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Abstract. We have developed a new tool for virtual database screening. This tool,
referred to as the Generic Evolutionary Method for molecular DOCKing (GEM-
DOCK), combines an evolutionary approach and a new pharmacophore-based
scoring function. The former integrates discrete and continuous global search
strategies with local search strategies to speed up convergence. The latter simulta-
neously serves as the scoring function of both molecular docking and post-docking
analysis to improve the number of the true positives. We accessed the accuracy
of our approach on HSV-1 thymidine kinase using a ligand database on which
competing tools were evaluated. The accuracies of our predictions were 0.54 for
the GH score and 1.62% for the false positive rate when the true positive rate was
100%. We found that our pharmacophore-based scoring function indeed is able to
reduce the number of the false positives. These results suggest that GEMDOCK
is robust and can be a useful tool for virtual database screening.

1 Introduction

Virtual screening of compound databases has emerged as one of the most powerful and
inexpensive approach to discover novel rational lead compounds for drug development
[1,2]. It is based on high-throughput molecular docking methods and the crystal struc-
tures of the target protein. Virtual screening is increasingly used for a number of drivers:
explosions of high-resolution crystal protein structures, advent of the structural proteo-
mics technologies, enriching the hit rate of high-throughput screening [2], and reducing
cost of drug discover. Virtual screening encompasses four phases, including target pro-
tein modeling, compound database preparation, molecular docking, and post-docking
analysis. In general, a computational method for virtual screening involves two basic
critical elements that are molecular docking and a good scoring method.

A molecular docking method for virtual screening should be able to screen a large
number of potential ligands with reasonable accuracy and speed. Many molecular
docking approaches have been developed and can be roughly divided into rigid docking
[3], flexible ligand docking [4,5], and protein flexible docking methods. Recently, the
flexible docking tools were mostly used for virtual screening, such as incremental and
fragment-based approaches (DOCK [6] and FlexX [5]) and genetic algorithms (GOLD
[4], AutoDock [7], and GEMDOCK [8]).

Scoring methods for virtual screening should encompass two basic features: effec-
tively discriminating between correct binding states and non-native docked conforma-
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tions during the molecular docking phase, and discriminating a small number of ac-
tive compounds from hundreds of thousands of non-active compounds during the post-
docking analysis phase. Various scoring functions have been developed for calculating
binding free energy, including knowledge-based [9], physic-based [10], and empirical
[11] scoring functions. In general the performance of these scoring functions is often in-
consistent across different systems [12,13]. The inaccuracy, inadequately predicting the
true binding affinity of a ligand for a receptor, of the scoring methods is probably major
weakness for virtual screening. Combining multiple scoring functions, called consensus
scoring, is a popular strategy and has been shown to improve the enrichment of true
positive [12,13].

In this paper, we proposed a tool, GEMDOCK (Generic Evolutionary Method for
DOCKing molecules) modified from our previous studies [8,14], for virtual screening.
Our tool used a pharmacophore-based scoring function and an evolutionary approach.
The former is able to simultaneously serve as the scoring function of both molecular
docking and post-docking analysis. In order to balance exploration and exploitation, the
core idea of our evolutionary approach, an efficient flexible docking tool, is to design
multiple operators cooperating with each other by using the family competition which
is similar to a local search procedure.

Our new pharmacophore-based scoring function is able to reduce the number of false
positives for screening large database. This scoring function integrates a simple empirical
scoring function and a pharmacophore-based scoring function. The former is used to
quickly recognize potential ligands for the target receptor. It consists of electrostatic,
steric, and hydrogen-bonding potentials with a linear model. The latter encompasses
ligand preferences and the pharmacophore preferences that exploit knowledge from
existing ligands to aid the docking process. The electrostatic and hydrophilic constrains
were considered for ligand preferences. The pharmacophore-based preferences were
assigned according to the binding-site preferences of protein-ligand interactions, such
as hydrogen bonding and stacking force.

To evaluate the strengths and limitations of GEMDOCK and to compare with several
widely used methods (e.g. DOCK, GOLD, and FlexX), we first tested our program on
docking 10 active ligands, obtained from Protein Data Bank (PDB), back the respective
complexes with experimentally x-ray structures. Second, we tested GEMDOCK on HSV-
1 thymidine kinase, proposed by Bissabtz et al. [12], to evaluate GEMDOCK’s screening
utility. The docking accuracy of GEMDOCK was comparable with the best available
methods and the screening performance of GEMDOCK was better than that of competing
methods on these test cases.

