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Abstract. A model of coevolutioinary genetic algorithms (COGA) con-
sisting of two populations coevolving on two-bit landscapes is investiga-
ted in terms of the effects of random partnering strategy, different po-
pulation updating schemes, and changes in mutation rate and evolution
rate. The analytical and numerical approaches showed that even in such
a simple model, the dynamics can change dramatically with different evo-
lutionary scenarios in such an extent that deserves our attention from
the point of view of algorithm design.

1 Introduction

The theory of natural selection is the only acceptable explanation for the origin
and maintenance of adaptation among organisms. The Darwin’s and Wallace’s
original idea about organic evolution has gone beyond biology as far as epistemo-
logy, psychology and economics etc. In computer science, the term evolutionary
computation (EC) stands for a family of algorithms based on the belief that mo-
deling the process of natural selection could help us to solve difficult real-world
problems. While a mathematical theory of EC is indispensable by all means to
constructing effective and efficient evolutionary algorithms (EAs), such a general
and coherent theory is still far beyond our grasp.

To develop a mathematical theory of coevolutionary EAs (COEAs) maybe
even more difficult. Different from standard EAs, where individuals are eva-
luated separately from each other according to predefined objective function(s),
one main characteristic of COEAs is that the evaluation procedure involves more
than one individuals, and the fitness of an individual is depending on its inter-
action with its partners. It is intuitively comprehensible that the implemented
partner selection strategies can have significant influences on the algorithm’s dy-
namics and optimization performance. In this paper, the effects of random part-
nering strategy, population updating scheme, mutation rate and evolution rate
are investigated through a model of coevolutionary genetic algorithms (COGA)
that consists of two populations coevolving on two-bit landscapes.
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There have been a lot of applications of modeling coevolutionary process
to problem-solving [6,10], as well as analytic and empirical results about the
dynamics of coevolutionary algorithms [2,3,9]. Our purpose is to give a relatively
extensive investigation about the dynamics of COGA. This paper is organized
as follows. After a brief review of the Schema Theorem, the basic model is
introduced. Section 4 shows analytic and computer simulation results of different
coevolutionary scenarios and Section 5 examines the model from an evolutionary
game-theoretical point of view. Finally, Section 6 concludes with a brief of our
findings and a few remarks about future work.

2 The Schema Theorem

GAs can be described using the well-known Schema Theorem [8]:

m(H, t + 1) ≥ m(H, t)
f(H)

f̄

[
1 − pc

δ(H)
l − 1

− o(H)pm

]
(1)

where m(H, t) is the number of instances of schema H at time t, f(H) is the
average fitness of individuals in the population representing H at time t, f̄ is
the average fitness of individuals in the population, δ(H) is the defining length
of H, o(H) is the order of H, strings are of length l, pc is the probability of
crossover, and pm the probability of mutation. The Schema Theorem shows that
short, low-order, and highly fit schemata (referred to as building blocks) are
given exponentially increasing numbers of instances. The building block hypo-
thesis assumes that instead of building high-performance strings by trying every
conceivable combination, GAs work with building blocks and construct better
and better strings from the best partial solutions of past samplings [5, p.41].
But, as pointed out by Goldberg, due to the coding and the objective function
itself, building blocks sometimes may be misleading, and make it difficult if not
impossible to find the optimal solutions. The simplest case is a two-bit problem,
which known as minimal deceptive problem (MDP) [5].

Grefenstette [4] however, showed that deception is neither necessary nor suf-
ficient for problems to be GA-hard. The reason, he pointed out, lies in the fact
that while the notion of deception [5] is defined in terms of the static average
fitness of hyperplanes, what really important to GAs’ ability of finding better
solutions is their dynamic behaviour as described by the Schema Theorem. For
example, consider the fitness landscape shown in Fig. 1, which can be consi-
dered both a two-bit landscape and a landscape of order-two schemata. The
fitnesses are given as f(01) = 1.0, f(11) = 0.0, f(00) = 0.0 and f(10) = 2.0,
10 is the maximum. The static building block hypothesis assumes no decep-
tion existing here since f(1∗) = f(10)+f(11)

2 = 1.0 > f(0∗) = f(00)+f(01)
2 = 0.5

and f(∗0) = f(00)+f(10)
2 = 1.0 > f(∗1) = f(01)+f(11)

