
Using Clustering Techniques to Improve the
Performance of a Multi-objective

Particle Swarm Optimizer

Gregorio Toscano Pulido and Carlos A. Coello Coello

CINVESTAV-IPN (Evolutionary Computation Group)
Depto. de Ing. Elect./Sección de Computación

Av. IPN No. 2508, Col. San Pedro Zacatenco, México, D.F. 07300, MEXICO
gtoscano@computacion.cs.cinvestav.mx, ccoello@cs.cinvestav.mx

Abstract. In this paper, we present an extension of the heuristic called “particle
swarm optimization” (PSO) that is able to deal with multiobjective optimization
problems. Our approach uses the concept of Pareto dominance to determine the
flight direction of a particle and is based on the idea of having a set of sub-
swarms instead of single particles. In each sub-swarm, a PSO algorithm is executed
and, at some point, the different sub-swarms exchange information. Our proposed
approach is validated using several test functions taken from the evolutionary
multiobjective optimization literature. Our results indicate that the approach is
highly competitive with respect to algorithms representative of the state-of-the-art
in evolutionary multiobjective optimization.

1 Introduction

Particle swarm optimization (PSO) is a relatively recent heuristic inspired by the cho-
reography of a bird flock which has been found to be quite successful in a wide variety
of optimization tasks [1]. Its high speed of convergence and its relative simplicity make
PSO a highly viable candidate to be used for solving not only problems with a single
objective function, but also problems with several objectives (called “multiobjective
optimization problems”) [2]. In this paper, we present a proposal, called “another multi-
objective particle swarm optimization” (AMOPSO), which extends PSO to deal with
several objectives. The main novelty of the approach consists on using a clustering tech-
nique in order to divide the population of particles into several swarms in order to have a
better distribution of solutions in decision variable space. The introduction of this mecha-
nism significantly improves the quality of the Pareto fronts obtained, when comparing
our results with respect to other multiobjective PSO previously reported in the litera-
ture and with respect to algorithms representative of the state-of-the-art in evolutionary
multiobjective optimization.

2 Related Work

There have been several recent proposals to extend PSO to handle multiple objectives.
We will review next the most important of them:

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 225–237, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

226 G. Toscano Pulido and C.A. Coello Coello

– The Swarm Metaphor of Ray & Liew [3]: This algorithm uses Pareto dominance
and combines concepts of evolutionary techniques with the particle swarm. It uses
crowding to maintain diversity and a multilevel sieve to handle constraints.

– The algorithm of Parsopoulos & Vrahatis [4]: This algorithm adopts different
types of aggregating functions to solve multiobjective optimization problems.

– Dynamic Neighborhood PSO proposed by Hu and Eberhart [5]: In this algo-
rithm, only one objective is optimized at a time using a scheme similar to lexicogra-
phic ordering. A revised version of this approach that uses a secondary population
is presented in [8].

– The Multi-objective Particle Swarm Optimizer (MOPSO) by Coello & Lechuga
[6]: This proposal is based on the idea of having a global repository in which every
particle will deposit its flight experiences after each flight cycle. Additionally, the
updates to the repository are performed considering a geographically-based system
defined in terms of the objective function values of each individual; this repository
is used by the particles to identify a leader that will guide the search.

– The approach of Fieldsend & Singh [7]: This approach incorporates an uncon-
strained elite archive (in which a special data structure called “dominated tree” is
adopted) to store the nondominated individuals found along the search process. The
archive interacts with the primary population in order to define local guides. This
approach also uses a “turbulence” operator which is basically a mutation operator
that acts on the velocity value used by PSO.

– The algorithm of Mostaghim & Teich [9]: This approach uses a sigma method in
which the best local guides for each particle are adopted to improve the convergence
and diversity of a PSO algorithm used for multiobjective optimization. They also
use a “turbulence” operator, but applied on decision variable space. The use of the
sigma values increases the selection pressure of PSO (which was already high). This
may cause premature convergence in some cases.

– The Nondominated Sorting PSO of Li [10]: This approach incorporates the main
mechanisms of the NSGA-II [11] into a PSO algorithm. The proposed approach
showed a very competitive performance with respect to the NSGA-II (even outper-
forming it in some cases).

