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Abstract. In this work we have implemented and analyzed the perfor-
mance of a new real coded steady-state genetic algorithm (SSGA) for
the flexible ligand-receptor docking problem. The algorithm employs a
grid-based methodology, considering the receptor rigid, and the GRO-
MOS classical molecular force field to evaluate the energy function. In the
implementation we used the restricted tournament selection (RTS) tech-
nique in order to find multiple solutions and also introduced a new varia-
tion of this technique with an insertion criterion based in the root-mean-
square-deviation (RMSD) between the ligand structures. The SSGA was
tested in docking four HIV1 protease-ligand complexes with known three-
dimensional structures. All ligands tested are highly flexible, having 12
to 20 conformational degrees of freedom. The implemented docking me-
thodology was able to dock successfully all flexible ligands tested with a
success ratio higher than 90 % and a mean RMSD lower than 1.3 Å with
respect to the corresponding experimental structures.

1 Introduction

With the increasing amount of available biological structures obtained by expe-
rimental techniques (e.g. X-ray and NMR), ligand-receptor docking approaches
have been very important and useful tools in structure-based rational drug dis-
covery and design [1]. The docking problem is a difficult optimization problem
involving many degrees of freedom, and the development of efficient docking al-
gorithms and methodologies would be of enormous benefit in the design of new
drugs [2]. For a protein/receptor with known three-dimensional structure, the
ligand-protein docking problem basically has two main challenges: (i) develop-
ment of an algorithm that efficiently searches a very complex energy landscape
in order to predict the conformation and orientation of a potential drug molecule
relative to the protein active site; (ii) prediction of ligand-receptor binding af-
finities [3] (i.e., development of a computationally viable free-energy evaluation
model) in order to correctly discriminate between different binding modes of the
same ligand and/or to find the best drug candidate in a set of ligands. In this
work, we focus our attention in the first aspect.
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During the ligand binding in the protein active site, the protein and the li-
gand undergo conformational changes. One of the major problems in molecular
docking is how to deal with protein and ligand flexibility, taking into account
hundreds of thousands of degrees of freedom in the two molecules. In the last few
years, several docking programs have been developed [4,5,6]. Some of them treat
the receptor and the ligand as rigid body molecules considering only the ligand
translational and orientational degrees of freedom [7]. Other docking algorithms
also include the ligand flexibility considering the ligand conformational degrees
of freedom [8,9]. In the two docking classes above, the protein structure is fi-
xed in the position of the experimental structure. Docking large, highly flexible
ligands is still a challenge to even the most sophisticated current docking algo-
rithms, and adding the receptor flexibility remains a major challenge [10,11,12].
Genetic algorithms, with different strategies, have been shown to be a promising
search algorithm for the ligand-protein docking problems [9,13,14]. In this paper,
a non-generational, also referred as steady-state genetic algorithm (SSGA) [15]
is adopted in association with a grid-based methodology, considering the recep-
tor rigid, and the GROMOS [16] classical molecular force field to evaluate the
energy function. A ligand conformation is represented by a chromosome con-
stituted by real valued genes representing ligand translational, rotational and
conformational degrees of freedom. The individuals are evaluated by a fitness
function (i.e., total interaction energy between the protein and the ligand mole-
cule plus the intramolecular ligand energy). Individuals in the population are
selected to reproduction in accordance with their fitness (a lower energy means
a higher fitness), and suffer mutation or crossover operations, to generate new in-
dividuals. We implemented the SSGA using the restricted tournament selection
(RTS) [17] technique in order to find multiple solutions, and we also introdu-
ced a new variation of this technique with an insertion criterion based in the
root-mean-square-deviation (RMSD) between the ligand structures. The algo-
rithm performance is tested in four HIV1 protease-ligand complexes with known
three-dimensional structures. In all four tested complexes the receptor structure
is assumed to be rigid. All ligands tested are highly flexible, having 12 to 20 con-
formational degrees of freedom (i.e., dihedral angles considered flexible). The
HIV1 protease enzyme is an important molecular target in the development of
drugs against the AIDS virus. Additionally, the HIV1-protease enzyme has an
enclosed active site and this fact, together with the large conformational flexi-
bility of the ligands considered, make our test suite a good challenge to docking
algorithms. The basic idea which guided us to introduce the RTS technique is the
fact that with the increasing number of ligand conformational degrees of freedom
the ligand-protein energy landscape becomes so complex that a great number of
good minima solutions can be found closer to the global one. Moreover, the cor-
rect experimental structure may be no longer the actual global minimum in our
model, due to approximations inherent to the energy function/model employed.
Algorithms adapted to find several minima solutions can be a good choice to
overcome or minimize those problems.
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2 Methods

2.1 Genetic Algorithms

Genetic algorithms (GAs) are inspired in Darwin’s theory of evolution by natural
selection and are powerful tools in difficult search and optimization problems [18,
19]. GAs work with a population of individuals where each individual represents
a possible solution for the problem to be solved. In the ligand-protein docking
problem a candidate solution specifies the position of the ligand with respect
to the protein. In a steady-state GA (SSGA) there is no separation between
consecutive generations of the population since each offspring is created and
immediately tested for insertion in the population. The SSGA is stopped when
the maximum number of objective function evaluations allowed is reached.

