Adaptive and Evolvable Network Services

Tadashi Nakano and Tatsuya Suda

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425
{tnakano, suda}@ics.uci.edu

Abstract. This paper proposes an evolutionary framework where a network
service is created from a group of autonomous agents that interact and evolve.
Agents in our framework are capable of autonomous actions such as replication,
migration, and death. An evolutionary mechanism is designed using genetic al-
gorithms in order to evolve the agent’s behavior over generations. A simulation
study is carried out to demonstrate the ability of the evolutionary mechanism to
improve the network service performance (e.g., response time) in a decentral-
ized and self-organized manner. This paper describes the evolutionary mecha-
nism, its design and implementation, and evaluates it through simulations.

1 Introduction

Swarm intelligence — the collective intelligence of groups of simple individuals often
observed in social insects [1,8] has inspired many applications in a variety of fields
such as optimization [5,9], clustering [4], communication networks [17] and robotics
[10]. In these applications, individuals are capable of sensing the environment in
which they operate, and act based only on partial information about the entire envi-
ronment. Each individual is designed simply and does not have the ability to accom-
plish a goal. However, a collection of individuals exhibits intelligent behavior toward
achieving a goal along with useful properties such as adaptability and scalability.

This paper proposes an evolutionary framework for developing distributed network
services that require a large number of network components (e.g., data and software)
to be replicated, moved and deleted in a decentralized manner. Such network services
may include content distribution networks [2,7,14,15,16], content services networks
[11] and peer-to-peer file sharing networks [13]. Analogous to those applications
inspired by swarm intelligence, agents are simply designed using only local informa-
tion without relying on global knowledge, and collectively provide adaptive and scal-
able network services.

In the proposed framework, a single network service is provided by a group of
autonomous agents. Each autonomous agent implements an identical network service
(e.g., a content hosting service or a web document), but can have different behavior in
replication, migration and death (deletion of itself). An agent’s behavior is governed
by a set of genes embedded into each agent, and designed to evolve through a repro-

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 151-162, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

152 T. Nakano and T. Suda

ductive process with genetic algorithms [12]. As opposed to generational genetic
algorithms that rely on god-like central selection, agents in our framework are evalu-
ated and selected by nearby agents in a decentralized and self-organized way.

A simulation study is carried out to present the ability of evolutionary adaptation to
improve the service performance or fitness values (e.g., response time, bandwidth
consumption, resource usage, etc.) It is shown through evolutionary adaptation proc-
esses that agents evolve their behavior over generations by which a network service
becomes adapted to a variety of network environments.

The rest of the paper is organized as follows. Section 2 gives a broad overview of
the proposed evolutionary framework, and then presents the design of agents and their
evolutionary mechanisms. To evaluate the evolutionary mechanisms, preliminary
simulations are run in Section 3 and an extensive set of simulation studies is carried
out in Section 4. Section 5 concludes the paper with a brief summary.

2 Evolutionary Framework for Developing Network Applications

This section first provides an overview of the proposed framework for developing
distributed network applications and then describes the evolutionary mechanisms
designed for network applications to adapt to network environments.

2.1 Overview

Our framework assumes a fully distributed network environment in which a group of
autonomous agents self-organizes a network service without centralized control. It is
also assumed that communications and information are restricted to those locally
available to agents (e.g., agents can communicate with each other only when residing
on the same network platform or on adjacent ones.)

As illustrated in Figure 1, our network is modeled using three network components:
agents, users and platforms, which exchange a common resource called energy.

Agents provide a service to users (i.e. end service consumers or an agent of an ap-
plication) in exchange for energy. Agents use computing resources (e.g., CPU power,
memory, and network bandwidth) provided by a hosting platform in exchange for
energy. Agents also use energy to invoke behaviors such as replication, migration and
death. Thus, the energy level of an agent is a measure of how efficiently the agent
provides a service, uses computing resources and performs behavior.

The platforms are autonomous systems connected to each other. Platforms host
agents and provide computing resources such as CPU, memory and bandwidth. Plat-
forms provide an environment for agents where agents can migrate and replicate.
Platforms periodically charge agents for energy, and expel agents who run out of en-
ergy. Thus, platforms perform natural selection and favor energy efficient agents.

