
GA-Facilitated Knowledge Discovery and
Pattern Recognition Optimization Applied to

the Biochemistry of Protein Solvation

Michael R. Peterson, Travis E. Doom, and Michael L. Raymer

Department of Computer Science and Engineering, Wright State University, Dayton,
OH 45345 {mpeterso,doom,mraymer}@cs.wright.edu

Abstract. The authors present a GA optimization technique for cosine-
based k-nearest neighbors classification that improves predictive accu-
racy in a class-balanced manner while simultaneously enabling knowledge
discovery. The GA performs feature selection and extraction by searching
for feature weights and offsets maximizing cosine classifier performance.
GA-selected feature weights determine the relevance of each feature to
the classification task. This hybrid GA/classifier provides insight to a no-
toriously difficult problem in molecular biology, the correct treatment of
water molecules mediating ligand binding to proteins. In distinguishing
patterns of water conservation and displacement, this method achieves
higher accuracy than previous techniques. The data mining capabilities
of the hybrid system improve the understanding of the physical and che-
mical determinants governing favored protein-water binding.

1 Introduction

Computational pattern recognition has proven to be a valuable tool in the ana-
lysis of biological data. Generally, objects are gouped into classes (such as disea-
sed and healthy cells), and then characterized according to a variety of features.
Feature selection facilitates classification by removing non-salient features. Even
features providing some useful information may reduce accuracy when there are
a limited number of training points available [1]. This “curse of dimensiona-
lity”, along with the expense of measuring additional features, motivates feature
dimensionality reduction. Though no known deterministic algorithm finds the
optimal feature set for a classification task, a wide range of feature selection
algorithms may find near-optimal feature sets [2].

The accuracy of some types of classification rules, such as k-nearest neigh-
bors, improves by multiplying the value of each feature by a value proportional
to its usefulness in classification. The assignment of weights to each feature as
a form of feature extraction improves classifier accuracy over the knn classifier
alone, and aids in the analysis of large datasets by isolating combinations of
salient features [3]. Through use of a bit-masking feature vector, GAs have suc-
cessfully performed feature selection in combination with a knn classifier [4]. This
approach has been expanded for feature extraction [3,5] by searching for an ideal
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set of feature weights. Prior to classification, each feature value is multiplied by
normalized values of GA-identified weights. The hybrid GA/knn classifier de-
scribed in [6] combines feature masking and feature weighting to simultaneously
perform feature selection and extraction. The GA employs a weight vector for
extraction and a mask vector for selection, allowing the GA to test the effect of
completely eliminating a feature from consideration without reducing its associa-
ted weight completely to zero. The GA fitness function rewards smaller feature
sets, leading to a tendency to mask features prematurely and not reintroduce
them when appropriate.

Here, we present a novel hybrid GA/knn system that eliminates the mask
vector and instead employs a population-adaptive mutation technique allowing
for improved simultaneous feature selection and extraction on the weight vec-
tor. Additionally, a cosine similarity measure replaces the traditional Euclidian
distance metric for knn classification. Cosine similarity is an effective similarity
measure for diverse applications, including document classification [7] and gene
expression profiling [8]. As with Euclidian distance, knn classifiers employing co-
sine similarity may achieve improved classification through careful adjustment of
feature weights [9]. Furthermore, the cosine similarity measure allows for a novel
form of GA optimization by searching for an optimal set of feature offsets. These
offsets affect the cosine of the angles between various data points considered by
the knn classifier, and thus may be optimized. In some cases, cosine similarity
may be less prone to errors in attribute measurements. Euclidian distance is
highly dependent upon the magnitude of measured attributes, since fluctuati-
ons in magnitude will directly affect the calculated distance between points. In
contrast, the cosine measure depends more on the overall shape of the data dis-
tribution than on feature magnitude. Thus, in cases where the magnitude of
features measured across experiments can vary, as in many biological experi-
ments, cosine similarity is less susceptible to noise-induced error than Euclidian
distance metrics [8].

This hybrid GA/knn system provides new insight into the role of water mole-
cules during the binding of drugs or other ligands to the protein surface. Protein
surface-bound water molecules often form hydrogen bonds to a docking drug or
other ligand, and are an essential part of the protein surface with respect to
ligand screening, docking, and design [10]. It is thus important to identify the
areas of the protein surface where water molecules will not be displaced upon
ligand binding. However, the identification of favorable protein surface sites for
solvent binding has proven difficult, in part because the majority of protein
surface residues are hydrophilic.

