Description of the ESs Used

For the simulation of the dynamic behavior of (µ/µI , λ)-ES the ES must control
the endogenous strategy parameter σ. We used the two standard approaches to
this control problem: the σ self-adaptation [11,10] and alternatively the cumu-
lative step size adaptation (CSA) [6,8].

The σ self-adaptation technique is based on the coupled inheritance of object
and strategy parameters. Using the notation

〈a〉(g) :=
1
µ

µ∑

m=1

a(g)
m;λ (28)

for intermediate recombination (centroid calculation, i.e., averaging over the a
parameters of the µ best offspring individuals), the (µ/µI , λ)-σSA-ES can be
expressed in “offspring notation”

∀l = 1, . . . , λ :





σ

(g+1)
l := 〈σ〉(g)eτNl(0,1)

y(g+1)
l := 〈y〉(g) + σ

(g+1)
l N l(0,1).

(29)

That is, each offspring individual (indexed by l) gets its own mutation strength
σ. And this mutation strength is used as mutation parameter for producing the
offspring’s object parameter. In (29) the log-normal update rule for mutating the
mutation strength has been used. As learning parameter τ = 1/

√
N has been

chosen in the simulations.
While in evolutionary self-adaptive ES each individual get its own set of

endogenous strategy parameters, cumulative step-size adaptation (CSA) uses a
single mutation strength parameter σ per generation to produce all the offspring.
This σ is updated by a deterministic rule which is controlled by certain statistics
gathered over the course of generations. The statistics used is the so-called (nor-
malized) cumulative path-length s. If ‖s‖ is greater than the expected length
of a random path, σ is increased. In the opposite situation, σ is decreased. The
update rule reads
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∀l = 1, . . . , λ : y(g+1)
l := 〈y〉(g) + σ(g)N l(0,1)

s(g+1) := (1 − c)s(g) +
√

(2 − c)c
√

µ

σ(g)

(〈y〉(g+1) − 〈y〉(g)
)

σ(g+1) := σ(g) exp
(

‖s(g+1)‖−χN

DχN

)






, (30)

where s(0) = 0 is chosen initially. The recommended standard settings for the
cumulation parameter c and the damping constant D are used, i.e., c = 1/

√
N

and D =
√

N . For the expected length of a random vector comprising N standard
normal components, the approximation χN =

√
N(1−1/4N+1/21N2) was used.

B The Progress Coefficient cµ/µ,λ

The progress coefficient cµ/µ,λ is defined as the expectation of the average over
the µ largest samples out of a population of λ random samples from the standard
normal distribution. According to [1, p. 247], cµ/µ,λ can be expressed by a single
integral

cµ/µ,λ =
λ − µ

2π

(
λ

µ

) ∫ ∞

−∞
e−t2 (Φ(t))λ−µ−1 (1 − Φ(t))µ−1 d t, (31)

where Φ(t) is the cumulative distribution function of the standard normal variate.
The special cµ/µ,λ values used in this paper are given in the table below.

µ 1 2 4 6 10 15 20
cµ/µ,60 2.31928 2.12722 1.88199 1.71349 1.47183 1.25171 1.07569
µ 25 30 35 40 45 50 56
cµ/µ,60 0.924168 0.787546 0.66012 0.537847 0.417235 0.294366 0.134428
µ 58 59 60
cµ/µ,60 0.0733524 0.0393098 0
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