Adaptive and Evolvable Network Services 153

provide a service

ay ener
pay pay gy
energy provide computing

resources (CPU, etc)

Platform

Fig. 1. Energy exchange

2.2 Agents and Their Behavior

Agents have an internal state that affects behaviors such as replication, migration and
death. Example internal states include energy intake (the difference between acquired
energy units and consumed energy units), age (time elapsed since birth) and active-
ness (the degree of willingness to invoke behavior). The internal state also includes an
agent’s performance directly related to a network service, such as response time (time
taken for a user to receive a service from the agent).

Agents are capable of sensing the local environmental conditions of the platform
that they reside on and also the environmental conditions of adjacent platforms. Envi-
ronmental conditions include request rate (how often the platform that hosts an agent
receives requests from a user), request rate change (how much the request rate in-
creases or decreases), population (the number of agents on the platform), resource
cost (the energy cost of resource at the platform), behavior cost (the energy cost of
behavior at the platform).

According to an environmental condition or their internal state described above,
agents autonomously replicate, reproduce, migrate or die. For instance, agents may
replicate (make a copy of themselves) or reproduce (produce an agent with another
agent) in response to an increased demand for the service; agents may migrate from
one platform to another to perform a service in the vicinity of users; agents may die
when the service they provide becomes outdated.

Figure 2 illustrates the behavior invocation mechanism embodied in each agent. In
replication, reproduction and death, a set of input values (7;) that includes internal
states and environmental conditions described above is multiplied with a set of associ-
ated weights (W)). If the weighted sum (2V;xW;) exceeds the threshold (8), then a
corresponding behavior is invoked. In migration, agents need to choose which plat-
form to migrate to from the current platform. In this case, the equation shown in Fig-
ure 2 is examined for all the possible choices of platforms including the current plat-
form. If multiple choices satisfy the equation, the behavior most likely triggered is the
choice that produces the highest sum. If the current platform produces the highest
sum, the agent remains on the current platform.

154 T. Nakano and T. Suda

input value 1 (V) ~—_ W,

output {invoke

input value 2 (V) A .
: ehavior or no

: W.
input walue n (Vn)ff’ﬁrﬂ

Fig. 2. Behavior invocation mechanism

2.3 Evolutionary Adaptation Mechanisms

In our framework, evolution occurs as a result of selection from diverse behavioral
characteristics of individual agents. Agents have a set of genes (weights) that governs
their behavior, and diverse behavioral agents arise from the genetic variation. When
an agent reproduces, the agent selects a reproduction partner so as to improve one of
the service performances (e.g., response time, bandwidth consumption, resource us-
age). Meanwhile, the diverse behavioral characteristics among agents are generated by
genetic operators (mutation and crossover). Through successive generations, benefi-
cial features are retained while detrimental behaviors become dormant, enabling the
network service to adapt to the network environment. The following explains the
evolutionary mechanism designed in this paper.

Representation. Each agent is represented as a vector of real values (a set of
genes) with each real value corresponding to a weight shown in Figure 2.

Natural selection. Agents who run out of energy are eliminated by a platform. This
mechanism is referred to as natural selection. Natural selection guarantees that ineffi-
cient behavioral agents, (which may be produced through the genetic operators such as
crossover and mutation,) eventually become extinct.

Partner selection. In reproduction, an agent selects a partner agent on the same
platform or adjacent platforms according to the following fitness assignment strategy
that involves multiple fitness values including (1) waiting time (the average interval
between the time that a service request arrives at a platform and the time that an agent
provides the requested service), (2) hop count (the average number of platform hops
that a service request travels from a user to the agent), and (3) energy efficiency (the
fraction of the consumed energy and acquired energy). In the following, each of these
fitness values is explained with more detail.

Waiting time is defined as the average interval between the time that a service re-
quest arrives at a platform and the time that an agent provides the requested service.
Upon arrival at a platform, a service request is placed on a platform queue if all agents
on the platform are busy processing other service requests. In order to improve this
fitness value, agents are required to reproduce when there is insufficient number of
agents to handle all service requests from users. Agents may further improve the
waiting time by reproducing in advance when the number of service requests starts
increasing.

Adaptive and Evolvable Network Services 155

Hop count is measured as the average number of platform hops that a service re-
quest travels from a user to the agent. It is assumed that a service request issued by a
user is always directed to one of the agents nearest to the user. Agents can improve the
hop count by staying around users or following users if they are moving around.

