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Abstract. Microarrays allow simultaneous measurement of the expres-
sion levels of thousands of genes in cells under different physiological or
disease states. Because the number of genes exceeds the number of sam-
ples, class prediction on microarray expression data leads to an extreme
“curse of dimensionality” problem. A principal goal of these studies is to
identify a subset of informative genes for class prediction to reduce the
curse of dimensionality. We propose a novel genetic approach that selects
a subset of predictive genes for classification on the basis of gene expres-
sion data. Our genetic algorithm maximizes correlation between genes
and classes and minimizes intercorrelation among genes. We tested the
genetic algorithm on leukemia data sets and obtained improved results
over previous results.

1 Introduction

With the development of microarray technology, scientists can now examine mul-
tiple genome-wide gene expression patterns at the same time. Microarrays have
been powerful experimental tools for extracting functional information from ge-
nome [5] [15]. As well as the diagnosis of disease, the classification of disease types
is one of the most useful applications of microarrays. Recently, microarrays were
used to profile the global gene expression patterns of normal and transformed
human cells in several tumors, such as leukemia [11]. These researches may shed
light on identifying biomarkers for cancer classification (molecular diagnosis). A
wide-spread technique for microarray data analysis is clustering analysis [1] [3]
[4] [10] [9] [13]. Clustering analysis groups genes that have correlated patterns
of expression which can provide insight into gene-to-gene interactions and gene
functions.

While microarrays have been extensively used in the gene expression profiling
of tumor cells or tissues, successful applications of the microarray technology in
cancer classification rely on data mining tools. This is because, among a lot
of genes examined, only a fraction present distinct profiles for different classes
of samples. Thus, it is critical to have computational tools that are capable of
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identifying a subset of informative genes embedded in a large dataset that is
contaminated with high-dimensional noise.

Microarray data consist of a large number of genes (parameters) and relati-
vely a small number of samples. It makes a “curse of dimensionality” problem;
i.e., too many parameters for the data points. To reduce this problem, we try
to identify a small subset of relevant genes. The major topic of this paper is to
introduce an approach for gene selection with the help of a genetic algorithm.

Since typical microarray data consist of a large number of genes, many subsets
of genes that distinguish between different classes of samples may exist. Our
strategy is to find many such subsets and then evaluate the relative importance
of genes for sample classification by examining inter-correlations of gene pairs
in the subset. When selected genes were used for sample classification using a
test set, samples were classified with accuracy. Other computational methods
that select a subset of genes for sample classification were also developed [11] [2]
[14] [12] [16]. The patterns of gene selection and the classification reliability of
the selected genes using an independent test set are analyzed. We examine the
sensitivity of gene selection results to the assignment of samples to the training
set. We do this by dividing the dataset into a training set and test set in different
ways, resulting in different training and test sets for the same data. Each training
set is used to select a subset of genes.

In this paper, leukemia dataset is used as a benchmark dataset. We report the
detailed analysis of the leukemia data using a genetic approach to find a subset
of genes that can discriminate between acute lymphoblastic leukemia (ALL) and
acute myeloid leukemia (AML). The results are compared with previous works.

The remainder of this paper is organized as follows. In Section 2, we sum-
marize dataset and class predictor used in this paper. We propose a genetic
approach for gene selection in Section 3. In Section 4, we present experimental
results. Finally, we make our conclusions in Section 5.

2 Preliminaries

Recently, Golub et al. [11] proposed a method for selecting a subset of discrimi-
native genes for sample classification. They successfully applied neighborhood
analysis to identify a subset of genes that discriminates between AML and ALL,
using a separation measure. The 50 genes that best distinguish AML from ALL
in 38 training set samples were chosen as a class predictor that correctly clas-
sified 36 of the 38 training set samples. When these genes were subsequently
used to predict the class of the test samples, 29 of the 34 samples were correctly
classified with high confidence. In our implementation, four of the five samples
were not classified (undecided) and one of the five samples was misclassified.
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2.1 Dataset

The original leukemia dataset was downloaded from the web site1. The data
contain the expression levels of 6,817 genes across 72 samples, of which 47 was
classified as ALL and 25 as AML [11]. We divided the dataset into a training
set (first 38 samples) and a test set (34 samples) following Golub et al. [11]. The
training set was used to obtain a subset of genes that can discriminate between
AML and ALL. The 50 most informative genes obtained using the training set
were subsequently used in validation, to predict the classification of the test
samples.