2 Method

GEMDOCK is a nearly automatic tool, which was enhanced and modified from our ori-
ginal technique [8,15], for virtual screening. GEMDOCK consists of four computational
phases, including target protein and ligand database preparation, molecular docking and
post-docking analysis. First we specified the coordinates of target protein atoms from the
PDB, the ligand binding area, atom formal charge, and atom types (Table 1). When we
prepared the target protein and ligand database, GEMDOCK filters out some impossible
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compounds and pharmacological preferences by exploiting knowledge from existing
ligands to improve screening speed. After GEMDOCK prepares the ligand database and
the target protein, GEMDOCK sequentially reads the atom coordinates of a ligand from
the database and executes flexible docking for each ligand. Finally GEMDOCK re-ranks
all docked ligand conformations for the post-docking analysis according to the scoring
values of our pharmacophore-based scoring function.

Here, we briefly presented our approach for flexible docking. Please refer our pre-
vious studies [8,16] for the details. First our method randomly generates a starting
population with N solutions by initializing the orientation and conformation of the li-
gand relating to the center of the receptor. Each solution is represented as a set of three
n-dimensional vectors (xi, σi, ψi), where n is the number of adjustable variables of a
docking system and i = 1, . . . , N whereN is the population size. The vectorx represents
the adjustable variables to be optimized in which x1, x2, and x3 are the 3-dimensional
location of the ligand; x4, x5, and x6 are the rotational angles; and from x7 to xn are
the twisting angles of the rotatable bonds inside the ligand. σ and ψ are the step-size
vectors of decreasing-based Gaussian mutation and self-adaptive Cauchy mutation. In
other words, each solution x is associated with some parameters for step-size control.
The initial values of x1, x2, and x3 are randomly chosen from the feasible box, and
the others, from x4 to xn, are randomly chosen from 0 to 2π in radians. The initial
step sizes σ is 0.8 and ψ is 0.2. After GEMDOCK initializes the solutions, it enters the
main evolutionary loop which consists of two stages in every iteration: decreasing-based
Gaussian mutation and self-adaptive Cauchy mutation. Each stage is realized by gene-
rating a new quasi-population (with N solutions) as the parent of the next stage. These
stages apply a general procedure “FC adaptive” with only different working population
and the mutation operator.

The FC adaptive procedure employs two parameters, namely, the working population
(P , with N solutions) and mutation operator (M ), to generate a new quasi-population.
The main work of FC adaptive is to produce offspring and then conduct the family
competition. Each individual in the population sequentially becomes the “family father.”
With a probability pc, this family father and another solution that is randomly chosen
from the rest of the parent population are used as parents for a recombination operation.
Then the new offspring or the family father (if the recombination is not conducted)
is operated by the rotamer mutation or by differential evolution to generate a quasi
offspring. Finally, the working mutation operates on the quasi offspring to generate a
new offspring. For each family father, such a procedure is repeated L times called the
family competition length. Among these L offspring and the family father, only the
one with the lowest scoring function value survives. Since we create L children from
one “family father” and perform a selection, this is a family competition strategy. This
method avoids the population prematureness but also keeps the spirit of local searches.
Finally, the FC adaptive procedure generatesN solutions because it forces each solution
of the working population to have one final offspring.

2.1 Recombination Operators

GEMDOCK implemented modified discrete recombination and intermediate recom-
bination [17]. A recombination operator selected the “family father (a)” and another
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solution (b) randomly selected from the working population. The former generates a
child as follows:

xc
j =

{
xa

j with probability 0.8
xb

j with probability 0.2.
(1)

The generated child inherits genes from the “family father” with a higher probability
0.8. Intermediate recombination works as:

wc
j = wa

j + β(wb
j − wa

j )/2, (2)

wherew is σ or ψ based on the mutation operator applied in the FC adaptive procedure.
The intermediate recombination only operated on step-size vectors and the modified
discrete recombination was used for adjustable vectors (x).

2.2 Mutation Operators

After the recombination, a mutation operator, the main operator of GEMDOCK, is
applied to mutate adjustable variables (x).