Energy efficiency is measured as the fraction of the consumed energy and acquired
energy. The acquired energy is the total amount of energy that the agent obtains from
its birth, and consumed energy is the total amount of energy that the agent consumes
from its birth. The amount of acquired energy increases in proportion to the number of
service requests that the agent processes. Consumed energy represents how efficiently
the agent performs behavior and uses computing resources. For instance, inefficient
behavior invocation (e.g., migrating too often) may incur a great energy loss. In order
to improve energy efficiency, agents need to balance or even optimize its energy in-
come relative to energy expenditure.

To select a reproduction partner, an agent probabilistically determines which fit-
ness value needs improvement: waiting time, hop count or energy efficiency. The
fitness value chosen for possible improvement is based on the agent’s own fitness
values and pre-defined desired fitness values (initially given to all agents) with respect
to these three criteria.

Specifically, given the set of its own fitness values (F;), the set of predefined re-
quired fitness values (R;), the following equation defines the probability of the fitness
value j being chosen: (R/F})/2(R/F;). Suppose that an agent is inefficient in satisfying
a pre-defined level of energy efficiency, and then the agent is likely to choose the
energy efficiency as the fitness value to improve in its reproduction. Similarly, the
agent may choose the waiting time or hop count as the fitness value when it is ineffi-
cient in satisfying either of the pre-defined desired fitness values.

After selecting the fitness, candidate agents are ranked according to the selected
fitness value through linear rank selection typically used in evolutionary computation
[12].

Crossover. After an agent selects a reproduction partner, the two sets of weights
from the two parent agents are crossed over to produce a new set of weights for a
child agent. In crossover, a set of weights for a child agent is determined in such a way
that more weights are inherited from the parent with a greater fitness value. The prob-
ability of a weight being chosen from a parent linearly increases in proportion to the
number of its fitness values that are greater than those of the other parent.

Mutation. After two parental weights are crossed over, mutation may occur at each
weight of a child agent with a probability called mutation rate. In mutation, each
weight value is subject to random change within a certain range called mutation range.

The design of evolutionary mechanisms that were described in this section is an ex-
ample, and alternative approaches developed in the evolutionary computation litera-
ture such as multiobjective optimization [3] and adaptive parameter control [6] are
also applicable to implementing our agent-based evolutionary framework.

156 T. Nakano and T. Suda

3 Simulations in Static Network Environments

In this section, the evolutionary mechanism designed in Section 2 is evaluated in rela-
tively simple and homogenous network environments through a simulation study.
Pseudo code of the simulator algorithm is shown in Figure 3. The various parameters
used and simulation results are explained in the following.

3.1 Configurations

A simulated network is configured as an 8x8 mesh topology network with 64 nodes.
Each node on the network hosts a single platform that charges each agent 1 energy
unit per second for computing resources (one simulation cycle corresponds to 1 sec-
ond). There are seven users in the network. Each user generates service requests at
different rates ranging from 10 to 30 requests per second, totaling 150 requests per
second on the entire network. A service request issued by a user is forwarded to one of
the nearest platforms where agents exist. After forwarding, if no agents are available
for processing the service request, the service request is placed on the platform queue
and experiences a delay until an agent becomes available and processes it.

The simulations assume agents that are capable of reproduction, migration and
death. In addition, each agent can process a maximum of 5 service requests per sec-
ond. An agent receives 10 energy units from a user in exchange for each request proc-
essed. Every 15 seconds an agent makes a decision on whether to invoke death, repro-
duction, and migration. Agents consume 500 energy units for performing behavior
such as reproduction and migration. Agents may invoke a single behavior (one out of

Initialize platforms, agents and users
While (not simulation last cycle)
For each user do
send service requests to one of the nearest agents according to
configured service request rates.
End For
For each platform do
charge agents platform cost
End For
For each agent do
If received service requests do
Process the requests and receive energy
End If
make decision on reproduction, migration and death
update average waiting time, hop count, energy efficiency
End For
End While

Fig. 3. Pseudo code of simulation algorithm

Adaptive and Evolvable Network Services 157

Table 1. Three types of agents used in simulations: PR, PD and ES

Weight PR PD ES (energy
(primary) (productive) seeker)
R. Request Rate 0.1 0.3 0.1
R. Threshold 0.5 0.5 0.5
M. Request Rate 1.0 1.0 2.0
M. Resource Cost 0.5 0.5 0.0
M. Population 1.0 1.0 0.5
M. Activeness 0.5 0.5 0.5
M. Threshold 2.0 2.0 2.0

three) or multiple behaviors (reproduction and migration), or agents may decide not to
invoke any behaviors according to a behavior invocation mechanism shown in Figure
2.