2 = 0.5. However, consi-
der a GA population consisting of individuals as p(00) = 16%, p(01) = 64%,
p(10) = 4% and p(11) = 16%, respectively. Then the observed fitness [4] of
the schema 1∗ is f(1∗) = p(10)f(10)+p(11)f(11)

p(10)+p(11) = 0.4, and in the same sense
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f(0∗) = 0.8, f(∗0) = 0.4, f(∗1) = 0.8. Since f(0∗) > f(1∗) and f(∗1) > f(∗0),
according to the Schema Theorem, the population might also converge to 01, the
local optimum, if pc = 1.0 and pm = 0.0. This indicates that whether a problem
is GA-hard is searcher-depended, and the characterization of GA-hard problems
“must take into account the basic features of the GA, especially its dynamic,
biased sampling strategy” [4].

3 A Model of Coevolutionary GA

Bull [3] extended the Schema Theorem to coevolutionary systems. In a (1 + S)-
population model with random partnering and asynchronous reproduction, sup-
pose scheme H = {Hk, Hc1 , Hc2 , . . . , HcS

}, where Hk is sub-schema in current
population and Hci

sub-schema in the other S populations, the Schema Theorem
reads

m(H, t + 1) ≥ m(Hk, t)
f(Hk)

f̄
·
[
1 − pc

δ(Hk)
lk − 1

− o(Hk)pm

]
·

S∏
i=1

m(Hci
, t)

Pop
(2)

where Pop stands for population size and

m(Hci
, t) ≥ m(Hci

, t − 1)
f(Hci

)
f̄

·
[
1 − pc

δ(Hci
)

lci
− 1

− o(Hci
)pm

]
. (3)

As shown in Eqn. (2), the basic idea of COGA is “divide-and-conquer”, namely
divide the problem at hand into a number of subproblems and challenge each of
them separately, then construct the complete solutions from the subproblems’
solutions. This kind of COGA has been named as cooperative coevolutionary
GA [10]. To our purpose of investigating coevolutionary behaviour of GA, a
model that consists of two populations coevolving on two-bit landscapes is con-
structed, where finding the maximum is divided into two subproblems, and each
is challenged by a Simple GA (SGA). Individuals in the two population A and
B represent the first and second bit respectively, and to evaluate individuals in
A, individuals from B are required and vice versa. Unless otherwise stated, of
the two-bit strings used in this paper, the first bit corresponds to individuals of
A, the second to that of B.

4 Random Partnering Strategy

Let Pa (Pb) be the proportion of “0” individuals of A (B), f0
a (f1

a ) the fitness
of “0” (“1”) individuals of A, f0

b (f1
b ) that of B, respectively. By using ran-

dom partnering strategy, an individual’s partners are picked up from the other
population at random, and the expectation of the individual’s fitness reads



E(f0
a ) = Pb · f(00) + (1 − Pb) · f(01) = 1 − Pb

E(f1
a ) = Pb · f(10) + (1 − Pb) · f(11) = 2Pb

E(f0
b ) = Pa · f(00) + (1 − Pa) · f(10) = 2 − 2Pa

E(f1
b ) = Pa · f(01) + (1 − Pa) · f(11) = Pa.

(4)
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Those values can also be considered the fitness obtained when using complete
mixing strategy, in which an individual interacts in a pairwise way with all in-
dividuals in the other population. Because complete mixing strategy is compu-
tational expensive, it is seldom used in COGA but is popular in literature of
evolutionary game theory. By setting E(f0

a ) = f0
a , E(f1

a ) = f1
a , E(f0

b ) = f0
b and

E(f0
b ) = f0

b , the resulting behaviour of COGA with complete mixing strategy
can also be interpreted as the “expected” behaviour of COGA with random
partnering strategy. Let Fa (Fb) be the average fitness of individuals in A (B),
it holds {

Fa = Pa · f0
a + (1 − Pa) · f1

a = Pa + 2Pb − 3PaPb

Fb = Pb · f0
b + (1 − Pb) · f1

b = Pa + 2Pb − 3PaPb.
(5)

Denote the changes of Pa and Pb due to selection by ∆Pa and ∆Pb, then the
proportion of “0” in A and B after selection will be

{
P ′

a = Pa + ∆Pa

P ′
b = Pb + ∆Pb

(6)

and the implemented roulette-wheel selection scheme in SGA leads
{

∆Pa = KaPa

(
f0

a/Fa − 1
)

∆Pb = KbPb

(
f0

b /Fb − 1
) (7)

where Ka and Kb are coefficients that scale the rate of evolutionary change [1].
Let Ma and Mb be mutation rate of A and B, then the proportion of “0” in the
next generation can be expressed as

{
P ′′

a = P ′
a(1 − Ma) + (1 − P ′

a)Ma

P ′′
b = P ′

b(1 − Mb) + (1 − P ′
b)Mb.

