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Abstract.  Aligning multiple DNA or protein sequences is a fundamental step
in the analyses of phylogeny, homology and molecular structure.  Heuristic al-
gorithms are applied because optimal multiple sequence alignment is prohibi-
tively expensive.  Heuristic alignment algorithms represent a practical trade-off
between speed and accuracy, but they can be improved.  We present EVALYN
(EVolved ALYNments), a novel approach to multiple sequence alignment in
which sequences are progressively aligned based on a guide tree optimized by a
genetic algorithm.  We hypothesize that a genetic algorithm can find better
guide trees than traditional, deterministic clustering algorithms.  We compare
our novel evolutionary approach to CLUSTAL W and find that EVALYN per-
forms consistently and significantly better as measured by a common alignment
scoring technique.  Additionally, we hypothesize that evolutionary guide tree
optimization is inherently efficient and has less time complexity than the com-
monly-used neighbor-joining algorithm.  We present a compelling analysis in
support of this scalability hypothesis.

1   Introduction

Aligning multiple DNA or amino acid sequences is an extremely important task in
modern biology.  Researchers apply multiple sequence alignment (MSA) to a diverse
set of problems.  MSA is used to find positional similarity across distinct biological
sequences as a first step in inferring sequence homology and the evolutionary relation-
ships between organisms.  MSA is used in gene identification and discovery and in
identifying similarity in molecular structure and function.  Among other practical
applications, MSA plays a critical role in the diagnoses of genetic disease and the
development of modern pharmaceuticals.
     A sequence alignment is composed of two or more biological sequences which are
arranged such that similar positions within the sequences are grouped (aligned).
Alignments are often represented as a two-dimensional matrix where rows are se-
quences and columns are sequence positions.  A good alignment is one which maxi-
mizes the positional similarity across all columns and all sequences.  Alignments are
constructed by inserting or deleting sequence segments in order to group similar char-
acters into columns.  Since it is impossible to know whether positions have been in
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serted or deleted relative to one another, these insertions/deletions are simply called
indels.  Indels can be represented as gaps in a sequence.  Placing a single gap in a
sequence causes the remainder of the sequence to shift by one position.  Gaps placed
in the optimal positions will result in an alignment where positional similarity is
maximized as shown in Fig. 1.

A-CTTCAACTAAGT–ATTG-AATAAA-CT-GCTTAGATATATCTCCAAATTATTAGCTATCGCTTAT-GGATTATATTAC
ACCTTTA--TAAGTCATTG-ACT-AAGCTCGCCTAGAT---------AATTACCCGCTATCG---ATATCC-CCTATTAC
-CC-TCAACTAAGT–ATTG-AATAAAG---GCTTAGATATATCTCCAAATTACTAGCTAT----TATATCCTCATAT---

Fig. 1.  Here is an example of a multiple sequence alignment of three DNA sequences in which
gaps are denoted by the dash (-) character

     Before the advent of alignment algorithms, researchers laboriously aligned multiple
sequences by hand.  This task was both error-prone and time-consuming.  In the
1970’s, researchers developed simple pairwise alignment algorithms based on dy-
namic programming (DP) and proved that they produce optimal alignments with re-
spect to any given scoring system.  [1, 2].  Although these algorithms extend easily to
the simultaneous and optimal alignment of multiple sequences, they are NP-Hard [3]
and have a time-complexity of O(LN) where L is the average length of the sequences
being aligned and N is the number of sequences being aligned.  Using DP, the simul-
taneous optimal alignment of more than a handful of sequences is prohibitively expen-
sive.  As a result, heuristic approaches trade quality for speed.
     Progressive multiple sequence alignment is the most common heuristic [4] and is
depicted in Fig. 2.  In traditional progressive MSA, a distance matrix is formed by
using DP to compute the optimal edit distance between all possible combinations of
sequence pairs.  A clustering algorithm such as neighbor-joining [5] takes a distance
matrix as input and deterministically constructs a guide tree based on these distances,
grouping closely related sequences prior to more divergent sequences.    Once a guide
tree has been constructed, sequences are progressively pairwise aligned in the order
dictated by the guide tree.  Closely related sequences are aligned prior to more distant
sequences.  Progressive MSA avoids the computationally intractable problem of the
simultaneous alignment of multiple sequences by instead performing incremental
pairwise alignments.
     However, traditional progressive MSA has fundamental problems.  Most impor-
tantly, after sequences are pairwise aligned, any inserted gaps in that pairwise align-
ment become immutable, and subsequent alignments with other sequences cannot
retroactively add additional information to improve previously aligned sequences.
This is a form of error propagation, also known as “once a gap, always a gap”.  The
guide tree has a direct qualitative impact on this error propagation, as the amount of
error is heavily dependent on the order in which sequences are progressively aligned.
Since guide tree construction algorithms such as neighbor-joining are greedy and
starting-point dependent, they are easily trapped in local optima, often resulting in
suboptimal multiple alignments.  We hypothesize that an evolutionary algorithm is
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better able to avoid entrapment in local optima and will therefore perform better than
neighbor-joining in constructing good guide trees.  Better guide trees result in better
multiple sequence alignments.