Our approach is based on the use of Pareto ranking and a subdivision of decision
variable space into several sub-swarms (this is done using clustering techniques). Since
independent PSOs are run into each swarm, our approach can be seen as a meta-MOPSO
algorithm. After a certain (pre-defined) number of iterations, the leaders of each swarm
are migrated to a different swarm in order to variate the selection pressure. This sort of
scheme is a novel proposal to solve multiobjective optimization problems using PSO.
Also, note that AMOPSO does not use an external population, since elitism in this case
is an emergent process derived from the migration of leaders.

3 Description of the Proposed Approach

The analogy of particle swarm optimization with evolutionary algorithms makes evident
the notion that using a Pareto ranking scheme could be the straightforward way to extend

Using Clustering Techniques 227

the approach to handle multiobjective optimization problems. However, merging a Pareto
ranking scheme with the PSO algorithm will produce not one but a set of nondominated
leaders and the selection of an “appropriate” leader becomes difficult (by definition,
all nondominated solutions are equally good). Additionally, it is known that several
difficult multiobjective optimization problems have a disconnected decision variable
space. This issue is particularly important when using PSO, because it could be the
case that a particle tries to follow a leader that resides in a disconnected region away
from it. In this case, a lot of search effort would be wasted and the algorithm might not
be able to converge to the true Pareto front of the problem. The use of neighborhoods
may be useful in this case. However, we argue that the use of a neighborhood may
delay convergence, because the selection pressure is significantly lowered when they
are used, since in this case, particles spend most of their search effort following leaders
that reside far away from the true Pareto front. Our proposal is to use several swarms
(each with a fixed size). Each swarm will over-fly a specific region of the Pareto optimal
set (i.e., decision variable space), and will have its own niche of particles and particle
guides. The algorithm used to associate leaders into a swarm is the hierarchical single-
connected clustering algorithm [13]. The appropriate selection of leaders is essential for
the good performance of PSO when applied to multiobjective optimization problems.
If the particle chooses an inappropriate leader (i.e., a leader who is too far away in the
search space) then most of the flight will be fruitless because the particle will not be
traversing promisory regions of search space. In this paper, we propose to use not one but
several swarms to avoid this type of problem. However, even if we adopt a multi-swarm
scheme, a good strategy to select a leader is still necessary. Some possible strategies for
this sake are the following: (1) Randomly (a leader is randomly selected—no constraints
are imposed on what sort of leader can a particle choose—, (2) The closest (a particle
picks as a leader to the geographically closest leader), and (3) one at a time (a single
leader is selected by all the particles at a time). In this paper, we adopted the first scheme
(random selection of a leader). The way in which our algorithm works is shown next:

function AMOPSO Algorithm
Begin

For each swarm
1. Initialize its particles
2. Initialize gleader set (i.e., the set of global leaders)

EndFor
Do

For each swarm
Do

For each particle
4. Select a leader
5. Perform the flight
6. Update values
If it is a leader then add to the gleader set

EndFor
While maximum number of iterations is not reached
7. Store leaders in gleader set in nswarms groups

228 G. Toscano Pulido and C.A. Coello Coello

EndFor
8. Assign each leader group to a swarm

While maximum number of iterations is not reached
End.

The proposed algorithm requires the following parameters:

– GMax: it refers to the total number of generations that the algorithm will be exe-
cuted.

– nparticles: it refers to the total number of particles that will be over-flying the search
space.

– nswarms: it refers to the number of particle groups. The swarm size is fixed because
the total number of particles is a fixed value.

– sgmax: is the number of internal generations that the particles of each swarm will
run before sharing their leaders.