2.2 Class Predictor

Golub et al. [11] developed a procedure that uses a fixed subset of informative
genes and makes a prediction based on the expression level of these genes in a new
sample. Figure 1 shows the structure of their class predictor. Each informative
gene casts a weighted vote for one of the classes, with the magnitude of each
vote dependent on the expression level in the new sample and the degree of that
gene’s correlation with the class distinction. The votes are summed to determine
the winning class as well as a prediction strength (PS), which is a measure that
ranges from −1 to 1. The sample is assigned to the winning class if PS exceeds
a predetermined threshold, and is considered undecided otherwise. We used the
threshold of 0.3 following [11].

3 A Genetic Algorithm

We propose a genetic algorithm (GA) for gene selection to choose a good subset
of genes. It selects genes based on the training set. It conducts a search for a
good subset of genes using a correlation-based evaluation function. The search
space with n genes has 2n −1 elements if all nonempty subsets are considered. If
the number of genes to be selected is predetermined, the optimal subset of size
k can be found by enumerating and testing all possibilities, which requires

(
n
k

)

tests. Then, this makes the problem intractable. Our GA provides an alternative
search method to find a good subset with a predetermined size.

The dataset consists of 6,817 genes. If all the genes are considered as a can-
didate of informative genes, the problem size becomes intractable. So, we used
the gene set filtered by the correlation ρ′. We considered three cases: |ρ′| > 0.8
(136 genes), |ρ′| > 0.7 (299 genes), and |ρ′| > 0.5 (980 genes).

The dataset is divided into two independent sets: the training set and the
test set. Our GA runs on the training set until a termination criterion is satisfied
and selects a predefined number of genes (50 genes in our experiments2). After
our GA selects a subset of genes, the predictive model is tested on the test set.
1 http://www.genome.wi.mit.edu/MPR
2 To compare with the previous work [11] under the same condition, we fixed the

number of genes to 50.
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ClassPredictor(sample x = (x1, x2, . . . , x#genes))
{

// xi: expression level of gene i
VAML ← 0, VALL ← 0;
for each informative gene g,

µAML(g)← mean expression levels of g for the samples in AML;
µALL(g)← mean expression levels of g for the samples in ALL;
σAML(g)← SD expression levels of g for the samples in AML;
σALL(g)← SD expression levels of g for the samples in ALL;
ρ′(g, C)← (µAML(g)− µALL(g))/(σAML(g) + σALL(g));
vg ← ρ′(g, C) · (xi − (µAML(g) + µALL(g))/2);
if (vg > 0) VAML ← VAML + vg;
else VALL ← VALL − vg;

PS ← (VAML − VALL)/(VAML + VALL);
if (|PS| < threshold) return undecided;
else if (PS > 0) return AML;
else return ALL;

}

Fig. 1. The structure of class predictor [11]

3.1 Genetic Operators

The general structure of steady-state genetic algorithms is used in our GA.

– Encoding: In this problem, a chromosome is represented by binary encoding.
A gene has value one if the gene belongs to the informative gene subset;
otherwise, it has value zero.

– Initialization: We first create p subsets at random. The only constraint on a
chromosome is that the number of 1’s should be 50. We set the population
size p to be 100.

– Selection: We assign to each chromosome in the population a fitness value
calculated from its object value. We use the roulette-wheel-based proportio-
nal selection scheme.

– Crossover and Mutation Operators: A crossover operator creates a new
offspring by combining parts of the two parents. In our experiments, we
use one-point crossover and use element-swap mutation that swaps the va-
lues of a random pair of genes. After the crossover, an offspring may not
satisfy the constraint. It then selects random points on the chromosome and
changes the required number of 1’s to 0’s (or 0’s to 1’s). This adjustment
also produces some mutation effect.

– Replacement: After generating an offspring and applying a local optimization
on it, we replace a member of the population with the offspring. We use the
replacement scheme of [6]. The offspring tries to first replace the more similar
parent, measured in bitwise difference; if it fails, then it tries to replace the
other parent (replacement is done only when the offspring is better than one
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Fig. 2. Training error vs. test error: |ρ′| > 0.8

of the parents); if the offspring is worse than both parents, we replace the
worst member of the population (Genitor-style replacement [18]).

– Stopping Condition: For stopping, we use the number of consecutive fails to
replace one of the parents. We set the number to be 20 in our GA.

3.2 Evaluation Function

The error rate3 in training samples can be considered as an evaluation function
value for the GA. The predictivity for training samples is calculated by cross-
validation (for details, see Section 4). Figure 2 shows the plotting of training
error versus test error for 50-gene subsets randomly chosen from 136 genes with
|ρ′| > 0.8. It is clear that a low training error does not mean a low test error.
The training error may not be adequate as the evaluation function. If the GA
minimizes the training error, overfitting in training samples may occur.