AGCCTGCCT

CTGCCTTTA

ACCTGCCTT

AAGCTGCT

AGCCTGCCT---
---CTGCCTTTA
-ACCTGCCTT–
AAGCTGCT----

Guide Tree Alignment

2

2

1

4

4

2

AAGCTGCT

ACCTGCCTT

CTGCCTTTA

AGCCTGCCT

Pairwise Distances

Fig. 2.  In traditional progressive MSA, clustering algorithms use computed pairwise edit dis-
tances to construct a guide tree which clusters similar sequences prior to divergent sequences.
A guide tree specifies an ordering of pairwise alignment operations which construct a complete
multiple sequence alignment

     Additionally, for large datasets, neighbor-joining has a prohibitive time complexity
of O(N3), where N is the number of input sequences.  As researchers apply MSA to
larger and larger datasets, neighbor-joining scales poorly as N grows large.  It is our
hypothesis that an evolutionary computational approach to guide tree construction is
more scalable than neighbor-joining.

2   Previous Work

Notredame and Higgins performed the seminal work in applying a genetic algorithm
(GA) to MSA with a tool known as Sequence Alignment by Genetic Algorithm
(SAGA) [6].  SAGA evolves a population of alignments using a complex set of 22
crossover and mutation operators in an attempt to gradually improve the fitness of the
alignments in the population.  Providing meaningful scores for sequence   alignments
can be somewhat problematic, and SAGA relies on a weighted sum-of-pairs approach
[7] in which each pair of sequences in an alignment is compared and scored and then
the scores from all of the pairwise alignments are summed to produce a representative
score for the entire alignment.

Although SAGA produces high quality results which are comparable (or sometimes
better) than other popular heuristic techniques, SAGA scales poorly [6] when aligning
more than 20 sequences.  SAGA applies a large and overly-complex litany of cross-
over and mutation operators, which are dynamically scheduled via a sophisticated
adaptive, self-tuning mechanism.  By contrast, the GA approach outlined herein uses
only one form of crossover and one mutation operator, thus simplifying the imple-
mentation and analysis of the algorithm.
     Thomsen et al. [8] developed an alignment post-processing program that uses a
genetic algorithm to improve alignments constructed by algorithms such as CLUSTAL
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V [9].  A population of alignments is initialized by randomly distributing gaps
throughout the individual alignments yet seeding the population with a single align-
ment produced by CLUSTAL V.  Assuming that this CLUSTAL-derived seed was of
higher quality than the randomly generated seeds, any fitness improvement in the
fittest individual is, by definition, an improvement over the output of CLUSTAL V.
The authors aligned as many as 71 sequences with an average length of 100 residues
and arguably demonstrated a 10% quality improvement over CLUSTAL V.
     Related work has been done towards the application of genetic algorithms to the
problem of evolving phylogenetic trees.  Most notably, [10] and [11] used genetic
algorithms to evolve trees which were optimized with respect to maximum likelihood.
Additional previous work has been done by [12] in inferring phylogenetic trees with
respect to maximum parsimony [13].
     Notably, the manipulation of tree-based data structures with genetic algorithms has
been widely explored in the genetic programming literature [14, 15].

3   Algorithm Implementation

We present EVALYN, a novel progressive multiple sequence alignment (MSA) pro-
gram that utilizes a genetic algorithm (GA) to optimize guide trees.  EVALYN starts
with a steady-state population of randomly constructed binary trees and iteratively
optimizes this population using a combination of selection, crossover, and mutation.
Guide trees are rooted binary trees.  Each node in the guide tree contains an alignment
which in turn contains at least one sequence.  Leaf nodes have no children and contain
the original input sequences.