The complete execution process of our algorithm can be divided in three stages: initia-
lization, flight and generation of results. At the first stage, every swarm is initialized.
Each swarm creates and initializes its own particles and generates the leaders set among
the particle swarm set by using Pareto ranking. In the second stage is where the algorithm
performs its strongest effort. First, it performs the execution of the flight of every swarm;
next, it applies a clustering algorithm to group the guide particles. This is performed until
reaching a total of GMax iterations. The execution of the flight of each swarm can be
seen as an entire PSO process (with the difference that it will only optimize an specific
region of the search space). First, each particle will select a leader to which it will fol-
low. At the same time, each particle will try to outperform its leader and to update its
position. If the updated particle is not dominated by any member of the leaders set, then
it will become a new leader. The execution of the swarm will start again until a total
of sgmax iterations is reached. Constraints are handled in AMOPSO when checking
Pareto dominance. When we compare two individuals, we first check their feasibility.
If one is feasible and the other is infeasible, the feasible individual wins. If both are in-
feasible, then the individual with the lowest amount of (total) constraint violation wins.
If they both have the same amount of constraint violation (or if they are both feasible),
then the comparison is done using Pareto dominance. Once all the swarms have finished
theirs flights, a clustering algorithm takes the control by grouping the closest particle
guides into nswarms swarms. These particle guides will try to outperform each swarm
in the next iteration. This is mainly done by grouping the leaders of all the swarms into
a single set, and then splitting this set among nswarms groups (clustering is done with
respect to closeness in decision variable space). Each resulting group will be assigned
to a different swarm. The third and final stage will present the results, i.e. it will report
all the nondominated solutions found.

3.1 Clustering Algorithm

We use Johnson’s algorithm to cluster the leaders in groups [13]. The pseudocode of this
algorithm is shown next:

Using Clustering Techniques 229

function Single-link clustering
Begin

1. Begin with the disjoint clustering having level L(0) = 0 and sequence
number m = 0.
Do

2. Find the least dissimilar pair of clusters in the current clustering,
say pair (r), (s), according to d[(r), (s)] = mind[(i), (j)] where the
minimum is over all pairs of clusters in the current clustering
3. Increment the sequence number: m = m+1. Merge clusters (r) and
(s) into a single cluster to form the next clustering m. Set the level of
this clustering to L(m) = d[(r), (s)]
4. Update the proximity matrix, D, by deleting the rows and columns
corresponding to clusters (r) and (s) and adding a row and a column
corresponding to the newly formed cluster. The proximity between
the new cluster, denoted (r, s) and the old cluster (k) is defined as:
d[(k), (r, s)] = mind[(k), (r)], d[(k), (s)]

while objects are not in N clusters.
End.

The algorithm requires a proximity matrix as a parameter (in our case, we use a
dissimilarity matrix, and the Euclidean distance in variable space to represent the dissi-
milarity).

4 Comparison of Results

Several test functions were taken from the specialized literature to compare our approach,
but due to space limitations, only 3 are included in this paper. In order to allow a
quantitative assessment of the performance of a multiobjective optimization algorithm,
we adopted the following metrics:

1. Error Ratio (ER): This metric was proposed by Van Veldhuizen [14] to indicate the
percentage of solutions (from the nondominated vectors found so far) that are not
members of the true Pareto optimal set:

ER =
∑n

i=1 ei

n
, (1)

where n is the number of vectors in the current set of nondominated vectors available;
ei = 0 if vector i is a member of the Pareto optimal set, and ei = 1 otherwise. It
should then be clear that ER = 0 indicates an ideal behavior, since it would mean
that all the vectors generated by our algorithm belong to the Pareto optimal set of
the problem.

2. Generational Distance (GD): This metric was proposed by Van Veldhuizen [14]
as a way of estimating how far are the elements in the set of nondominated vectors
found so far from those in the Pareto optimal set and is defined as:

GD =

√∑n
i=1 d2

i

n
(2)

230 G. Toscano Pulido and C.A. Coello Coello

where n is the number of vectors in the set of nondominated solutions found so far
and di is the Euclidean distance (measured in objective space) between each of these
and the nearest member of the Pareto optimal set. It should be clear that a value of
GD = 0 indicates that all the elements generated are in the Pareto optimal set.

3. Spacing (SP): Here, one desires to measure the spread (distribution) of vectors
throughout the nondominated vectors found so far. Since the “beginning” and “end”
of the current Pareto front found are known, a suitably defined metric judges how
well the solutions in such front are distributed. Schott [15] proposed such a metric
measuring the range (distance) variance of neighboring vectors in the nondominated
vectors found so far. This metric is defined as:

S �

√
√
√
√ 1

n − 1

n∑

i=1

(d − di)2 , (3)

where di = minj(| f i
1(x)− f j

1 (x) | + | f i
2(x)− f j

2 (x) |), i, j = 1, . . . , n, d is the
mean of all di, and n is the number of nondominated vectors found so far. A value
of zero for this metric indicates all members of the Pareto front currently available
are equidistantly spaced.