(8)

4.1 Without Mutation

The behaviour of the above model can be characterized by its fixed points and
their stability properties. At the beginning, suppose Ma = Mb = 0, then the
fixed points of Eqn. (8) must satisfy ∆Pa = ∆Pb = 0 and this leads

{
Pa(1 − Pa)(1 − 3Pb) = 0
Pb(1 − Pb)(2 − 3Pa) = 0.

(9)

In consequence, there are 5 fixed points: (0,0), (1,0), (0,1), (1,1) and (2
3 , 13 ). Since

the sign of ∆Pa and ∆Pb in Eqn. (7) depends on f0
a , Fa, f0

b and Fb, by comparing
f0

a and f1
a , f0

b and f1
b in Eqn. (4), we obtain

{
f0

a > f1
a if 0 < Pb < 1

3
f0

a < f1
a if 1

3 < Pb < 1 and
{

f0
b > f1

b if 0 < Pa < 2
3

f0
b < f1

b if 2
3 < Pa < 1.

As a result, the phase space is divided into four regions I, II, III and IV (Fig. 2),
all orbits in region II converge to (0,1) and all orbits in region IV to (1,0).
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Since any perturbations that made the system apart from (1,0) and (0,1) but
still remain in region II and IV respectively will not change the system’s ulti-
mately ending up to them, those two fixed points are stable. By contrast, any
perturbation that causes the system to apart from (0,0) and (1,1) will make the
system ultimately converge to (1,0) and (1,0) respectively. So, (0,0) and (1,1)
are unstable fixed point. For (2

3 , 13 ), the Jacobian of Eqn. (6) at this point is

A =




∂P ′
a

∂Pa

∂P ′
a

∂Pb

∂P ′
b

∂Pa

∂P ′
b

∂Pb


 =

[
1 −Ka

−Kb 1

]
(10)

where the two eigenvalues are 1 ± √
KaKb. As 0 < (1 − √

KaKb) < 1 < (1 +√
KaKb), ( 2

3 , 13 ) is a saddle, and there are two orbits converging to it, one of them
in region I and the other in region III. Those two orbits consist the separatrix
that divides the phase space into two basins of attraction, all orbits above the
separatrix converge to (0,1), and all orbits below it converge to (1,0).

Fig. 3 shows a set of evolutionary trajectories where A and B evolving at
the same rate Ka = Kb = 0.1. It can be seen that almost all trajectories end
at one of the two stable fixed points, (1,0) and (0,1), which correspond to the
global and local maximum respectively. The eventual end-point is completely
determined by the initial starting positions, all orbits beginning at points on the
same side of the separatrix lead to the same fixed point.

A point is called a sink (source), if very orbit converges to it when time
runs toward t → +∞ (t → −∞). In the model, by setting t → −∞, the ori-
ginal problem can be converted to a problem of searching the minimum on the
landscape, where the two minima have the same value 0.0. The time-reversed
evolution processes can be realized by rewriting Eqn. (7) as

{
∆Pa = −KaPa(f0

a/Fa − 1)
∆Pb = −KbPb(f0

b /Fb − 1) (11)

Fig. 4 shows a set of evolutionary trajectories of this case. All trajectories start
from the points satisfying Pa +Pb = 1 will end up to the saddle point (2

3 , 13 ), and
the seperatrix Pa + Pb = 1 divides the phase space into two basins of attraction
of the same size since the two minima have the same fitness value. All orbits
above the separatrix converge to (1,1), all orbits below it converge to (0,0).