Gaussian and Cauchy Mutations: Gaussian and Cauchy Mutations are accom-
plished by first mutating the step size (w) and then mutating the adjustable variable
x:

w′
j = w′

jA(·), (3)

x′
j = xj + w′

jD(·), (4)

wherewj and xj are the ith component ofw and x, respectively, andwj is the respective
step size of the xj where w is σ or ψ. If the mutation is a self-adaptive mutation,
A(·) is evaluated as exp[τ ′N(0, 1) + τNj(0, 1)] where N(0, 1) is the standard normal
distribution, Nj(0, 1) is a new value with distribution N(0, 1) that must be regenerated
for each index j. When the mutation is a decreasing-based mutation A(·) is defined as
a fixed decreasing rate γ = 0.95. D(·) is evaluated as N(0, 1) or C(1) if the mutation
is, respectively, Gaussian mutation or Cauchy mutation. For example, the self-adaptive
Cauchy mutation is defined as

ψc
j = ψa

j exp[τ ′N(0, 1) + τNj(0, 1)], (5)

xc
j = xa

j + ψc
jCj(t). (6)

We set τ and τ ′ to (
√

2n)−1 and (
√

2
√
n)−1, respectively, according to the suggestion

of evolution strategies [17]. A random variable is said to have the Cauchy distribution
(C(t)) if it has the density function: f(y; t) = t/π

t2+y2 , −∞ < y < ∞. In this paper t
is set to 1. Our decreasing-based Gaussian mutation uses the step-size vector σ with a
fixed decreasing rate γ = 0.95 and works as

σc = γσa, (7)

xc
j = xa

j + σcNj(0, 1). (8)
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Table 1. Atom types of GEMDOCK

Atom type Heavy atom name
Donor primary and secondary amines, sulfur, and metal atoms
Acceptor oxygen and nitrogen with no bound hydrogen
Both structural water and hydroxy1 groups
Nonpolar other atoms (such as carbon and phosphorus)
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Fig. 1. The linear energy function of the pair-wise atoms for the steric interactions and hydrogen
bonds in GEMDOCK (bold line) with a standard Lennard-Jones potential (light line).

2.3 Scoring Function

In this work, we have developed a new scoring function which was able to simultaneously
serve as the scoring function of both molecular docking and post-docking analysis. It
consisted of a simple empirical scoring function and a pharmacophore-based scoring
function to reduce the number of false positives. The energy function can be dissected
into the following terms:

Etot = Ebind + Ephama + Eligpre, (9)

whereEbind is the empirical binding energy used during the molecular docking ;Ephama

is the energy of binding-site pharmacophores; Eligpre is a penalty value if the ligand
unsatisfied the ligand preferences.Ephama andEligpre were used to improve the number
of true positives by discriminating active compounds from hundreds of thousands of non-
active compounds. The empirical binding energy (Ebing) is given as

Ebind = Einter + Eintra + Epenal, (10)

whereEinter andEintra are the intermolecular and intramolecular energy, respectively,
and Epenal is a large penalty value if the ligand is out of range of the search box. In this
paper, Epenal is set to 10000. The intermolecular energy is defined as

Einter =
lig∑
i=1

pro∑
j=1

[
F (rBij

ij ) + 332.0
qiqj
4rij

]
, (11)
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r
Bij

ij is the distance between the atoms i and j with the interaction type Bij forming by
the pair-wise heavy atoms between ligands and proteins; Bij is either a hydrogen bond
or a steric state; qi and qj are the formal charges and 332.0 is a factor that converts the
electrostatic energy into kilocalories per mole. The lig and pro denote the numbers of
the heavy atoms in the ligand and receptor, respectively.F (rBij

ij ) is a simple atomic pair-
wise potential function (Figure 1) modified from previous works [8,11]. In this atomic
pair-wise model, the interactive types are only hydrogen binding and steric potential
which have the same function form but with different parameters, V1, . . . , V6 (defined in
Figure 1). The energy value of hydrogen binding should be larger than the one of steric
potential. In this model, the atom is divided into four different atom types (Table 1) :
donor, acceptor, both, and nonplar. The hydrogen binding can be formed by the following
pair atom types: donor-acceptor, donor-both, acceptor-both, and both-both. Other pair-
atom combinations form the steric state.

The intramolecular energy of a ligand is

Eintra =
lig∑

i=1

lig∑

j=i+2

F (rBij

ij ) +
dihed∑

k=1

A[1 − cos(mθk − θ0)], (12)

where F (rBij

ij ) is defined as Equation 11 except the value is set to 1000 when rBij

ij <

2.0 Å and dihed is the number of rotatable bonds. We followed the work of Gehlhaar et
al. (1995) to set the values ofA,m, and θ0. For the sp3 − sp3 bondA,m, and θ0 are set
to 3.0, 3, and π; and A = 1.5, m = 6, and θ0 = 0 for the sp3 − sp2 bond.