Among the various attempts to treat water molecules during ligand binding,
the Consolv system [10] employs a (GA/knn) classifier to distinguish water mole-
cules bound in the protein’s ligand-binding site from those displaced upon ligand
binding. Consolv improved on previous solvation techniques including Auto-Sol
[11] and AquariusII [12]. The hybrid GA/classifier described here improves upon
Consolv’s reported accuracy while mining feature weights to aid in understan-
ding the properties governing protein-water interactions.
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2 Methods

2.1 Cosine-Based Knn Classification

The hybrid GA/classifier described here employs k-nearest neighbors classifica-
tion. Unlike many common learning algorithms, knn techniques do not construct
an explicit description of the target function when a training set is provided.
These algorithms only generalize beyond the training points when a query point
is presented. Based upon the assumption that the classification of an unseen data
point will be most similar to that of training points that share similar attribu-
tes, knn approximates the target function over a small neighborhood of training
points most similar to each test point.

When selecting the most similar neighbors, it is important to employ an
appropriate similarity measure. There are several available for knn classifiers;
the most common of which is the Euclidean distance between two points within
d-dimensional space, where d is the number of measured attributes. Another
is the cosine of the angle between two vectors, each representing a data point
within d-dimensional space. In addition to these measures, any other distance
metric, such as Mahalanobis distance, may also be employed.

The knn classifier described in this work employs cosine similarity as defined
below. If xi and xj are attribute vectors representing two data points, then the
cosine of the angle between them is defined as

cos(xi,xj) =
xi · xj

‖xi‖‖xj‖ (1)

where “·” represents the dot product between the two vectors, and ‖xj‖ repre-
sents vector length. Larger cosine values represent a greater degree of similarity
between vectors. When taking the cosine similarity between a query point and
all training points, the k points with the largest similarity values are the nearest
neighbors.

After neighbor identification, a class is assigned to the query point. Unlike
traditional knn classification, the cosine-based knn classifier described here does
not use a simple voting scheme for class assignment. Classification occurs using
a weighted scheme based on how similar each neighbor is to the query point. If
the data contains only two classes, then the query point x is classified by the
value of the measure q[13]:

q =
n∑

i=1

cos(xi,x)c(xi) (2)

where

c(xi) =
{

1 : if xi ∈ the positive class
−1 : otherwise

If q is positive, then the query point is assigned to the positive class, otherwise
it is assigned to the negative class. For problems with more than two classes,
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a seperate q function can be applied for each class, with the largest resulting
function representing the class label applied to the query point.

In addition to feature weight evolution, the accuracy of the cosine classifier
can be further improved by transformation of the coordinate space. Typically, the
angle between two vectors is determined relative to the origin within the feature
space. If the data is shifted by different amounts in each feature dimension, then
the relative angle between any two given points changes. By shifting the origin
within the feature space, a GA can improve the classification of new data. As
demonstrated in Figure 1, this shifting may change the assigned class label for
a test point. Figure 1(a) illustrates the behavior of an unshifted k = 5 nearest
neighbor classifier in two-dimensional feature space. Here, no offset is applied.
Among the points with the highest angular similarity to the test pattern, three
belong to class 1, and 2 belong to class 2. The test pattern is labeled as belonging
to class 1 since the sum of the cosine of angles to class 1 points is larger than that
of class 2 points. In (b), the origin is shifted, thus changing the point of reference.
Now, all of the nearest neighbors in terms of cosine similarity belong to class
2, so the test point is labeled as belonging to class 2. The hybrid GA/classifier
system described here optimizes cosine knn classifiers with respect to feature
weights, feature offsets, and the k-value.

Class 1
Class 2
Test point

Feature 2

F
ea

tu
re

 1

Feature 2

F
ea

tu
re

 1

Origin 
Shift(a) (b)

Fig. 1. Effect of the origin position on cosine-based knn classification

2.2 Use of the Genetic Algorithm

Our goal is to provide a pattern recognition technique that improves classifica-
tion accuracy while enabling knowledge discovery. To that end, an optimization
technique should preserve the independence of features; that is, it must not de-
fine new features as combinations of the originals. In this manner, the influence
of each feature upon the performance of the optimized classifier may easily be
examined, thereby providing useful insight into the nature of the given problem.