To show how changing of the evolution rate Ka and Kb affects dynamics,
Fig. 5 gives trajectories where B evolves 5 times faster than A. It can be seen
that although the number and positions of the fixed points do not change, the
shape of the separatrix is bent. As shown in Fig. 2, since orbits that beginning in
region II and region IV end up to (0,1) and (1,0) respectively, the ultimate end-
up point of orbits that beginning in region I and III depends on which region,
namely II or IV, is reached first. If it is region II reached first, the orbits will
end up to (1,0), otherwise end up to (0,1). The evolution rate Ka and Kb in this
sense, represent velocity of the orbits moving along x axis and y axis. B evolving
5 times faster than A means that the velocity along y axis is 5 times faster than
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that along x axis. In region III, since f0
b > f1

b , increasing Kb will increase the
velocity translating positively along y axis, and make more orbits beginning in
region III reach region II first and end up to (1,0). On the other hand, In region
I, since f0

b < f1
b , increasing Kb will increase the velocity translating negatively

along y axis, and make more orbits beginning in region I reach region IV first
and end up to (1,0).

Next, the effects of population updating scheme are investigated. Fig. 6 shows
eight pairs orbits of which each pair orbits start from the same position but
using synchronous and asynchronous updating strategies, respectively. In asyn-
chronous updating, A is updated first, then B. This fact means that all orbits
will move along x axis one-step-ahead than y axis, although the direction can
be both positive and negative, depending on the value of f0

a , f1
a , f0

b and f1
b . As

it is shown in Fig. 2, in region III, since f0
a > f1

a , updating A first made orbits
beginning in this region move positively along x axis one-step-ahead. In conse-
quence, there are more orbits reach region IV first and end up to (0,1). On the
other hand, in region I, because f0

a < f1
a , updating A first made orbits beginning

in this region move negatively along x axis one-step-ahead, and consequently,
there are more orbits reach region II first and end up to (1,0).

4.2 With Mutation

Firstly, consider what happens if there were no selection pressure imposed on
both A and B. At the equilibrium, where P ′′

a = P ′
a = Pa and P ′′

b = P ′
b = Pb, we

have {
Pa = Pa(1 − Ma) + (1 − Pa)Ma ⇒ pa = 0.5
Pb = Pb(1 − Mb) + (1 − Pb)Mb ⇒ Pb = 0.5 (12)

This means that when no selection pressure imposed, mutation makes all orbits
converge to the single fixed point (0.5,0.5).

Now, let us see what happens when both mutation and selection are assumed
in A while only selection in B. In this case, from Eqn. (6)(7)(8), we have

{
∆Pa = Ma(1 − 2Pa) + (1 − 2Ma)KaPa(f0

a/Fa − 1)
∆Pb = KbPb(f0

b /Fb − 1) (13)

and at the equilibrium, where ∆Pa = ∆Pb = 0, we obtain three fixed points:



p1 =
(

Ma(1−2Ka)+Ka

2Ma(1−Ka)+Ka
, 0

)
p2 =

(
Ma

2Ma(1−Ka)+Ka
, 1

)
p3 =

(
2
3 , 1

3 − Ma

Ka(1−2Ma)

)
.

(14)

It can be seen from Eqn. (14) that by keeping Ma constant, increasing Ka will
cause p1 moving along x axis positively (+x direction) toward (1,0), p2 along
y = 1 negatively (−x direction) toward (0,1), p3 along x = 2

3 with +y direction
toward (2

3 , 1
3 ). On the other hand, taking Ma as constant, increasing Ma will
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cause p1 and p2 moving toward (1
2 , 0), and (1

2 , 1) respectively, and p3 toward
( 2
3 , 0) or even disappear. The conflicting relation between mutation and selection

is definitely expressed by the term Ka(1− 2Ma). Fig. 7 shows simulation results
of this case where the three fixed points are ( 108

118 , 0),( 10
118 , 1) and (2

3 , 88
294 ).

At last, consider what happens when both mutation and selection are assu-
med in A and B. Again, from Eqn. (6)(7)(8), we obtain{

∆Pa = Ma(1 − 2Pa) + (1 − 2Ma)KaPa(f0
a/Fa − 1)

∆Pb = Mb(1 − 2Pb) + (1 − 2Mb)KbPb(f0
b /Fb − 1). (15)

At the equilibrium, it holds that{
Ma(1 − 2Pa) = −(1 − 2Ma)KaPa(f0

a/Fa − 1)
Mb(1 − 2Pb) = −(1 − 2Mb)KbPb(f0

b /Fb − 1) (16)

and this leads to
Ma(1 − 2Mb)Kb

Mb(1 − 2Ma)Ka
=

Pa(1 − Pa)(1 − 3Pb)(1 − 2Pb)
Pb(1 − Pb)(2 − 3Pa)(1 − 2Pa)

. (17)