3.1   Crossover and Mutation Operators

In each iteration of the genetic algorithm, EVALYN selects two unique parents for
crossover based on an exponential distribution of relative rank.  This ensures that
highly fit trees are selected for crossover far more often than unfit trees, yet all trees
are viable crossover candidates.  Similarly, EVALYN selects a single unfit guide tree
to be replaced by the offspring of a crossover operation.

EVALYN’s crossover operator is depicted in Fig. 3.  We implement tree crossover
in a way similar to that described in GAML [10], a genetic algorithm for phylogenetic
inference.  Both selected parents are copied and a randomly chosen crossover point
(internal node) is selected in the first parent.  The first parent is re-rooted at the cross-
over point, and the remainder of the tree above the crossover point is discarded.  All
leaf nodes which exist in this new, smaller tree are removed from the second parent,
and the second parent is collapsed into a typical bifurcating tree.  This collapsed sec-
ond parent is then attached to the first parent at a randomly chosen insertion point.

With some small probability, EVALYN mutates the child tree by performing a
same-tree branch swap.  Conveniently, this is implemented by performing a crossover
operation on two copies of the same child guide tree, effectively swapping branches
within the same tree.
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Fig. 3.  Crossover is a three-step process.  First, a copy of PARENT 1 is rooted at a randomly
selected crossover point and all nodes above this new root are discarded as shown in (a).  Next,
all leaves are removed from a copy of PARENT 2 which exist in the newly-rooted tree from (a).
As shown in (b), leaves A and B are removed from PARENT 2, and the tree is collapsed to form
a new bifurcating tree containing only leaves C and D.  In (c), the final child tree is constructed
by combining the sub-trees from (a) and (b) at a randomly chosen insertion point

3.2   Measuring Guide Tree and Alignment Fitness

As shown in Fig. 4, the fitness of a particular guide tree is measured by performing
progressive MSA in the order dictated by the guide tree and then scoring the resulting
alignment.
We use the common sum-of-pairs score (SPS) as our scoring method as outlined in
Fig. 5.  In the case of protein, the evolutionary distance between every pair of residues
in each column of the alignment is computed using a probabilistic residue substitution
model such as PAM [16] or BLOSUM [17].  DNA is similarly handled using simple
nucleotide substitution models which properly weight transitions and transversions.
The SPS for the entire alignment is simply the sum of the SPS for each column in the
alignment.  Gaps are typically assigned large penalties, while substitutions are as-
signed smaller negative penalties or positive rewards.  For our purposes, a higher SPS
indicates a better alignment.  Therefore, there is selective pressure favoring alignments
with higher sum-of-pairs scores.

As in other MSA implementations, EVALYN implements affine gap penalties, in
which the leading gap in a subsequence of contiguous gaps invokes significantly
higher penalties than non-leading gaps.  Affine gap penalties result in dense, contigu-
ous gapped regions instead of sparsely distributed, isolated gaps.  This affine gap
model results in more biologically realistic alignments.
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(D,E)

(A,B)
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((C,(A,B)), (D,E))

Fig. 4.  Evaluating the fitness of a guide tree is accomplished by performing the progressive
sequence alignment in the order dictated by the guide tree.  EVALYN performs a depth-first
traversal of the guide tree and aligns A and B first.  Sequence C is then aligned to the alignment
of A and B to form a 3-sequence alignment of sequences A, B, and C.  The complete multiple
sequence alignment of all sequences is performed by aligning the two alignments on either side
of the root node of the guide tree.  The sum-of-pairs score of the final alignment is the fitness of
the alignment

Fig. 5.  In this toy example, a sum-of-pairs score (SPS) is computed for a simple pairwise
alignment.  A substitution matrix assigns points for nucleotide matches/mismatches and affine
gap penalties are applied