Our evaluation function is to find the genes that highly correlated with the
class and less correlated with other genes in the subset of genes. Our GA mini-
mizes the following object function.

objectfunction =
1

|ρ′(X, C)| + p · |ρ(X, Y )|,

where ρ′(x, C) means the correlation between the expression levels of gene x
and the class distinction described in [11] (see Figure 1), p is the intercorrelation
factor, and ρ(x, y) is the Pearson correlation coefficient between gene x and gene
y. In the fitness function, we use intercorrelation factor p. When p is zero, the
3 In this paper, we calculated the error rate by the following formula.

1 + e

1− (u + e)/n
· 1
2− |C − PS|

where e is the number of misclassified samples, u is the number of undecided samples,
C is the class value (C = 1 for AML and C = −1 for ALL), and PS is the prediction
strength given in Figure 1.
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objective function is simply to find the genes that are highly correlated with
the class. If p is positive, a gene subset less correlated with other genes in the
set is preferred. Otherwise, a gene subset highly correlated with other genes
in the set has a low object value. Figure 3 shows the relation between inverse
correlation (1/|ρ′(X, C)|) and intercorrelation (|ρ(X, Y )|) for 50-gene subsets
randomly chosen from 136 genes with |ρ′| > 0.8. It was observed that there
is strongly negative correlation between the two values. In this paper, to make
balance between the two values, we set the intercorrelation factor p to 2.

4 Experimental Results

The set of informative genes selected by Golub et al. [11] consists of the 25 genes
closest to the class AML and the 25 genes closest to the class ALL. That is, in
the view of the correlation ρ′, the topmost 25 genes and bottommost 25 genes
are chosen. In “Greedy,” we choose the topmost 50 genes with respect to the
value |ρ′|. We also compared the prediction results using 50 genes given by Li et
al. [14], though they did not adopt the class predictor of [11]. “Random” means
50 genes randomly chosen in the given candidate gene set.

We denote our GA with intercorrelation factor p = 2 by dispersed-gene-based
GA (DGA). To test the validity of our object function, we made additional
experiments of GAs with other object functions. The GA denoted by biased-
gene-based GA (BGA) has the object function with p = −2. Training-set-fitted
GA (TGA) was designed to maximize the accuracy on training samples.

It is crucial to maximize the number of correctly classified samples. Espe-
cially, rather than to minimize the number of undecided samples, it is more
important to minimize misclassified samples [11]. To test the validity of selected
informative genes, we made experiments with two types of test procedure. First,
we follow the test procedure of [11]. It consists of two steps. The accuracy is first
tested by Leave-One-Out-Cross-Validation (LOOCV) on the training dataset.
Briefly, one withholds a sample, builds a predictor based on the remaining sam-
ples, and predicts the class of withheld sample. The process is repeated for each
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Table 1. Data Comparison in Given Data Samples

Training data Independent data
Method Undecided Error Undecided Error

Golub et al. [11] 2 0 4 1
Greedy 1 0 6 1

Li et al. [14] 2 0 6 0
Random1 1.58 0.00 6.54 0.53
Random2 2.51 0.00 8.63 0.72
Random3 5.18 0.01 11.90 0.95

DGA1 0.1 0.0 4.1 0.0
DGA2 0.3 0.0 6.3 0.0
DGA3 0.0 0.0 5.5 0.0
BGA1 1.2 0.5 4.5 1.7
BGA2 2.6 0.6 5.4 1.4
BGA3 2.8 0.2 6.3 1.0
TGA1 0.3 0.0 6.1 1.0
TGA2 0.1 0.0 7.1 1.1
TGA3 0.2 0.0 6.7 1.0

Sampling 1. |ρ′| > 0.8 (136 genes).
Sampling 2. |ρ′| > 0.7 (299 genes).
Sampling 3. |ρ′| > 0.5 (980 genes).
Object function of DGA is 1/|ρ′(X, C)|+ 2 · |ρ(X, Y )|.
Object function of BGA is 1/|ρ′(X, C)| − 2 · |ρ(X, Y )|.
Object function of TGA is 1/(2− |C − PS|).
The results of GAs are averages over 10 runs.
The results of Random’s are averages over 3,000 runs.