In order to know how competitive was our approach, we decided to compare it against
two multiobjective evolutionary algorithms that represent the state-of-the-art and with
respect to a multi-objective particle optimizer (MOPSO) that is publicly available:

1. Nondominated Sorting Genetic Algorithm II: Proposed by Deb et al. [11], this
algorithm is based on several layers of classifications of the individuals. It incorpo-
rates elitism (through the use of (µ + λ)-selection), a crowded comparison operator
and it keeps diversity without specifying any additional parameters. It remains as
one of the most competitive multi-objective evolutionary algorithms known to date.

2. Pareto Archived Evolution Strategy: This algorithm was introduced by Knowles
and Corne [16]. PAES consists of a (1+1) evolution strategy (i.e., a single parent that
generates a single offspring) in combination with a historical archive that records
some of the nondominated solutions previously found. This archive is used as a
reference set against which each mutated individual is being compared. The archive
is not only the elitist mechanism of PAES, but also incorporates an approach to
maintain diversity (a crowding procedure that divides objective space in a recursive
manner).

3. Multiobjective Particle Swarm Optimization (MOPSO): This approach was in-
troduced in [6]. It uses the concept of Pareto dominance to determine the flight
direction of a particle and it maintains previously found nondominated vectors in
a global repository that is later used by other particles to guide their own flight. It
also uses a mutation operator that acts both on the particles of the swarm, and on
the range of each design variable of the problem to be solved.

The source code of the NSGA-II, PAES and MOPSO is available from the EMOO re-
pository located at: http://delta.cs.cinvestav.mx/˜ccoello/EMOO. The source

Using Clustering Techniques 231

code of AMOPSO is available upon request by email to the first author. In the follo-
wing examples, the NSGA-II was run using a population size of 100, a crossover rate of
0.8 (uniform crossover was adopted), tournament selection, and a mutation rate of 1/L,
where L = chromosome length (binary representation was adopted). PAES was run using
an adaptive grid with a depth of five, a size of the archive of 100, and a mutation rate of
1/L, where L refers to the length of the chromosomic string that encodes the decision
variables. MOPSO (with real-numbers representation) used a (main) population of 100
particles, a repository size of 100 particles, a mutation rate of 0.05, and 30 divisions for
the adaptive grid. AMOPSO used 40 particles, a maximum number of generations of 20,
a maximum number of generations per swarm of 5, and a total of 5 swarms. The values
of all these parameters were empirically derived. The total number of fitness function
evaluations was set to 4000 for all the algorithms compared in all the test functions
shown next.

4.1 Test Function 1

For our first example, we used the following problem proposed in [17]: Maximize F =
(f1(x, y), f2(x, y)), where

f1(x, y) = −x2 + y, f2(x, y) =
1
2
x + y + 1

subject to: 0 ≥ 1
6x + y − 13

2 , 0 ≥ 1
2x + y − 15

2 , 0 ≥ 5x + y − 30 and: x, y ≥ 0.

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

-4 -3 -2 -1 0 1 2 3 4 5 6 7

F
2

F1

Pareto Front
MOPSO

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

-3 -2 -1 0 1 2 3 4 5 6 7

F
2

F1

Pareto Front
MOPSO-II

Fig. 1. Pareto fronts produced by MOPSO (left) and the AMOPSO (right) for the first test function.

Figures 1 and 2 show the graphical results produced by the PAES, the NSGA-II,
MOPSO and our AMOPSO in the first test function chosen. The true Pareto front is
shown as a continuous line. The solutions displayed correspond to the median result
with respect to the generational distance metric for each of the algorithms compared.
The true Pareto front of the problem is shown as a continuous line. Tables 1 and 2 show
the comparison of results among the four algorithms considering the metrics previously
described. It can be seen that the average performance of AMOPSO is the best with
respect to the error ratio (by far), and with respect to generational distance. With respect

232 G. Toscano Pulido and C.A. Coello Coello

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

-10 -8 -6 -4 -2 0 2 4 6 8

F
2

F1

Pareto Front
NSGA-II

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

-3 -2 -1 0 1 2 3 4 5 6 7

F
2

F1

Pareto Front
PAES

Fig. 2. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the first test function.