In reproduction, agents select a partner agent that is older than 30 simulated min-
utes. Agents replicate when there are no partner agents. In both reproduction and
replication, a parent agent (the parent who decides to reproduce, not the parent se-
lected as a reproduction partner) provides 3000 energy units to its child agent. Muta-
tion occurs for each weight probabilistically according to the mutation rate of 0.2. In
mutation, each weight is subject to random change within a range of mutation range of
0.1. Crossover and mutation are applied only to weights and not applied to thresholds.
The predefined performance requirement used in partner selection is 1.0 seconds for
the average waiting time, 0.5 hops for the average hop count, and 0.3 for the average
energy efficiency.

In migration, agents are allowed to migrate only to adjacent nodes linked with the
current node. Reproduction is allowed between two agents on the same platform or on
adjacent platforms. Agents die when they exhaust their energy or reach a maximum
age of 4 simulated hours.

3.2 Simulation Results

One of the three types of agents listed in Table 1 (See Section 2.2 for the detail of
weight) is placed on the top left corner of the network, given 10000 energy units, and
simulations are run for 10 simulated days.

Figures 4 through 6 depict simulation results for each of the four types of agents,
comparing the performance of agents with the evolutionary mechanism against that of
agents without the evolutionary mechanism. Figure 7 shows the dynamics of an agent
population. In these figures, the horizontal axis indicates simulation time (in 1 hour
increments), while the vertical axis indicates the total energy gain of all agents, aver-
age waiting time of all service requests, average hop count of all service requests, the
number of agents.

158 T. Nakano and T. Suda

1500

15
-=- PR without evolution
-# PR with evolution
1400 1:25 71+ PD without evolution
c v / ° - PD with evolution I
& 2 E 11 -+ ES without evolution
2 1300 2 -+ ES with evolution
g £
g So7s
@ @
2 1200 ? .
§ -8- PR without evolution g 05
< - PR with evolution <
1100 —- PD without evolution /\ A
—-PD with evolution 028
-+ ES without evolution
- ES with evolution 0 .
1000 T . - - - N N N
0 50 100 150 200
] 50 100 150 200 " "
Simulation Hours Simulation Hours
Fig. 4. Energy gain Fig. 5. Average waiting time
4 300
-5 PR without evolution
-=- PR with evolution
-2 PR without evolution 250 ~- PD without evolution
3 -=- PR with evolution H —+- PD with evolution
- PD without evolution - ES without evolution
—+PD with evolution 200 & ES with evolution

- ES without evolution ||
-4 ES with evolution H

Average Hop Count
N

Population
=4

[S SN N U=~V SR S S

0 50 100 150 200 0 50 100 150 200

Simulation Hours Simulation Hours
Fig. 6. Average hop count Fig. 7. Population dynamics

These simulation results are summarized as follows; PR doesn’t evolve to improve
any of the performance criteria considered, but rather degrades the performance; PD
evolves toward invoking replication and reproduction less often, and improves the
energy efficiency; ES evolves toward migrating to a user requesting a service and
significantly improves the average hop count.

The simulation results explained above show that the evolutionary mechanism de-
signed in this paper successfully improves performance, e.g., energy gain of PD, hop
count of ES. However, the performance improvement comes with an overhead associ-
ated with the constantly repeating evolutionary process. In other words, when agents
achieve a sufficiently low waiting time and hop count (e.g., the both averages reach
nearly 0), they then try to minimize energy consumption. This means that in reproduc-
tion they select a partner agent based on energy efficiency (e.g., an agent who invokes
reproduction or migration less often). This energy efficiency based selection is con-
stantly performed, which creates a situation in which there are not enough agents to
process all service requests on the network, resulting in occasional spikes in waiting
time and hop count. A possible improvement would be brought about by applying an
adaptive evolution technique traditionally suggested in the evolutionary computation
literature [6], e.g., by reducing the mutation rate as solutions become closer to optima.

Adaptive and Evolvable Network Services 159

4 Evolution in a Variety of Network Environments

This section describes the extensive set of simulations performed in a variety of net-
work environments and demonstrates the adaptability of the network application with
evolutionary mechanisms.

4.1 Simulation Configurations

Evolutionary mechanisms are evaluated in the following three kinds of network envi-
ronments. Note that each of these networks is a modified version of the static network
used in the previous simulation and, unless otherwise stated, simulation configurations
(e.g., the network topology, size, platform cost, etc) are the same as the previous ones.
Also, only the PR agent (shown in Table 1) is used in the following simulations.