2.2 The Solution Representation

In the implemented SSGA the individual chromosome has three genes represen-
ting the ligand translation, four genes representing the ligand orientation and
the other genes represent the ligand conformation. The translational genes are
the X, Y, Z reference atom coordinates (usually the closest atom to the ligand
center of mass). The rotational genes are a quaternion [20] constituted by a unit
vector and a rotation angle. The conformational genes are the ligand dihedral
angles (one gene to each dihedral angle). The number of degrees of freedom n is
thus 7 (translational plus rotational genes) plus the number of dihedral angles of
the ligand molecule. To each chromosome –a real vector in Rn– a unique ligand
spatial structure (coordinates for all atoms) is associated. The distance between
two structures/solutions will be denoted by RMSD, which is defined by the root-
mean-square deviation between the coordinates of all atoms of those structures.
This can be seen as a distance between two solutions in phenotype space whereas
the euclidean distance between two chromosomes is the corresponding measure
in the genotype space. In fact, due to the different ranges of the translational,
rotational, and conformational genes, a weighted euclidean norm was adopted
here in the genotype space.

2.3 The Fitness Function

The fitness function is the ligand-protein interaction energy plus the ligand in-
tramolecular energy, that are evaluated using the GROMOS classical force field
[16], implemented in the molecular mechanics/dynamics THOR program [21],
which is given by:
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where rij is the distance between the atoms i and j; Aij and Bij are the Lennard-
Jones parameters; qi and qj are atomic charges, and D is a sigmoidal distance-
dependent dielectric function [22]; γk is the energy constant associated with a
chemical bond rotation, θk is the torsion angle, ωk is the periodicity, and θ0k is
the phase angle.

The first term of the equation corresponds to the van der Waals and elec-
trostatic interactions between the protein and the ligand molecule, and the last
two terms correspond to the ligand intramolecular energy.

We have introduced in eq. (1) a multiplier (p) in the protein-ligand van
der Walls interaction energy term which varies with the counter of function
evaluations (neval) according to:

p =
neval

c×maxeval
(2)

where maxeval is the maximum number of function evaluations, and c was set to
0.5. The van der Waals interaction term is thus slowly introduced. As a result,
ligand conformations that initially have bad van der Waals contacts with the
protein have a chance to improve them in the following generations.

The ligand-protein docking problem involves millions of energy evaluations,
and the computational cost of each energy evaluation increases with the number
of atoms (typically thousands) of the ligand-protein complex. To reduce the
computational cost we implemented a grid-based methodology where the protein
active site is embedded in a 3D rectangular grid centered in the protein active
site. At each point of the grid the electrostatic interaction energy and the van
der Waals terms for each ligand atom type are pre-computed and stored taking
into account all the protein atoms. The protein contribution at a given point is
obtained by tri-linear interpolation in each grid cell.

Each individual in the initial population is placed in the grid center and then
the translational genes are perturbed according to a Cauchy distribution. In this
way, they are generated with higher probability near the grid center but still
permitting individuals far from it. The Cauchy distribution is given by:

C(α, β, x) =
β

π(β2 + (x− a)2)
(3)

where a = 0 and β = 0.75 are the Cauchy distribution parameters used. Ge-
nes corresponding to angles (dihedrals and rotationals) in degrees are randomly
generated in [0, 360], and those corresponding to the rotational unit vector in
[−1, 1].
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2.4 The Genetic Operators

The genetic reproduction operators adopted are listed below:

– The two-point crossover (2-X) operator generates two offspring by exchan-
ging the genes between two randomly chosen cut points in the parents chro-
mosomes.

– The simulated binary crossover (SBX), which assigns more probability for
offspring to remain closer to their parents than away from them, generates
two offspring as described in [23].