The pharmacophore-based interaction (Ephama) between the ligand and the protein
is calculated by summing up all hot-spot atoms:

Ephama =
lig∑
i=1

hs∑
j=1

f(wj , Bij)F (rBij

ij ), (13)

where wj is the pharmacophore weight of the hot-spot atom j, F (rBij

ij ) is defined as
Equation 11, lig is number of the heavy atoms in the ligand, and hs is the number of
hot-spot atoms in the receptor. The value of f(wj , Bij) iswj or 0. f(wj , Bij) iswj if the
interaction type (Bij) equals to the type of hot spots found between the target receptor
and ligands.

In this paper the ligand preferences include electrostatic ( i.e., the number of elec-
trostatic atoms) and hydrophilic characteristic (i.e., the atom numbers of hydrogen donor
and acceptor). The Eligpre is a penalty value for a ligand which is unable to satisfy the
ligand preferences and is defined as

Eligpre = WPelec +WPhb (14)

where WPelec and WPhb are the penalties for the electrostatic and hydrophilic prefe-
rences, respectively. In this paper WPelec and WPhb are set to 20.
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3 Results

3.1 Parameters of GEMDOCK

Table 2 indicates the setting of GEMDOCK parameters, such as initial step sizes, family
competition length (L = 2), population size (N = 200), and recombination probability
(pc = 0.3) in this work. The GEMDOCK optimization stops when either the convergence
is below certain threshold value or the iterations exceed a maximal preset value which
was set to 60. Therefore, GEMDOCK generated 800 solutions in one generation and
terminated after it exhausted 48000 solutions in the worse case. These parameters were
decided after experiments conducted to recognize complexes of test docking systems
with various values. On average, GEMDOCK took 135 seconds for a docking run on a
Pentium 1.4 GHz personal computer with a single processor.

Table 2. Parameters of GEMDOCK

Parameter Value of parameters
Initial step sizes σ = 0.8, v = ψ = 0.2 (in radius)
Family competition length L = 2
Population size N = 200
Recombination rate pc =0.3
# of the maximum generation 60
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Fig. 2. Ten HSV-1 thymidine kinase ligands used as active compounds in evaluating docking
accuracy and in screening performance. Each ligand systematically using four characters followed
by three characters. For example, in the ligand "1kim.THM", "1kim" denotes the PDB code and
"THM" is the ligand name in the PDB.
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3.2 Target and Database Preparations

In order to evaluate GEMDOCK and to compare GEMDOCK with several widely used
methods, we tested GEMDOCK on docking 10 active ligands (Figure 2) of HSV-1
thymidine kinase [18] back the complexes with experimentally x-ray structures from
PDB. Each ligand systematically using four characters followed by three characters.
For example, in the ligand "1kim.THM", "1kim" denotes the PDB code and "THM"
is the ligand name in the PDB. When we evaluated the accuracy of GEMDOCK for
molecular docking, the crystal coordinates of the ligand and protein atoms were taken
from PDB, and were separated into different files. Our program then assigned the atom
formal charge and atom type (i.e., donor, acceptor, both, or nonpolar) for each atom of
both the ligand and protein. The bond type (sp3−sp3, sp3−sp2, or others) of a rotatable
bond inside a ligand was also assigned.

Y101- OH

Q125- NE2

Q125- OE1

E83- OE2

Y172-ring

N

O

O

A

A

C

B

OH

B

OH
C

Fig. 3. Binding-site pharmacophores identified by superimposing ten crystal structures of HSV-
1 thymidine kinase shown in Figure 2. Three pharmacological preferences and interactions are
identified and circled as A (an amide binding site), B (a hydroxyl binding site), and C (a hydroxyl
binding site). A stack force binding area (Y172-ring) is also indicated. The dash lines indicate the
hydrogen binding.