Network with varying resource cost: All platforms vary the resource cost de-
pending on how many agents they are hosting. The following formula is experimen-
tally used to determine the resource cost: resource_cost = (the number of
agents)x2/3.Four users are placed on four different platforms. Each user has a differ-
ent service request generation rate, 25, 50, 75 and 100 service requests per second.

Network with varying workload: A user requests either of two types of services:
one service that takes agents 0.2 seconds to process, or another that takes 0.4 seconds.
There are 10 users, who issue 5 service requests per second, randomly switching the
types of services to request.

Network with platform failures: All platforms have a possibility of failure. Plat-
form failures destroy all agents residing on the failed platform, and any service request
in the platform queue is also discarded. The availability of all platforms starts with 1.0
and progressively decreases based on the following equation: platform_availability =
1.0 — 0.025xsimulation_hours. Platforms probabilistically fail every single minute
based on platform availability, and the failed platforms become available one second
later. Five users are placed on five randomly selected platforms. The users stay on the
selected platforms and generate 10 service requests per second throughout the simula-
tions.

4.2 Simulation Results

Simulations are run with and without evolutionary mechanisms in each of the three
kinds of networks. Results are shown in figures 8 through 11 and explained in the
following.

In the network with varying resource cost, agents without the evolutionary mechanism
suffer from a great energy loss leading to lower populations on a platform, and the
inadequate number of agents leads to higher waiting time. Evolutionary adaptation
allows agents to adapt to the locality of the network environment: those agents on
expensive platforms evolve toward migrating away from the platforms, and those who

160 T. Nakano and T. Suda

- mout ?:;7'“!‘3”‘:‘"" varying fes‘n“me;“sl - without evalution with varying resaurce cost
= with evolution with varying resource co 18 -a-with evolution with varying resource cost
1500 &= witthout evolution with valying werkloads - without evolution with varying workloads
< & with evolution with varying workleads o 16 —&-with evolution with varying workloads
g -~ without evolution with platform failures E B~ without evolution with platiorm failures
2 -m- with evolution with platform failures 5 12 -m-with evolution with platform fallures
2 1000 s
& a A ES | T |
@ / S
: SVAYAY ARV 21/ WL AN
&) -’ v A e ¥ g s n i ‘
i SOO”M *§Q,4,#§*%QH}\H§4—A1H < {\ | l/\ /\/ ’f\f |
T e i — —
y s I | I / I |
\. V* \ = wa—eie/g\”/q \H,,-B"e 5 | l &f—nlh ! .at_ \J I\ .41‘ S
) 0 50 100 150 200 250
50 100 180 200 250

Simulation Hours Simulation Hours

Fig. 8. Energy gain Fig. 9. Average waiting time
200
-&- without evolution with varying resource cost -=-without evelution with varying resource cost
—=- with evolution with varying resource cost - with evolution lwlth varying resource cost
- without evolution with varying workloads & without evolution with varying workloads
1 & with evolution with varying workloads I 160 [— | - with evolution with varying workloads
€ N A i 8- without evolution with platform failures
5 - WE:DM T‘?""“""{:"T z'am;:‘fa””res \ u- with evolution with platform failures
- with evolution with platiorm failures = . *
a 5 , ! /
£ 5 100 \\-A\./I\:\d k‘\ '\:(! ./\i ay ‘-/,
® 2 N
§ 05 & e / \/ A e
z G, = N A
b \ . 50 “/TE . /‘éggu N .‘\-:/r \U/k\:"’
%tg 1—744&4@—'-& et ae neteg, ff ERENVA i 'X a A 4
R A
)N - R N PO S .
SN N S \ = =
0 o L .
Q 50 100 150 200 250 0 50 100 150 200 250
Simulation Hours Simulation Hours
Fig. 10. Average hop count Fig. 11. Population dynamics

are on the affordable platform remain there. Consequently, the average hop count
slightly increases, but the average energy gain significantly improves.

In the network with varying workload, agents without evolutionary adaptation se-
verely increase the waiting time when the type of a service requested is changed. On
the other hand, evolving agents appear to be responsive to the change: when experi-
encing a high waiting time, responsive agents that exhibit higher reproduction rate are
likely to be selected as reproduction partners, which accelerates reproduction, result-
ing in a reasonable average waiting time.