– The non-uniform mutation (NUM) operator [24], when applied to an indivi-
dual xi at generation gen, mutates a randomly chosen variable xj

i according
to

xj
i ←

{
xj
i + ∆(gen, bj − xj

i ) if τ = 0

xj
i −∆(gen, xj

i − aj) if τ = 1
(4)

where aj and bj are respectively the lower and upper bounds for the variable
xj , τ is randomly chosen as 0 or 1, and the function ∆(gen, y) is defined as

∆(gen, y) = y(1− r(1− gen
maxgen )β ) (5)

with r randomly chosen in [0, 1] and the parameter β set to 2. It is clear that
this operator reduces the amplitude of the perturbations as the number of
generations increases.

2.5 Selection and Insertion Schemes

Due to the high modality of the fitness landscape for the docking problem,
a critical issue is the maintenance of useful population diversity in order to
permit the investigation of several high fitness regions in parallel and reduce
the chances of convergence to low quality local optima. Among the techniques
proposed to deal with high modality landscapes [25], fitness sharing, introduced
by Holland [18] and enhanced by Goldberg & Richardson [26], has the drawback
of requiring knowledge about the search space (such as distance between optima)
in order to set the dissimilarity threshold. Crowding, introduced by De Jong [27]
and enhanced by Mahfoud [28] insert new offspring in the population replacing
similar ones. We are particularly interested in the idea of restricted tournament
selection (RTS) proposed by Harik [17] which nicely blends with our SSGA.

In this work, we have tested three selection-insertion schemes: (i) rank-based
selection [15] of parents with replacement of the worst individual in the popu-
lation, (ii) restricted tournament selection (RTS) [17], and (iii) a new modified
RTS scheme.

In the RTS scheme, parent individuals are selected randomly from the popu-
lation and the new offspring generated is placed in the population replacing the
closest existing individual found in a tournament of size w, provided that the
new individual is better than the winner of the tournament. The metric used
was euclidean norm weighted so that all genes have the same influence in spite
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of their different ranges. It is important to point out that w = 1000, does not
mean that all individuals in the population will take part in the tournament.
As the selection is random, one individual can be drafted more than once or
not be drafted at all. We have also implemented a new modified RTS scheme
where two tournaments are made. In the first (resp. second) tournament w1
(resp. w2) individuals that are better (resp. worse) than the new offspring are
drafted. The winner of the first tournament, CBetter, is the closest individual
(in the genotype space) to the new offspring, among the w1 individuals drafted
in the first tournament. The winner of the second tournament, CWorse, is the
closest individual (in the genotype space) to the new offspring, among the w2
individuals drafted in the second tournament.

The offspring is then inserted in the population in the following way:

– If the new offspring is closer to CWorse than CBetter, then CWorse is
replaced by the newly generated offspring

– Else, If the RMSD between the new offspring and CBetter is greater than
2.0 Å, then CWorse is replaced by the new offspring. Otherwise, the new
offspring is discarded.

In both cases the new offspring replaces CWorse. The modified RTS scheme
uses information both from genotype space (chromosome) and the phenotype
space (RMSD of all atoms coordinates). The criterion RMSD ≤ 2.0 Å is used to
avoid an offspring insertion when a very similar and better individual already
exists in a particular region of the search space. In this work we used w1=w2. If
w1 = w2 = 100% is used, it means that the tournament size w1 is equal to the
number of individuals that are better than the offspring, and the tournament
size w2 is equal to the number the individuals that are worse than it.

3 Results

We have tested the SSGA on four HIV1 protease-ligand complexes. The ex-
perimental structures were obtained from the Protein Data Bank (PDB). The
number of dihedral angles/torsions, total number of degrees of freedom (dimen-
sion) and the PDB file code, for each ligand molecule, are shown in Table 1.
The structures and the dihedral angles of the four ligands tested are shown in
Figure 1. The grid is centered in the protein active site, with 23 Å of dimension

Table 1. HIV-1 protease ligands complexes tested

Ligand Torsions Dimension PDB ID

NELFINAVIR 12 19 1ohr
INDINAVIR 14 21 1hsg
SAQUINAVIR 15 22 1hxb
RITONAVIR 20 27 1hxw
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Fig. 1. Structural formulæ of HIV1 protease ligands and dihedral angles considered:
(a) Saquinavir; (b) Indinavir; (c) Ritonavir; (d) Nelfinavir. Arrow: reference atom