The GA used here employs the chromosome shown in Figure 2. For an n-
dimensional dataset, the first n genes on the chromosome represent the unnor-
malized real-valued weights of each feature. Weights evolve on the interval [0.0
. . . 100.0]. The next n genes represent real-valued feature offsets for each fea-
ture. Prior to classification, each feature in a dataset is normalized by sum to the
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interval [1.0 . . . 10.0]. Typically, offsets are permitted to evolve on the interval
[-15.0 . . . 30.0] so that the classifier may view a feature either from within or
from outside of its range. During the training process, the GA learns appropriate
reference points by shifting offsets. For cases where classifiers are trained only
through weight and k-value optimization, the offsets are simply ommited from
the chromosome. The final gene is an integer representing the k-value for the
knn classifier. Typically, k may take any value over [1 . . . 100], though for small
datasets a more limited range may be specified.

W1  W2      ...     Wn   O1  O2       ...    On    k 

Fig. 2. Structure of the GA chromosome

In previous work involving GA optimization of knn classifiers, dimensiona-
lity reduction is accomplished by employing feature masks using bit sets on the
chromosome to explicitly perform feature selection [6]. The seperation of feature
extraction and selection on the chromosome introduces the possibility that a
partially relevant feature may be masked prematurely. If the GA gives prefe-
rence to chromosomes masking a larger number of features, then a prematurely
masked feature may never be unmasked. To avoid this, dimensionality reduc-
tion is accomplished using population-adaptive mutation. In the absence of an
explicit feature mask, the weight of a feature must be reduced to zero in order
to remove the feature from consideration. Population-adaptive mutation increa-
ses the likelihood that the weights of spurious features will be reduced to zero.
When a gene is selected for mutation, the value of the gene is shifted randomly
within a range depending upon the current variance of the gene across the GA
population. The new value is randomly chosen from a Gaussian distribution with
a mean equal to the gene’s current value and a standard deviation based on the
feature variance across the population. Under population-adaptive mutation, a
gene may mutate either above or below its permitted range. In such cases, the
minimum or maximum value is set as the new gene value. Thus, mutation may
easily cause a feature weight to be set to zero due to this boundary effect, effec-
tively removing that feature from consideration. As a feature weight gradually
decreases across the population, the probability that the feature will be masked
increases. Conversely, features with generally high weights are unlikely to be-
come masked under population-adaptive mutation, thus preventing premature
masking. Because population-adaptive mutation easily performs both feature
selection and extraction, it is especially useful for mining relevant meaning from
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the remaining feature weights, which indicate the relevance of selected features
for a given classification task.

Selection operations are implemented using tournament selection with a tour-
nament of size 2. Recombination is implemented using uniform crossover with
a crossover probability of 0.5 per gene. Because population-adaptive mutation
largely drives dimensionality reduction, the GA uses a fairly high mutation rate
of 0.1 mutations per gene. The population size is typically 50 or 100 chromoso-
mes. The GA runs either to convergence or for 200 generations, whichever occurs
first. During training, chromosomes are evaluated by applying their weight and
offset vectors, as well as the k-value, to the feature set by performing classifica-
tion on a set of patterns of known class using a cosine-based knn classifier. The
fitness function contains components measuring overall classification accuracy,
the balance of accuracy among classes, and the number of features employed.
The fitness function gives preference to chromosomes providing high, balanced
accuracy using as few features as possible. The GA-minimized cost function is:

cost(w, k) = Cpred × % of incorrect predictions
+ Cmask × # of unmasked features
+ Cbal × class accuracy difference

where Cpred, Cmask, and Cbal, are the cost function coefficients. For the authors’
experiments the empirically derived values: Cpred = 25.0, Cbal = 10.0, and Cmask

= 1.0 are used. The function gives highest preference to maintaining high overall
accuracy, with balanced accuracy as a secondary goal. The number of features
employed recieves a relatively small coefficient in order to prevent the GA from
prematurely removing features from consideration.

For each experiment, data patterns are randomly split into class-balanced
training and test sets, with the remaining points withheld for bootstrap va-
lidation upon the completion of GA training. At the completion of each GA
experiment, the quality of the optimized classifier is assesed using a variant of
the bootstrap test method [14] in order to obtain an unbiased accuracy measure-
ment as well as a simple measure of this measurement’s variance. The bootstrap
test helps ensure that reported accuracies are not the result of GA overfitting of
the test data.