To evaluate GEMDOCK’s screening utility, we used HSV-1 thymidine kinase (TK),
proposed by Bissabtz et al. [12] as the target protein with a ligand database, including 10
known active ligands (Figure 2) of TK and 990 randomly chosen non-active compounds
from the ACD. When preparing the target protein, the atom coordinates for virtual
screening were taken from the crystal structure of the TK complex (PDB entry 1kim).
The atom coordinates of each ligand were sequentially taken from the database. Our
program automatically decided the formal charge and atom type of each ligand atom.
The ligand characteristics (i.e., the numbers of electrostatic atoms, hydrogen donor,
and hydrogen acceptor) and the bond types of single bonds inside a ligand were also
calculated. These variables were used in Equation 9 to calculate the scoring value of a
docked conformation. Finally GEMDOCK re-ranked all docked ligand conformations
for the post-analysis.
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Figure 3 shows the binding-site pharmacophores and ligand preferences that were
identified by superimposing ten crystal structures of TK shown in Figure 2. Three
binding-site pharmacological preferences and interactions were identified and circled
as A, B, and C. A stack force binding area (Y172-ring) was also indicated. The dash li-
nes indicate the hydrogen binding. According to these observations, we added following
pharmacological weights: Q125-OE1 and Q125-NE2 are hydrogen bonds with weighted
value 4.0; Y101-OH and E83-OE2 are hydrogen bonds with weighted value 2.5; and six
C atoms of Y172-ring form stacking force with weighted value 1.5. These weights were
used in Equation 13 for calculating the value Ephama. For TK ligand preferences, the
number of electrostatic atoms was set to 2 because all active ligands (Figure 2) have
no charged atoms. The hydrophilic preference was not assigned in this target. In Equa-
tion 14, therefore,WPhb is zero andWPelec is 20 if the number of charged atoms inside
a ligand was more than 2.

Table 3. Comparison GEMDOCK with three docking methods on docking 10 thymidine kinase
ligands into the binding site of the target protein 1kim

No. of No. of GEMDOCK
polar hydrogen pharmacophore pharmacophore

Liganda atomsb bondsc weight (yes) weight (no) GOLDd FlexXd DOCKd

1e2k.TMC 6 5 0.75 0.79 1.19 7.56 1.11
1e2m.HPT 5 6 0.41 0.37 0.49 1.02 4.18
1e2n.RCA 9 6 1.54 1.41 2.33 9.62 13.3
1e2p.CCV 6 8 0.58 0.53 0.93 2.02 3.65
1ki2.GA2 9 4 3.56 2.15 3.11 3.01 6.07
1ki3.PE2 8 5 3.34 3.29 3.01 4.10 5.96
1ki6.AHU 7 6 0.43 0.39 0.63 1.16 0.88
1ki7.ID2 7 6 0.45 0.56 0.77 9.33 1.03
1kim.THM 7 4 0.47 0.48 0.72 0.82 0.78
2ki5.AC2 8 5 2.94 2.95 2.74 3.08 2.71

a The four characters and three characters separated by a period denote the PDB code and the
ligand name in the Protein Data Bank, respectively.
b The number of the atoms that may form a hydrogen bond; i.e., the atom type is either both,
donor, or acceptor.
c The number of hydrogen bonds formed between the ligand and the protein was derived from
the native crystal conformations based on our scoring function (Equation 10).
d These results were directly taken from [12].

3.3 Molecular Docking Results on Ten TK Complexes

GEMDOCK executed 3 independent runs for each complex. The solution with lowest
scoring function was then compared with the observed ligand crystal structure. First
GEMDOCK docked each ligand of 10 TK ligands (Figure 2) back into its respective
complex. We based the results on root mean square deviation (RMSD) error in ligand
heavy atoms between the docked conformation and the crystal structure. The RMSD
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values of all ten docked conformations are less than 1.0 Å. Second we docked all ten TK
ligands into the reference protein (1kim) and the results were shown in Table 3. During
flexible docking GEMDOCK obtained similar results whether the pharmacophore pre-
ferences ( i.e., Ephama and Eligpre) were considered or not. The docked conformations
with RMSD values less than 1.5 Å for seven pyrimidine-based ligands. On the other
hand, three purine-based ligands (i.e., 1ki2.GA2, 1ki3.PE2, and 2ki5.AC2 ) could not be
successfully docked into the reference protein because the side-chain conformation of
GLN125 in the reference protein 1kim differs from the ones of these purine-based com-
plexes, i.e., 1ki2, 1ki3, and 2ki5. GEMDOCK was the best among these four competing
methods (GEMDOCK, GOLD, FlexX, and DOCK) on this test set.