in each direction, and a spacing of 0.25 Å. We are interested in the perfor-
mance of the SSGA in identifying the experimental binding mode of the ligand
molecule in the protein active site. To each ligand 30 independent runs were
performed. The CPU time for each SSGA run varied from 10 to 13 minutes on
a 2.0 GHz Pentium 4 with 256 MB of RAM. The algorithm success is measured
by the RMSD between the crystallographic structure (from the corresponding
PDB file) and the structure found by the algorithm. A structure with a RMSD
≤ 2.0 Å is classified as docked and that is considered a good result. A structure
with a RMSD ≤ 2.5 Å is classified as partially docked, but for large ligands,
with more than 15 dihedral angles, that is still considered a good result. The
success ratio is the number of structures found with RMSD ≤ 2.0 Å in 30 runs.
For the three selection-insertion schemes tested, we used a population of 1000
individuals, 1.000.000 energy evaluations, and probability of 0.15 for two-point
crossover, 0.15 for SBX crossover, and 0.7 for non-uniform mutation. The flexible
ligand docking results using linear ranking selection are shown in Table 2. We
tested the standard RTS using a tournament size w = 500 and w = 1000. The
docking results using standard RTS are shown in Table 3. The modified RTS
was tested with a tournament size w1 = w2 = 50% and w1 = w2 = 100%. The
docking results using the modified RTS with 50% and 100% tournament sizes
are shown in Table 4.



Selection-Insertion Schemes in Genetic Algorithms 375

Table 2. Docking results using linear rank selection

Ligand Lowest Mean Mean Success Ratio

Energya Energya RMSD (Å) (%)

NELFINAVIR −57.53 −2.43 5.776 6.6
INDINAVIR −62.97 32.96 6.049 3.3
SAQUINAVIR −65.12 −25.17 4.764 13.3
RITONAVIR −87.69 −7.99 5.305 10.0
akcal/mol

Table 3. Docking results using standard RTS and two tournament sizes (w)

Ligand w Lowest Mean Mean Success Ratio

Energya Energya RMSD (Å) (%)

NELFINAVIR 500 −58.13 −52.98 1.101 83.3
1000 −58.12 −53.02 1.427 73.3

INDINAVIR 500 −62.78 −51.16 2.573 63.3
1000 −62.87 −51.78 1.765 76.7

SAQUINAVIR 500 −65.75 −58.26 1.225 83.3
1000 −65.67 −62.11 0.726 86.7

RITONAVIR 500 −107.27 −84.26 2.583 50.0
1000 −105.69 −71.91 3.137 6.7

akcal/mol

Table 4. Docking results using the modified RTS and two tournament sizes (w)

Ligand w Lowest Mean Mean Success Ratio

Energya Energya RMSD (Å) (%)

NELFINAVIR 50% −58.12 −50.97 2.009 63.3
100% −58.12 −55.55 0.394 93.3

INDINAVIR 50% −62.87 −54.13 2.147 73.3
100% −62.79 −53.58 2.204 76.7

SAQUINAVIR 50% −65.69 −61.64 1.031 90.0
100% −65.72 −61.44 0.824 93.3

RITONAVIR 50% −107.11 −88.21 2.291 50.0
100% −107.34 −89.56 2.167 53.3

akcal/mol

3.1 RMSD Analysis

In the results shown in Tables 3 and 4, the success ratio was the number of
times that the lowest energy structure found by the algorithm corresponds to
the respective crystallographic structure (RMSD ≤ 2.0 Å). In many cases, we
found structures with a higher energy, but with a lower RMSD than the best
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(minimum energy) solution. The results shown in the RMSD analysis use the
same final population employed in the previous energy analysis. In the RMSD
analysis the best solution in each run is the solution with lowest RMSD relative
to the experimental structure, and not the structure with the lowest energy, as
done in the previous energy analysis. The RMSD analysis of docking results
using the standard RTS are shown in Table 5. The RMSD analysis of docking
results using the modified RTS are shown in Table 6.

Table 5. RMSD analysis of docking results using the standard RTS and two tourna-
ment sizes (w)

Ligand w Lowest Mean Mean SRb (%) SRb (%)

Energya Energya RMSD (Å) ≤ 2.0 Å (2.0,2.5] Å

NELFINAVIR 500 −58.10 −45.85 0.693 90.0 0.0
1000 −58.09 −48.68 0.657 86.7 6.7

INDINAVIR 500 −62.61 −10.99 1.103 83.3 10.0
1000 −62.24 −41.63 0.734 93.3 6.7

SAQUINAVIR 500 −65.28 −50.22 0.649 100.0 0.0
1000 −65.24 −56.86 0.483 100.0 0.0

RITONAVIR 500 −106.95 −54.35 1.447 80.0 17.0
1000 −102.29 −33.88 1.809 66.7 23.3

akcal/mol
bSuccess Ratio

Table 6. RMSD analysis of docking results using the modified RTS and two tourna-
ment sizes (w)