2.3 Experiments on Biological Datasets

In order to demonstrate the utility of offset optimization, experiments are per-
formed using a dataset containing diabetes diagnostic information for Native
Americas of Pima heritage [15]. The dataset consists of diagnostic information
for 768 adult women, 500 of whom tested negative for diabetes and 268 of whom
tested positive. Six of the eight features representing clinical measurements are
quantitative and continuous. The remaining two features are quantative and
discrete. There are no missing feature instances. This dataset is suitable for
testing the ability of a GA/classifier system to simultaneously extract features
and boost accuracy due to its moderate dimensionality, its completeness, and
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its unbalanced class representation. This dataset is available from the UCI ma-
chine learning repository [16]. For comparison purposes, results for this dataset
using a number of well-known classification techniques, as implemented in the
Waikato Environment for Knowledge Analysis (WEKA) data mining software
package [17] are also presented. Results from WEKA classifiers reflect accuracy
after 10-fold cross-validation.

To demonstrate the knowledge discovery abilities of the hybrid GA/classifier,
experiments are performed on two datasets describing protein-water interactions,
created during development of the Consolv system. The first dataset describes
the environments of water molecules bound to protein surfaces. Water molecules
in this set belong to one of two classes: those displaced from the protein surface
when a molecule (such as a drug) binds to the protein, and those conserved.
When a ligand binds to a protein, it may displace water molecules at some lo-
cations and bind directly to the surface. In other locations, the ligand forms a
hydrogen bond to a water molecule, which in turn forms a hydrogen bond to
the protein surface, as illustrated in Figure 3. By accounting for water molecu-
les involved in protein-ligand binding, accurate prediction of water conservation
or displacement facilitates the design of ligands with higher complimentarity to
the protein surface. Eight features are provided to characterize the local environ-
ment of water molecules in 30 independently solved, unrelated protein structures
[6]. The chemical and physical features describing each water molecule include
the number of protein atoms surrounding the water molecule (ADN), the fre-
quency with which the types of atoms surrounding the water molecule are found
to bind water molecules in another database of proteins (AHP), a measure of
the thermal mobility (crystallographic temperature factor) of the water mole-
cule (BVAL), the number of hydrogen bonds between the water molecule and
the protein (HBDP), the number of hydrogen bonds to other water molecules
(HBDW), and three additional normalizations on temperature factor of either
the water molecule (MOB) or of its neighboring atoms (ABVAL and NBVAL).
The goal of the GA/knn classifier is to distinguish conserved from displaced
water molecules using a minimal set of features. Examination of the selected
features and their corresponding weights found by the GA/knn classifier leads
to a better understanding of the underlying physical and chemical properties
salient to water binding interactions. The dataset describing water conservation
and displacement consists of 5542 water molecules; 3405 conserved and 2137
displaced.

The second dataset consists of a set of all surface water molecules from the
same 30 proteins, and an equal number of non-solvated probe sites, for a total
of 11,084 samples. For each water molecule and probe site, all features (except
for BVAL and MOB) from the first dataset are used. For this dataset, the goal
of the GA/knn classifier is to distinguish solvation sites from non-sites with high
accuracy using a minimal feature set. As before, the selected feature weights
provide insight into the properties governing the interactions between water
molecules and the protein surface.
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Protein surface

Ligand

Water 
molecule 

Fig. 3. Ligand-binding interface

For each GA run, the first dataset is split into class-balanced training and
test datasets consisting of 1068 waters each, with all remaining waters reserved
for bootstrap validation. The second dataset is split into balanced training and
test sets consisting of 2128 waters each, with remaining patterns reserved for
bootstrap validation. As with the diabetes dataset, results using WEKA clas-
sifiers are presented for comparison purposes. The two water datasets will be
made publically available at birg.cs.wright.edu/water/.

3 Results

3.1 Offset Inclusion During Optimization

Table 1 presents the best three optimizations obtained for the Pima Diabetes
dataset including offset optimization (left) and using only weight and k-value
optimization (right). Results reflect bootstrap validation. When offsets are inclu-
ded on the GA chromosome, the classifier achieves between 75 and 77% accuracy
with an accuracy balance of approximately 7% between the classes. In contrast,
the GA-trained classifier is unable to achieve better than 70% accuracy with a
10% class imbalance when offsets are not optimized. For this dataset, cosine-
based knn classifiers clearly benifit from offset optimization. Table 2 presents
the cross-validated performance of the best 3 of 18 WEKA classifiers accor-
ding to both accuracy and class accuracy balance. Logistic is a regression-based
classifier, SMO is a support vector machine, DecisionStump and j48 are both
decision tree-based classifiers, and NeuralNetwork is a backpropagation-based
neural classifier. The most accurate WEKA classifier, Logistic, achieves higher
accuracy than the GA-trained classifier, but it exhibits a high classification bias
toward negative labelling, with an imbalance of 31.86%. Even the most balanced
WEKA classifier, DecisionStump, exhibits a high imbalance of 16.18%. The GA
is able to train a cosine-based knn classifier to achieve an accuracy competitive
with the best WEKA classifiers without resorting to an unbalanced bias toward
one class or the other.
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Table 1. Pima Diabetes results, with and without offset optimization