Table 1. Results of the Error Ratio (ER) and the Generational Distance (GD) metrics for the first
test function.

Error Ratio Generational Distance
MOPSO AMOPSO NSGA-II PAES MOPSO AMOPSO NSGA-II PAES

Average 0.6542 0.4926 0.8955 1.0023 0.0150 0.0038 0.0518 0.1041
Best 0.5300 0.3763 0.7200 0.9600 0.0024 0.0017 0.0032 0.0114

Worst 0.8261 0.5814 1.0000 1.0156 0.0859 0.02109 0.3170 0.6380
Median 0.6500 0.4932 0.9100 1.0100 0.0078 0.0022 0.0092 0.0264
St. Dev. 0.06263 0.05164 0.07564 0.01630 0.01960 0.00447 0.08641 0.16033

Table 2. Results of the Spacing (SP) metric for the first test function.

SP MOPSO AMOPSO NSGA-II PAES
Average 0.109146 0.043361 0.028961 0.079803

Best 0.046508 0.028168 0.008999 0.021405
Worst 0.681124 0.125776 0.080856 0.230506

Median 0.059248 0.035124 0.025807 0.051504
St. Dev. 0.141827 0.023900 0.017047 0.060692

to spacing it places slightly below the NSGA-II, but with a lower standard deviation.
By looking at the Pareto fronts of this test function, it can be easily seen that, except
for MOPSO and our AMOPSO, none of the algorithms was able to cover the full Pareto
front. It can also be seen that AMOPSO produced the best front. This is then an example
in which a metric may be misleading, since the fact that the spacing metric provides a
good value becomes meaningless if the nondominated vectors produced by the algorithm
are not part of the true Pareto front of the problem.

Using Clustering Techniques 233

5 Test Function 2

Our second test function was proposed in [18]:

Minf1(x) =
n−1∑

i=1

(
−10 exp

(
−0.2

√
x2

i + x2
i+1

))
; Minf2(x) =

n∑

i=1

(
|xi|0.8 + 5 sin(xi)

3
)

(4)

where: −5 ≤ x1, x2, x3 ≤ 5

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F
2

F1

Pareto Front
MOPSO

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F
2

F1

Pareto Front
MOPSO-II

Fig. 3. Pareto fronts produced by MOPSO (left) and the AMOPSO (right) for the second test
function.

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F
2

F1

Pareto Front
NSGA-II

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14 -13 -12

F
2

F1

Pareto Front
PAES

Fig. 4. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the second test function.

Figures 3 and 4 show the graphical results produced by the PAES, the NSGA-II,
MOPSO and our AMOPSO in the second test function chosen. Tables 3 and 4 show
the comparison of results among the four algorithms considering the metrics previously
described. It can be seen that the average performance of AMOPSO is the best with
respect to all the metrics adopted. This result can be corroborated by looking at Figures 3
and 4. Except for our AMOPSO, all the algorithms missed important segments of the
true Pareto front.

234 G. Toscano Pulido and C.A. Coello Coello

Table 3. Results of the Error Ratio (ER) and the Generational Distance (GD) metrics for the second
test function.

Error Ratio Generational Distance
MOPSO AMOPSO NSGA-II PAES MOPSO AMOPSO NSGA-II PAES

Average 0.7810 0.3490 0.7365 0.9320 0.0335 0.0020 0.0242 0.1730
Best 0.7300 0.2423 0.2300 0.3700 0.0318 0.0015 0.0030 0.0240

Worst 0.8500 0.4565 1.010 1.2500 0.0346 0.0035 0.1058 1.5743
Median 0.7800 0.3614 0.7950 1.0000 0.0336 0.0019 0.0072 0.0909
St. Dev. 0.03194 0.05107 0.24594 0.17914 0.00069 0.00050 0.02935 0.33300

Table 4. Results of the Spacing (SP) metric for the second test function.