Ligand w Lowest Mean Mean SRb (%) SRb (%)

Energya Energya RMSD (Å) ≤ 2.0 Å (2.0,2.5] Å

NELFINAVIR 50% −58.11 −49.57 1.126 73.3 6.7
100% −58.08 −54.96 0.296 96.7 0.0

INDINAVIR 50% −62.71 −50.83 1.111 83.3 0.0
100% −62.42 −47.48 0.840 90.0 3.3

SAQUINAVIR 50% −65.32 −60.31 0.877 93.3 3.3
100% −65.28 −58.45 0.574 96.7 3.3

RITONAVIR 50% −106.84 −83.66 1.530 73.3 10.0
100% −106.71 −81.48 1.265 76.7 20.0

akcal/mol
bSuccess Ratio
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4 Discussion

The results show that with the implementation of the RTS technique we obtained
a substantial increase in the algorithm performance. Comparing the results ob-
tained using the linear rank selection (LRS) and using the standard RTS (energy
analyses), we found that the mean success ratio increased from 8.4% (Table 2)
to 70.1% (tournament size of 500 individuals, Table 3) and to 60.9% (tourna-
ment size of 1000 individuals, Table 3). These results indicate the standard RTS
technique as a promising methodology for flexible ligand docking problems. The
modified RTS (with an insertion criterion based on the RMSD between the li-
gand conformations) also shows a good performance to find structures close to
the experimental structure with the lowest energy. The success ratio obtained
using the modified RTS (tournament size of 50%, Table 4) ranges from 50% to
90% with a mean success ratio of 69.2%, and (using a tournament size of 100%,
Table 4) from 53% to 100% with a a mean success ratio of 79.2%. Using the
standard RTS the results show that a smaller tournament size produces a better
result, while in the modified RTS the use of a tournament size of 100% showed
to be the best choice. The modified RTS shows a slightly better performance
than the standard RTS to find solutions closer to the experimental one and with
better mean RMSD.

Considering all solutions in the final population (see RMSD analysis section),
for both standard and modified RTS, we observe an increase in the success
ratio regarding the experimental structure. The mean success ratio (including
all ligands) obtained using the standard RTS are 88.4% and 86.7%, using a
tournament size of 500 individuals (Table 5) and a tournament size of 1000
individuals (Table 5), respectively. Using the modified RTS, the mean success
ratios obtained are 80.9% and 90.0%, using a tournament size of 50 % (Table 6)
and a tournament size of 100% (Table 6), respectively. Once more the best results
were obtained using a tournament size of 500 individuals for the standard RTS,
and a tournament size of 100% for the modified RTS. Analyzing the results shown
in Tables 5 and 6 we observe that RITONAVIR (the largest and most flexible
ligand tested) shows the greater increase in performance when we consider the
RMSD ≤ 2.5 Å criterion for computing the success ratio. In fact, for larger
and highly flexible ligand molecules a RMSD ≤ 2.5 Å from the experimental
structure can be considered a good result. Applying this criterion for all ligands,
we observe that the mean success ratios are 95% and 96.7% for the standard
RTS (tournament size of 50%, Table 5) and for the modified RTS (tournament
size of 100%, Table 6) respectively. For all ligands a success ratio greater than
90% was obtained.

The results obtained in this work showed that the implementation of a mul-
tisolution RTS technique can be a very valuable approach in the flexible docking
problem when dealing with highly flexible ligand molecules which are usually
associated with a very complex energy hypersurface. Moreover, there are im-
portant advantages in applying a multisolution strategy in this type of pro-
blem. Usually the ligand-docking strategies approximate the real problem in
the following points: (i) the absence of important factors associated with the
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ligand-receptor energy function (e.g., entropic and solvatation effects); (ii) the
absence of explicit water molecules which can intermediate ligand-receptor hy-
drogen bonds and; (iii) the receptor is usually considered rigid or partially rigid.
Following a multisolution docking strategy, the best distinct solutions can be
used as starting points in more sophisticated and computationally expensive
strategies (e.g, explicit solvent molecular dynamics simulations). Secondly, in
real world drug design research projects, the ligand to be docked is only a drug
prototype which will be probably modified several times in order to account
for several chemical and pharmacological properties (e.g, toxicity, metabolic sta-
bility, synthetic tractability, etc.). In this sense, finding and analyzing several
ligand-receptor binding modes can increase the possibilities of successful impro-
vements in a drug prototype molecule. A more specific analysis considering the
relation between the final population diversity (number and quality of soluti-
ons) and the SSGA/RTS (standard and modified) docking parameters is under
progress and will be reported elsewhere.
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