4   Algorithm Analysis

We hypothesize that EVALYN has less computational complexity than neighbor-
joining, and is therefore more scalable than CLUSTAL W as a function of the number
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of input sequences.  We briefly analyze the time complexity of EVALYN and com-
pare it to the time complexity of the neighbor-joining algorithm used in CLUSTAL W
to demonstrate support for this hypothesis.  We show that with only regard to the
number of input sequences, EVALYN is an O(N) algorithm.  By contrast, CLUSTAL
W’s neighbor-joining algorithm is O(N3).
     EVALYN evaluates guide tree fitness by performing the progressive MSA in the
order dictated by the guide tree and computing the sum-of-pairs score for the resulting
alignment.  At each step in the progressive alignment, we compute an optimal global
pairwise alignment [1].  Each pairwise alignment has an O(L2) complexity, where L is
the average length of the sequences or partial alignments being aligned.  There are N-1
such pairwise alignments for every evaluation of a guide tree, resulting in an O(N x L2)
complexity, where N is the number of input sequences being aligned, and L is the
average length of all sequences.  This fitness evaluation happens once per iteration.
With I iterations, EVALYN becomes an O(I x N x L2) algorithm.  Finally, when
evaluating the fitness of the initial, randomly generated population of size P, the fit-
ness of each guide tree must be computed prior to iteration, resulting in an initial cost
of O(P x N x L2).  In typical usage,   I >> P and we can simplify our analysis to O(I x
N x L2).  Although EVALYN is an iterative algorithm and has large amounts of con-
stant-time overhead in the form of the multiple I, it does have a linear time complexity
with respect to the N input sequences.
     Although CLUSTAL W is fast in the typical usage scenario, it performs very
poorly as N grows very large (thousands of input sequences).  CLUSTAL W uses
neighbor-joining to construct guide trees, and neighbor-joining has been shown to
possess a O(N3) time complexity [18].
     The practical question remains as to whether or not EVALYN is capable of finding
comparable or better guide trees in less time than CLUSTAL W when aligning ex-
tremely large numbers of sequences.  For example, if N is very large, it may be the
case that I must be similarly large in order for EVALYN to converge on guide trees
which score better than those constructed via neighbor-joining.  We’ve shown that
EVALYN is O(N), but how fast does I (or P) need to grow as a function of N in order
to get good alignments?  Future experiments will focus on characterizing this behav-
ior.

5   Experimental Setup and Results

Our central hypothesis is that a genetic algorithm (GA) is capable of finding better
guide trees than those which are constructed using traditional deterministic clustering
algorithms such as neighbor-joining.  To test this hypothesis, we compare EVALYN
to the popular CLUSTAL W progressive MSA tool [19].  CLUSTAL W uses neigh-
bor-joining to construct guide trees based on a computed pairwise distance matrix.
Both EVALYN and CLUSTAL W compute the sum-of-pairs score for the final multi-
ple sequence alignment, and this is used as an objective metric of alignment quality.
     First, we simulated DNA sequences according to the Jukes-Cantor model [20] of
sequence evolution in which transitions and transversions are equally probable.  We
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simulated the DNA sequences by producing a random template sequence of the de-
sired length and then used this template sequence to generate related sequences with
no more than 50% sequence divergence.  In this way, we generated 10 independent
sets of 50 sequences, all of which were 100 nucleotides in length.  We performed 10
experimental runs of EVALYN on each of the 10 input datasets and averaged the
results.
     After generating our input sequences, CLUSTAL W was run with default parame-
ters on each of the 10 input datasets and we recorded the final sum-of-pairs score of
the output alignment.  In 10 independent trials, EVALYN used the same 10 inputs and
saved the best guide tree after 2500 iterations.  In all cases, EVALYN used a popula-
tion size of 500 guide trees, a mutation rate of 0.01, and ran for 2500 iterations as
shown later in Table 1.
     Where possible, EVALYN was parameterized identically to CLUSTAL W with
respect to gap penalties and nucleotide substitution costs.  The results from this ex-
periment are shown in Fig. 6.

EVALYN vs. CLUSTAL W (Default Settings)
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Fig. 6.  CLUSTAL W run with default settings.  In 70% of the runs, EVALYN produced better
scoring alignments.  The mean SPS and standard deviation across repeated trials is shown

     We then invoked CLUSTAL W again for each dataset, but instead of generating its
own guide trees, CLUSTAL W instead used the best guide trees produced by
EVALYN.  This novel technique removed any experimental error due to possible in-
consistencies in alignment scoring between CLUSTAL W and EVALYN.  We com-
puted the mean and standard deviation of the sum-of-pairs scores across all 10 trials
for each of the 10 inputs.   We also calculated the standard deviation across EVALYN
runs to assess the error and statistical significance of our results.  Results indicate that
EVALYN typically (70% of the time) outperforms CLUSTAL W when using
CLUSTAL W with its default settings.
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     Additionally, EVALYN outperforms CLUSTAL W significantly and consistently
when the two programs have identical parameterization as shown in Fig. 7.  Tests of
the statistical significance of all results were performed using a non-parametric Wil-
coxon signed-rank test and showed that these results are statistically significant under
that test.