Assuming Ma = Mb and Ka = Kb, Eqn. (17) changes to

(Pa + PaPb − 2Pb)(1 − Pa − Pb) = 0 (18)

and we have

Pa + PaPb − 2Pb = 0 (19)
Pa + Pb = 1 (20)

Since substitution of Eqn. (19) into Eqn. (16) causes negative Ma, Eqn. (20)
must hold. Rewrite Eqn. (16) as

Ma =
KaPa(f0

a/Fa − 1)
2Pa − 1 + 2KaPa(f0

a/Fa − 1)
(21)

and substitute Eqn. (20) into it and assume Ka = Kb = 0.1, then plot Eqn. (21)
in Fig. 11. It can be seen that there is a threshold M∗

a , for 0 < Ma < M∗
a three

fixed points, Ma = M∗
a , two fixed points, Ma > M∗

a , a single fixed point exists,
respectively. The same can also be done with the evolution rate by rewriting
Eqn. (16) as

Ka =
Ma(1 − 2Pa)

Pa(2Ma − 1)(f0
a/Fa − 1)

. (22)

By substituting Eqn. (20) into it and assuming Ma = Mb = 0.01, we get
Fig. (12), where a threshold K∗

a exists, for 0 < Ka < K∗
a a single fixed point,

Ma = M∗
a , two fixed points, Ma > M∗

a , three fixed points exist, respectively.
Fig. 8,9,10 show how the number and position of fixed points, in addition with
the dynamics behaviours change according to different values of mutation rate
and evolution rate.

The population updating strategy is also investigated (data not shown), and
the results can be explained from the same way as shown in the case of without
mutation.
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Fig. 7. Assuming mutation to A only.
Ka = Kb = 0.1, Ma = 0.01, Mb = 0.
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Fig. 8. Ka = Kb = 0.1, Ma = Mb = 0.01.
Three fixed points.
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Fig. 9. Ka = Kb = 0.1. Ma = Mb = 0.03.
One fixed point.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
b

Pa

Fig. 10. Ka = 0.1, Kb = 0.02, Ma =
Mb = 0.01. One fixed point.

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

M
a

Pa

M*
a

Fig. 11. Ka = Kb = 0.1, Ma = Mb.
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Fig. 12. Ka = Kb,, Ma = Mb = 0.01.



522 M. Chang et al.

5 Discussion

Goldberg [5, p.50] has expressed a model of Simple GA (SGA) that consist of
only two operators: reproduction and crossover. The COGA model proposed here
can also be viewed as a simple GA consisting of three operators, reproduction,
mutation and crossover(crossover rate 1.0). That is, the random partnering of
two one-bit population has the same effect as a crossover operator to a single two-
bit population. Still, from the population genetics viewpoint, the above COGA
model can also be interpreted as a model of haploid two-locus two-allele infinite
population with random mating and non-overlapping generation.

In [3], Bull treated situations where two populations are coevolving on their
respective fitness landscapes. The model proposed in this paper can be extended
to this case by rewriting Eqn. (4) according to the fitness landscapes of each bit.
Contrast with Bull, who has started all computer experiments from Pa = Pb =
0.5, we gave an relatively overall investigation about different start conditions.
For example, Bull showed that on the landscape defined as f(00) = 0.4, f(01) =
0.8, f(10) = 1.0, and f(11) = 0.1, starting from Pa = Pb = 0.5, both populations
will converge at about Pa = Pb = 0.54. This can be explained by our model as
that in the above landscape, setting f0

a = f1
a , f0

b = f1
b in Eqn. (4) 1 causes

Pa = Pb = 7
13 = 0.538 at the equilibrium. Furthermore, our simulation results

on Bull’s landscape (Fig. 13) also show that any start from Pa = Pb �= 0 will end
at Pa = Pb = 7

13 , while all the other starting points will end at either Pa = 1,
Pb = 0 or Pa = 0, Pb = 1 depending on their starting positions.