ID Total Neg Pos Bal K #F ID Total Neg Pos Bal K #F
1 76.72 75.0 78.38 8.50 12 7 1 69.88 66.54 73.13 10.71 25 6
2 76.08 67.27 84.66 17.39 12 7 2 69.28 63.57 74.84 13.23 4 6
3 75.16 71.59 79.63 10.24 37 6 3 68.99 66.38 71.53 9.58 10 7

Accuracy (%) Accuracy (%)
With Offsets Weights Only

Table 2. Pima Diabetes WEKA classification results

Classifier Total Neg Pos Bal Classifier Total Neg Pos Bal
Logistic 77.08 88.20 56.34 31.86 DecisionStump 71.35 77.00 60.82 16.18
SMO 76.43 89.00 52.99 36.01 j48.J48 74.35 81.20 61.57 19.63
NaiveBayesSimple 75.91 83.80 61.19 22.61 NeuralNetwork 74.48 81.40 61.57 19.83

Top 3 by Accuracy(%) Top 3 by Balance(%)

3.2 Ligand-Binding Water Conservation

The primary goal for experimental research on protein-bound water molecules is
to classify whether specific water molecules on the protein surface are conserved
or displaced upon ligand binding. This goal is manifested by achieving a high
classification accuracy for this dataset during GA training. A secondary goal re-
mains elucidation of the determinants of water conservation. This goal is met by
examining the final relative feature weights of the various features evolved during
classifier optimization. The inclusion of feature weights on the GA chromosome
and the use of population-adaptive mutation for feature selection and extraction
successfully yields combinations of features that provide improved distinction
between conserved and displaced water molecules.

The left side of Table 3 presents the bootstrap results of the three best op-
timizations for the water conservation dataset. For comparison, the three best
WEKA classifier results in terms of both accuracy and balance are presented on
the right side of the table. While the most accurate WEKA classifiers achieve
slightly higher accuracy, they all exhibit a notable bias towards the conserved
class, indicating that they are unable to distinguish meaningful information in
the dataset and thus resort to a preference toward the more frequently occuring
class. In contrast, the GA-trained cosine knn classifier achieves similar accuracy
without significant bias toward either class, using as few as 4 of the 8 available
features. The utility of using a GA favoring class-balanced results during opti-
mization is clear. Section 4 discusses the biological implications of the optimized
feature weights obtained for this dataset.

3.3 Solvation Site Prediction

As with the previous dataset, the goals for experiments investigating the physical
and chemical determinants of solvation sites on the protein surface are two-fold.
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Table 3. Water conservation results, GA (left) and WEKA classifiers (right)

Total Disp Cons Avg Bal K ADN AHP BVAL Classifier Total (%) Disp Cons Bal
65.29 66.57 64.00 4.10 48 - - .426, 4.70 NeuralNetwork 66.62 44.17 80.70 36.53
64.76 63.91 65.61 3.89 29 - .096, 4.321 .281, 2.29 j48.J48 66.02 37.06 84.20 47.14
64.31 63.52 65.10 3.61 26 - - .207, 1.08 ADTree 65.97 44.27 79.59 35.32

Total HBDP HBDW MOB ABVAL Classifier Total (%) Disp Cons Bal
65.286 - - .406, -.51 .067, -12.94 IB1 61.35 48.62 69.34 20.72
64.762 - .115, 4.85 .238, 2.88 .192, -13.67 KernelDensity 61.30 47.73 69.81 22.08
64.309 .193, -14.96 .281, -9.48 .227, -1.95 .093, -12.51 NaiveBayesSimple 64.06 49.93 72.92 22.99

NBVAL

Top 5 WEKA Classifiers by Accuracy

Top 5 WEKA Classifiers by Balance

Bootstrap Accuracy (%) Feature Weights, Offsets

Feature Weights, Offsets

.101, 3.68

.078, 2.63
-

The first goal is to train a classifier to accurately identify favored solvation sites
given the properties of a protein surface at varying localities. The second goal
to determine the relative importance of the various chemical and physical fac-
tors governing solvation. Examination of the selected features and their evolved
weights within a trained classifier leads to biological insights into the properties
governing protein solvation.