sample, and the cumulative error is calculated. Then, one builds a final predic-
tor based on the training data set and assesses its accuracy on an independent
test dataset. Table 1 shows its experimental results. The results of randomly
sampled gene subsets (Random’s) are average values from 3,000 runs. The more
candidate genes were considered, the more errors were detected. This shows that
the correlation ρ′ is a good measure for evaluating genes’ predictivity. However,
Greedy, which chooses only genes with the highest ρ′ values, performed worse
than others. This suggests that an additive measure is needed to find a more
informative gene subset. In case of DGA where the intercorrelation measure is
also considered as a minimizing factor, it showed the best performance among all
the tested methods. It had nearly zero undecided and error sample in LOOCV
of training samples (almost 100% accuracy). Also, it showed no misclassification
in test samples. In case of BGA which finds the gene subset highly correlated
with other genes, since selected genes are biased in gene space, its results were
much worse than those of DGA.

In training samples, each gene is considered to be a point in the 38-
dimensional gene space. Figure 4 shows the two dimensional mapping of infor-
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Fig. 4. Plotting of informative gene subsets

mative gene subsets using Sammon’s mapping4 [17]. We used the inverse value of
correlation, 1

|ρ′| −1, as the distance between each gene pair for mapping. We can
see that the 50 genes of [11] (figure (a)) are clustered but the 50 genes selected
by DGA (figure (b)) are well distributed in the gene space composed of 6,817
genes.

Next, the prediction test is repeated for a number of different bootstrap sam-
ples. Bootstrapping, which is introduced by Efron [7], is a well-known technique
for estimating generalization of a predictive model based on resampling. In boot-
strapping, a data sample of size n is uniformly taken from the original data of
size n with replacement [8]. In our implementation, the (n-v) samples for dataset
are drawn without replacement, where n is the number of samples in the dataset
and v is the number of samples in the test set. There is no overlapping between
the training and test sets for each bootstrap sample. Our gene selection model
is trained by using the training set and its sensitivity are measured on the test
set. According to the given factor of divided samples, we drew (72-34) samples.
Table 2 shows the experimental results. The results are calculated based on 100
bootstrap samples. In bootstrapping, we only considered genes with |ρ′| > 0.7
as a candidate gene set. The average size of candidate gene sets was about 175.
In training samples, DGA showed the best accuracy. Undecided samples in test
samples were more in DGA than in Golub et al. [11] and Greedy. However, DGA
showed the smallest misclassified rate in test samples.

4 Sammon’s mapping is a mapping technique for transforming a dataset from a
high-dimensional (say, m-dimensional) input space onto a low-dimensional (say, d-
dimensional) output space (with d < m). The basic idea is to arrange all the data
points on a d-dimensional output space in such a way that minimizes the distortion of
the relationship among data points. Sammon’s mapping tries to preserve distances.
This is achieved by minimizing an error criterion which penalizes the differences of
distances between points in the input space and the output space.
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Table 2. Data Comparison in Bootstrap Samples

Training data Independent data
Undecided Error Undecided Error

Method Ave(σ/
√

n) Ave(σ/
√

n) Ave(σ/
√

n) Ave(σ/
√

n)
Random 2.10(0.12) 0.12(0.03) 4.69(0.22) 0.61(0.09)

Golub et al. [11] 1.70(0.10) 0.04(0.02) 3.08(0.16) 0.48(0.06)
Greedy 1.77(0.11) 0.12(0.03) 3.08(0.14) 0.67(0.07)
DGA 0.93(0.09) 0.00(0.00) 3.60(0.19) 0.29(0.05)

Sampling in Random and DGA: |ρ′| > 0.7.
Average # of candidate genes = 174.69.
# of training samples = 38.
# of independent samples = 34.
Average over 100 datasets.

5 Discussion

As more genes were included, leading to the curse-of-dimensionality problem, the
number of misclassified samples increased. This emphasizes that not all expres-
sion data are relevant to the distinction between ALL and AML. It is evident
that not all genes are relevant to sample classification. Thus, the identification of
informative genes is essential. The important issue is that microarray data con-
sist of a large number of genes and a small number of samples, and, as a result, a
great number of distinct and effective classifiers may exist for the same training
set. Most of current literature methods seek a single subset of discriminative
genes. Often, the informative genes identified for a given dataset vary from me-
thod to method. In conclusion, a number of methods have been developed for
sample classification based on gene expression data. Our algorithm selected a
good subset of genes and improved the predictive quality of the existing predic-
tion model. As the quantitative aspect of the microarray technology is improved
and computational methods that mine the resulting large dataset are further
developed, this study will have a notable impact on biology and related areas.
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