SP MOPSO AMOPSO NSGA-II PAES
Average 0.086108 0.037190 0.038156 0.449358

Best 0.044509 0.019109 0.002839 0.094711
Worst 0.119586 0.055227 0.102906 5.124390

Median 0.092252 0.041811 0.035956 0.198565
St. Dev. 0.022214 0.014061 0.019729 1.102054

6 Test Function 3

Our third test function is to optimize a four-bar plane truss. The problem is
the following [19]: Min f1(x) = L(2x1 +

√
2x2 +

√
x3 + x4), f2(x) =

FL
E

(
2
x2

+ 2
√

2
x2

− 2
√

(2)
x3

+ 2
x4

)

such that (F/σ) ≤ x1 ≤ 3 × (F/σ),
√

2(F/σ) ≤
x2 ≤ 3 × (F/σ),

√
2(F/σ) ≤ x3 ≤ 3 × (F/σ), (F/σ) ≤ x4 ≤ 3 × (F/σ) where:

F = 10kN , E = (2)105kN/cm2, L = 200cm, σ = 10kN/cm3

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1100 1200 1300 1400 1500 1600 1700 1800

F
2

F1

Pareto Front
MOPSO

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1100 1200 1300 1400 1500 1600 1700 1800

F
2

F1

Pareto Front
MOPSO-II

Fig. 5. Pareto fronts produced by MOPSO (left) and theAMOPSO (right) for the third test function.

Using Clustering Techniques 235

Figures 5 and 6 show the graphical results produced by PAES, the NSGA-II, MOPSO
and our AMOPSO in the third test function chosen. Tables 5 and 6 show the comparison
of results among the four algorithms considering the metrics previously described. In
this case, AMOPSO was the best with respect to the generational distance and spacing
metrics, and it placed second (marginally) with respect to the error ratio metric (PAES
was the best average performer with respect to this metric). Graphically, we can see that
MOPSO and our AMOPSO were the only algorithms able to cover the entire Pareto
front of this problem. Clearly, our AMOPSO produced the best front in this case (see
Figures 5 and 6).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1100 1200 1300 1400 1500 1600 1700 1800

F
2

F1

Pareto Front
NSGA-II

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1100 1200 1300 1400 1500 1600 1700 1800

F
2

F1

Pareto Front
PAES

Fig. 6. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the third test function.

Table 5. Results of the Error Ratio (ER) and Generational Distance (GD) metrics for the third test
function.

Error Ratio Generational Distance
MOPSO AMOPSO NSGA-II PAES MOPSO AMOPSO NSGA-II PAES

Average 0.447869 0.436210 0.447500 0.386888 0.452556 0.215814 0.364229 1.079089
Best 0.260000 0.293548 0.210000 0.190000 0.312648 0.152786 0.249701 0.168401

Worst 0.640000 0.558824 0.960000 0.640000 0.933802 0.348571 0.585769 14.222200
Median 0.425000 0.434563 0.355000 0.360000 0.380676 0.212191 0.354397 0.238549
St. Dev. 0.096677 0.061168 0.189150 0.115806 0.178124 0.048167 0.065211 3.126444

7 Conclusions and Future Work

We have presented a new proposal to extend particle swarm optimization to handle
multiobjective problems using sub-swarms, Pareto ranking and clustering techniques.
The proposed approach was validated using the standard methodology currently adopted
in the evolutionary multiobjective optimization community. The results indicate that our

236 G. Toscano Pulido and C.A. Coello Coello

approach is a viable alternative since it outperformed some of the best multiobjective
evolutionary algorithms known to date. One aspect that we would like to explore in the
future is the study of alternative mechanisms to handle constraints through the use of
infeasible solutions that can act as leaders in a special swarm. We believe that this sort of
mechanism could improve the performance of our AMOPSO, particularly when dealing
with problems in which the Pareto front lies on the boundaries between the feasible and
infeasible regions. We also want to perform an analysis of the impact of the mechanism
adopted to select leaders in the performance of the approach. Finally, we aim to devise
a way to eliminate the nswarm parameter through the use of self-adaptation.

Table 6. Results of the Spacing (SP) metric for the third test function.