The left side of Table 4 presents the best three results obtained for the sol-
vation dataset, while the right side presents the best three WEKA classifiers in
terms of both classification accuracy and class balance. The best GA-trained
classifier achieves a mean bootstrap accuracy of 69.91% using five of the six
available features. In contrast, the best WEKA classifiers achieve similar though
slightly lower accuracy than the best optimized cosine knn classifier while main-
taining a similar level of prediction balance. The main benefit of employing a
hibrid GA/classifier system for the solvation dataset is the ability to elucidate
the biological relevance of each feature through feature selection and extraction
in order to form a more complete understanding of protein-water interactions.

Table 4. Water solvation results, GA (left) and WEKA classifiers (right)

Total non site Avg Bal K ADN AHP Classifier Total(%) Non Site Bal
69.91 67.78 72.04 4.36 80 .252, -11.84 .177, -7.70 Logistic 69.33 65.50 73.16 7.67
69.48 65.79 73.16 7.38 67 .271, -8.42 .253, -15.00 NeuralNetwork 69.29 66.00 72.58 6.58
69.42 64.38 74.47 10.08 83 .242, -5.36 .222, 9.70 VotedPerceptron 69.25 66.75 71.74 4.98

Total HBDP ABVAL NBVAL Classifier Total(%) Non Site Bal
69.91 .352, -11.77 - .113, 2.75 IB1 63.56 63.45 63.68 0.23
69.48 .154, -14.90 - .209, -12.89 j48.J48 68.99 68.75 69.24 0.49
69.31 .205, -5.86 - .166, 9.64 j48.PART 68.03 68.56 67.49 1.06

Bootstrap Accuracy (%) Weights, Offsets Top 5 WEKA Classifiers by Accuracy

Feature Weights, Offsets Top 5 WEKA Classifiers by Balance
HBDW

.105, -1.31

.113, -15.0
.165, 15.00

4 Discussion

Results obtained for the Pima diabetes dataset demonstrate the utility of op-
timizing offsets in addition to feature weights for a cosine-based knn classifier.



436 M.R. Peterson, T.E. Doom, and M.L. Raymer

Evolution of both feature weights and offsets provides the GA an opportunity for
classifier optimization that cannot be leveraged in Euclidian distance-based knn
classifiers. GA optimization of cosine-based classifiers may significantly boost
the performance of a pattern recognition system. When compared to WEKA
classifiers, results indicate that the hybrid GA/classifier system described here
outperforms all other tested methods in terms of simultaneously increasing clas-
sification accuracy while maintaining class balance.

The features selected by the GA and their corresponding weights provide an
opportunity to mine biologically relevant information from the optimized classi-
fier systems. Consider the resulting features obtained by the GA during the best
run on the conserved water dataset. All four selected features (BVAL, MOB,
ABVAL, and NBVAL) relate to the thermal mobility of a given water molecule
or of its surrounding atoms. In previous research, the Consolv system often fa-
vored BVAL and MOB, but almost always removed the other two features from
consideration. Other features, such as AHP, HBDP, and HBDW, each relating to
a water molecule’s surrounding atomic environment, are more frequently consi-
dered [6]. In that work, 64.2% bootstrap accuracy is the highest reported result.
Here, the GA-optimized cosine classifier increases accuracy over previously pu-
blished results using only variations on thermal mobility. These results suggest
that most of the information necessary to determine water molecule conservation
upon ligand binding may be extracted from the thermal mobility and occupancy
values of the water molecule and its neighbors. While other features may be rela-
ted to conservation, they may be correlated with the temperature factor in such
a way that they bring no additional information to the classification problem.

For the solvation dataset, the trained classifier consistently employs all mea-
sured features execpt for ABVAL. Features such as ADN, AHP, and ABDP typi-
cally recieve higher weights. These three features each depend upon the amount
and type of atoms neighboring a probe site, suggesting that the local atomic
environment of a probe site is more relevant than the thermal mobility of atoms
surrounding the site in determining the favorability for solvation at the given
site.

While maintaining a balanced accuracy level competitive with contemporary
classification techniques, the hybrid GA/cosine classifier system described here
provides the ability to mine insight into the relative importance of the various
features provided for a given problem. This property permits the GA/cosine
classifier system to be employed in cases where traditional techniques that do not
maintain feature independence would not be well-suited for knowledge discovery.
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