Table 4. Comparison of GEMDOCK with four methods on screening 1000 compounds with false
positive rates

True Positive(%) GEMDOCK Surflexa DOCKa FlexXa GOLDa

80 0.8b (8/990) 0.9 23.4 8.8 8.3
90 1.0 (10/990) 2.8 25.5 13.3 9.1

100 1.6 (16/990) 3.2 27.0 19.4 9.3

a These results were directly taken from [12] and [19].
b the false positive rate from 990 random ligands (%).

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Ranking

T
ru

e
H

it
s

(%
)

Both
Ligand preference
Interaction preference
None

(a) true hit

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

50% 60% 70% 80% 90% 100%
True Positive (%)

G
H

Both
Ligand preference
Interaction preference
None

(b) GH-score

0

2

4

6

8

10

12

14

50% 60% 70% 80% 90% 100%
True Positive (%)

F
al

se
P

os
it

iv
e

(%
)

Both
Ligand preference
Interaction preference
None

(c) false positive

Fig. 4. GEMDOCK results for (a) true hit, (b) GH-score, and (c) the false positive rate for different
true positive rates. GEMDOCK yielded good performance when it used both ligand and receptor
pharmacological preferences.

3.4 Virtual Screening of TK Substrates

Figure 4 shows the overall accuracy of GEMDOCK using different combinations of
pharmacophore preferences in screening the substrates of HSV-1 thymidine kinase (TK)
from a data set with 1000 compounds. This data set, including 10 active and 990 ran-
dom ligands proposed by Bissantz [12], was used to evaluate the performance of three
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docking tools (DOCK, FlexX, and GOLD) with different combinations of seven scoring
functions[12]. The results of the comparison are also shown in Table 4.

Four common metrics were used to evaluate the screening quality, including true hit
(the percentage of active ligands retrieved from database), yield (the percentage of active
ligands in the hit list), goodness-of-hit (GH), and false positive rate. The GH score is
defined as

GH = (
Ah(3A+ Th)

4ThA
)/(1 − Th −Ah

T −A
), (15)

where Ah is the number of active ligands in the hit list, Th is the total number of
compounds in the hit list, A is total number of active ligands in the database, and T
is the total number of compounds in the database. The yield (hit rate) can be given as
100Ah

Th
%. The false positive (FP) rate is given as 100Th−Ah

T %. In the TK case A and T
are 10 and 1000, respectively.

The main objective of this study was to evaluate whether the new scoring func-
tion was applicable to both molecular docking and ligand scoring in virtual screening.
Figure 4 shows these results of GEMDOCK using different combinations of pharmaco-
phore preferences that are ligand preferences (Eligpre) and binding-site pharmacophore
(Ephama). GEMDOCK generally improves the screening quality by considering both
ligand preferences and binding-site pharmacophore weights although we did not at-
tempt to refine any parameters of these combinations. The binding-site pharmacophores
seem more important than ligand preferences. As shown in Figure 4(a), the hit rates of
GEMDOCK for different combinations are 38% (both), 12% (ligand preferences), 13%
(binding-site pharmacophore) and 7% (none) when the TP rate is 100%. If GEMDOCK
applied binding-site and ligand preferences, the GH score is 0.54 (Figure 4(b)) and the
FP rate is 1.62% (Figure 4(c)) when the TP rate is 100%.

Table 4 compares GEMDOCK with four docking methods (Surflex, DOCK, FlexX,
and GOLD) on the same target protein and screening database at true positive rates
ranging from 80% to 100%. For GEMDOCK on the target TK, the ranks of the ten
active ligands were 3, 7-9, 12-14, 16, 19, and 26. For the true positive rate of 100%, the
FP rate for GEMDOCK is 1.6%. In contrast, the FP rates for competing methods are
3.2% (Surflex), 27% (DOCK), 19.4% (FlexX), and GOLD (9.3%). DOCK is the worst
and GEMDOCK is the best among these five approaches on this data set.

4 Conclusions

In summary, we have developed an automatic tool with a novel scoring function for
virtual screening by applying numerous enhancements and modifications to our ori-
ginal techniques. By integrating a number of genetic operators, each having a unique
search mechanism, GEMDOCK seamlessly blends the local and global searches so that
they work cooperatively. Our new scoring function is able to be applied to both flexible
docking and post-docking analysis for reducing the number of false positives. Experi-
ments verify that the proposed approach is robust and adaptable to virtual screening.
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