SP MOPSO AMOPSO NSGA-II PAES
Average 2.665576 1.209140 2.172087 4.180568

Best 1.932520 0.934140 1.115380 1.250790
Worst 3.925990 1.527800 2.557980 22.745200

Median 2.643000 1.257940 2.248595 2.314210
St. Dev. 0.495079 0.177295 0.375880 5.440785

Acknowledgements. The first author acknowledges support from CONACyT through a
scholarship to pursue graduate studies at the Computer Science Section at CINVESTAV-
IPN. The second author gratefully acknowledges support from CONACyT project
34201-A.

References

1. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, San Fran-
cisco, California (2001)

2. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston (2002)

3. Ray, T., Liew, K.: A Swarm Metaphor for Multiobjective Design Optimization. Engineering
Optimization 34 (2002) 141–153

4. Parsopoulos, K., Vrahatis, M.: Particle Swarm Optimization Method in Multiobjective Pro-
blems. In: Proceedings of the 2002 ACM Symposium on Applied Computing (SAC’2002),
Madrid, Spain, ACM Press (2002) 603–607

5. Hu, X., Eberhart, R.: Multiobjective Optimization Using Dynamic Neighborhood Particle
Swarm Optimization. In: Congress on Evolutionary Computation (CEC’2002). Volume 2.,
Piscataway, New Jersey, IEEE Service Center (2002) 1677–1681

6. Coello Coello, C.A., Salazar Lechuga, M.: MOPSO: A Proposal for Multiple Objective
Particle Swarm Optimization. In: Congress on Evolutionary Computation (CEC’2002). Vo-
lume 1., Piscataway, New Jersey, IEEE Service Center (2002) 1051–1056

Using Clustering Techniques 237

7. Fieldsend, J.E., Singh, S.: A Multi-Objective Algorithm based upon Particle Swarm Op-
timisation, an Efficient Data Structure and Turbulence. In: Proceedings of the 2002 U.K.
Workshop on Computational Intelligence, Birmingham, UK (2002) 37–44

8. Hui, X., Eberhart, R.C., Shi, Y.: Particle Swarm with Extended Memory for Multiobjective
Optimization. In: 2003 IEEE Swarm Intelligence Symposium Proceedings, Indianapolis,
Indiana, USA, IEEE Service Center (2003) 193–197

9. Mostaghim, S., Teich, J.: Strategies for Finding Good Local Guides in Multi-objective Particle
Swarm Optimization (MOPSO). In: 2003 IEEE Swarm Intelligence Symposium Proceedings,
Indianapolis, Indiana, USA, IEEE Service Center (2003) 26–33

10. Li, X.: A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization.
In et al., E.C.P., ed.: Genetic and Evolutionary Computation—GECCO 2003. Proceedings,
Part I, Springer. Lecture Notes in Computer Science Vol. 2723 (2003) 37–48

11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6 (2002) 182–197

12. Goldberg, D.E.: GeneticAlgorithms in Search, Optimization and Machine Learning. Addison-
Wesley Publishing Company, Reading, Massachusetts (1989)

13. Johnson, S.: Hierarchical Clustering Schemes. Psychometrika 32 (1967) 241–254
14. Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and

New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate
School of Engineering.Air Force Institute of Technology, Wright-PattersonAFB, Ohio (1999)

15. Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Op-
timization. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, Cambridge, Massachusetts (1995)

16. Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto
Archived Evolution Strategy. Evolutionary Computation 8 (2000) 149–172

17. Kita, H., Yabumoto, Y., Mori, N., Nishikawa, Y.: Multi-Objective Optimization by Means of
the Thermodynamical Genetic Algorithm. In et al., H.M.V., ed.: Parallel Problem Solving
from Nature—PPSN IV. Springer-Verlag, Berlin (1996) 504–512

18. Kursawe, F.: A Variant of Evolution Strategies for Vector Optimization. In Schwefel, H.P.,
Männer, R., eds.: Parallel Problem Solving from Nature. 1st Workshop, PPSN I. Volume 496
of Lecture Notes in Computer Science., Berlin, Germany, Springer-Verlag (1991) 193–197

19. Cheng, F., Li, X.: Generalized Center Method for Multiobjective Engineering Optimization.
Engineering Optimization 31 (1999) 641–661

	Introduction
	Related Work
	Description of the Proposed Approach
	Clustering Algorithm

	Comparison of Results
	Test Function 1

	Test Function 2
	Test Function 3
	Conclusions and Future Work