EVALYN vs. CLUSTAL W (Identical Settings)
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Fig. 7.  CLUSTAL W and EVALYN were run with nearly identical parameterization (same
substitution matrix, same gap penalties, etc.)  Across all 10 input sets, EVALYN produced
better guide trees which resulted in better alignments with higher sum-of-pairs scores

Table 1.  Experimental configuration

Population Type Steady-state

Population Size 500 guide trees
Crossover Rate 100% (steady-state population)
Mutation Rate 0.01
Iterations 2500
Selection Type Rank-Based

Substitution Matrix Matches = +1.9, Mismatches = 0
Gap Open Penalty -15.0
Gap Extension Penalty -6.66

By taking optimized guide trees produced by EVALYN and providing them as input
to CLUSTAL W, we have found strong evidence to support our main hypothesis that
guide trees evolved via a genetic algorithm produce better multiple sequence align-
ments than guide trees constructed using neighbor-joining.
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6   Conclusions

Aligning multiple sequences of biological data is a critical aspect of modern biology.
Since constructing optimal alignments is prohibitively time-intensive, popular heuris-
tic MSA algorithms trade accuracy for speed in order to maximize their practical use-
fulness.  We introduced EVALYN, a genetic algorithm for performing multiple se-
quence alignment.  We demonstrated that EVALYN produces higher-scoring align-
ments than CLUSTAL W under the popular sum-of-pairs metric.  In addition, we
provided a strong analytical argument that an evolutionary computational approach to
guide tree optimization as used in EVALYN is more scalable than traditional guide
tree construction algorithms such as neighbor-joining.
   By using a genetic algorithm to produce better guide trees, we achieved an important
practical goal of producing a measurably better multiple sequence alignment program
than CLUSTAL W, currently the most popular and actively used MSA program today.

7 Future Work

In future work, we will examine different metrics of alignment quality in order to
show that EVALYN is able to produce biologically significant results.  Although the
sum-of-pairs score (SPS) for an alignment is commonly used, it has some inherent
problems.  First, alignments with the highest SPS are not always the most biologically
significant or meaningful.  Guide trees and multiple sequence alignments constructed
under the SPS optimality criterion may in fact produce alignments which are mean-
ingless when interpreted by a biologist.  Finding ways of quantifying the level of bio-
logical significance of an alignment is an ongoing and active area of research.  Toward
this end, we intend to test EVALYN against the Benchmark Alignment dataBASE
(BAliBASE) [21], which is a carefully designed set of protein alignments that were
aligned and verified with elucidated or inferred structural and functional information.
The BAliBASE alignments are composed of real protein sequences, and are intended
to be a kind of “gold standard” by which alignment algorithms can be tested for their
ability to recover biologically significant alignments.  In addition to testing EVALYN
against BAliBASE, we will develop new fitness functions to maximize meaningful
biological signal in alignments.  For example, future fitness functions may take into
account predicted or elucidated secondary structure.

All phylogenetic analysis begins with multiple sequence alignment, which estab-
lishes the positional homology of the sequence data that is used for the basis of con-
structing and optimizing phylogenetic trees.  Phylogenetic analysis is extremely de-
pendent on the assumptions, biases, and accuracy of the initial multiple sequence
alignment.  State-of-the art work in phylogenetic inferencing attempts to address this
by simultaneously optimizing both alignment and phylogeny.  As guide trees serve as
rough estimations of sequence phylogeny, EVALYN also simultaneously optimizes
phylogeny and alignment.  In effect, EVALYN currently performs phylogenetic tree
optimization by using alignment sum-of-pairs scores as the optimality criterion.
Along these lines, we will explore additional measures of guide tree fitness such as
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parsimony [13] and the more statistically rigorous approach of maximum-likelihood
[22].

Finally, empirically characterizing the scalability of EVALYN across different
numbers, lengths, and types of input sequences is a key focus of future work.  In this
paper, we analyzed EVALYN to show that it has a linear time complexity with respect
to the number of input sequences.  However, the rate of solution convergence as a
function of the number of input sequences is not yet well understood.  Future experi-
mentation will explore the relationship between population size, GA convergence
properties, sequence divergence effects, and alignment quality.
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