In his discussion about fitness level, Bull described a situation where instead
of fitness of single bits, only fitness of two-bit strings are available. He referred to
this as “global-level fitness”, which is exactly what our work concerned in this pa-
per. The experiment as Bull showed, where two populations converged at about
Pa = Pb = 0.62 can be explained by our model as that since the global-level land-
scape is defined as f ′(00) = f(00) + f(00) = 0.8, f ′(01) = f(01) + f(10) = 1.8,
f ′(10) = f(01)+f(10) = 1.8, and f ′(11) = f(11)+f(11) = 0.2, setting f0

a = f1
a ,

f0
b = f1

b in Eqn. (4) causes Pa = Pb = 16
26 = 0.615 at the equilibrium. On account

of his experiment results, Bull concluded that “using a global fitness has a slight
effect on coevolutionary system since each population’s landscape is added onto
its parters” [3, p.205]. While Bull’s comments are true about his landscapes,
it is worth pointing out that in general, the effect of global-level fitness on the
dynamics of coevolutionary systems depends on the particular landscapes under
consideration, e.g. if landscapes of the two bits are defined according to the Pri-
soner’s Dilemma, it can be shown that a global fitness approach will induce to
a cooperation while a local fitness approach to defection.

From the viewpoint of Bull’s local-level fitness, the landscape shown in Fig. 1
arise a scene where the two bits are facing a asymmetric situations, e.g. while
a “0” of A partnering with a “1” in B will receive 1.0 as its fitness, a “0” of
B partnering with a “1” will receive an increased fitness 2.0. If we think of

1 Eqn. (4) should be rewritten as f0
b = f0

a and f1
b = f1

a to treat Bull’s local-level fitness
assignment. See below.
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Fig. 13. The COGA model on Bull’s landscapes. Ma = Mb = 0,Ka = Kb = 0.1.

“0” and “1” as strategies in a game situation instead of values of bits, we can
see that this asymmetry has been investigated in evolutionary game theory as
asymmetric games. The battle of sexes is an example of such game.

A sexual population can be considered as a population of males that interacts
with a population of females. It is believed that there is a conflict between males
and females concerning their respective investment to their offspring. Raising
offspring requires a considerable amount of time and energy, and each parent
might attempt to reduce its own share at the expense of the other. But the fact
that females produce relatively few, larger eggs, whereas males produce many
small sperms made males in a better position. This situation can be modeled
game-theoretically as that suppose there are two types of male as well as female,
and without loss of generality, the payoff matrices for male and female can be
wrote as

Am =
[

0 a12
a21 0

]
Af =

[
0 b12
b21 0

]
. (23)

It is shown in [7] that if a12a21 ≤ 0 (b12b21 ≤ 0), one of the two strategies of
male (female) dominates the other, and male (female) population remains either
constant, or converges monotonically to 0 or 1; when a12a21 > 0 and b12b21 > 0,
there is a unique rest point

F =
(

b12

b12 + b21
,

a12

a12 + a21

)
(24)

if a12b12 > 0, F is a saddle, and almost all orbits converge to one or the other of
two opposite corners of the phase space, if a12b12 < 0, then all orbits are periodic
orbits surrounding F .

From this game-theoretical point of view, the landscape in Fig. 1 can be
rewritten for the first bit and the second bit respectively as

A1st =
[

0 1
2 0

]
A2nd =

[
0 2
1 0

]
. (25)



524 M. Chang et al.

where the global-level fitness assignment constrains that a12 = b21 and a21 =
b12 ≤ 0. In consequence, the sexes battle game where a12a21 ≤ 0 and b12b21 ≤ 0
can be treated by the COGA model by setting f(00) = 0.0, f(01) = −1.0,
f(10) = 2.0 and f(11) = 0.0, and the resulted landscape will have one global
optimum and no local optimum. For the cases where a12a21 > 0 and b12b21 > 0
that can be divided into two sub-classes: a12b12 > 0 and a12b12 < 0, since the
landscape in Fig. 1 satisfies a12b12 = 1 > 0, all results shown in Section 4 hold
in the sexes battle game also. Finally, the sub-class of a12b12 < 0 can be realized
by rewriting P ′

a in Eqn.(6) as

P ′
a = Pa − ∆Pa (26)

with an interpretation as that while A is searching for the minimum on the
landscape, B is for the maximum. This will induce a competitive coevolution
between A and B. Generally speaking, competitive coevolution is more difficult to
investigate, it often shows more complex behaviour than cooperative coevolution.

6 Conclusion

This paper presented a simple model of coevolutionary genetic algorithms con-
sisting of two populations coevolving on two-bit landscapes. The effects of po-
pulation updating schemes and changes in mutation rate and evolution rate are
investigated in the context of random partnering strategy. The analytic and em-
pirical results show that even in such a simple model produces rich behaviour
in different evolutionary scenarios. The model are now being extended to other
partnering strategies.
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