In the network with platform failures, without the evolutionary mechanism, agents
become extinct after consecutive platform failures and are unable to continue provid-
ing the network application. On the other hand, the evolutionary mechanism leads to
population increase and dispersal, resulting in more available and robust network
applications. This evolutionary adaptation occurs because agents that can distribute
among platforms and that can produce more agents are more likely to survive in the
face of platform failure.

5 Conclusions

This paper proposes an evolutionary framework where a network service is created
from a group of simple agents that interact and evolve. This work has been done in

Adaptive and Evolvable Network Services 161

order to improve the emergent properties such as scalability and adaptability of the
Bio-Networking Architecture [18], which is a generic framework for building large-
scale network services based on biological principles.

A design concept similar to the one applied to our framework is found in swarm
intelligence [1,8], where simple individual agents collectively solve a problem. Swarm
intelligence has been applied to some networking issues such as network routing and
load-balancing [17], and we further apply the swarm intelligence to build adaptive and
scalable network applications.

Although specific applications of our framework are not discussed in this paper,
autonomous agents in our framework can represent any network objects (data and a
service), and thus our framework can be applied, for instance, to replica placement of
network objects for CDNs (Content Distribution Networks) and P2P networks. As
opposed to replica placement algorithms proposed for CDNs and P2P networks
[2,7,14,15,16], which are often complex, the behavior algorithm of agents in our
framework is simple and easy to design, yet demonstrates through simulations that the
service performance improves with evolutionary adaptation. An additional simulation
study will be done focusing on specific network services or applications. In addition,
the presented simulation study assumes a network that contains only one network
service. Ongoing work is extending this model to include multiple network services
that interact and coevolve.

Acknowledgements. This work was supported by the National Science Foundation
through grants ANI-0083074 and ANI-9903427, by DARPA through Grant MDA972-
99-1-0007, by Air Force Office of Scientific Research through Grant MURI F49620-
00-1-0330, and by grants from the University of California MICRO Program, Hitachi,
Hitachi America, Novell, Nippon Telegraph and Telephone Corporation (NTT), NTT
Docomo, Fujitsu, and NS Solutions Cooperation.

References

1. E. Bonabeau, M. Dorigo and G. Theraulaz, “Swarm intelligence: from natural to artificial
systems,” Oxford University Press, 1999.

2. Y. Chen, R. H. Katz and J. D. Kubiatowicz, “Dynamic replica placement for scalable
content delivery,” in Proceedings of the First International Workshop on Peer-to-Peer
Systems, pages 306-318, 2002.

3. C. A. Coello Coello, “A short tutorial on evolutionary multiobjective optimization,” First
International Conference on Evolutionary Multi-Criterion Optimization, Springer-Verlag,
Lecture Notes in Computer Science, No. 1993, pages 21-40, 2001.

4.]. L. Denebourg, S. Goss, N. Franks, A. SendovaFranks, C. Detrain and L. Chretien, “The
dynamics of collective sorting robot-like ants and ant-like robots,” in Proceedings of the
Ist Conference on Simulation of Adaptive Behavior: From Animal to Animats, MIT
Press, pp. 356-365.

162

10.

11.

12.

13.

14.

15.

16.

17.

18.

T. Nakano and T. Suda

M. Dorigo and G. D. Caro, “Ant algorithms for discrete optimization”, in Proceedings of
the Congress on Evolutionary Computation, 1999.

A. E. Eiben, R. Hinterding and Z. Michalewicz, “Parameter control in evolutionary algo-
rithms,” IEEE Transactions on Evolutionary Computation,” Vol. 3, No. 2, pages 124-141,
1999.

M. J. Kaiser, K. C. Tsui and J. Liu, “Adaptive distributed caching,” in Proceedings of the
IEEE Congress on Evolutionary Computation, pages 1810-1815, IEEE, 2002.

J. Kennedy and R. C. Eberhart, “Swarm intelligence,” Morgan Kaufmann Publishers,
2001.

J. Kennedy and R.C. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE
International Conference on Neural Networks, Vol. 4, 1942-1948, 1995.

R. C. Kube and H. Zhang, “Collective robotics: from social insects to robots,” Adaptive
Behavior, Vol. 2, No. 2, pp.189-218, 1994.

W. Y. Ma, B. Shen and J. T. Brassil, “Content services networks: the architecture and
protocol,” in Proceedings of the 6th International Workshop on Web Caching and Content
Distribution, 2001.

M. Mitchell, “An introduction to genetic algorithms,” MIT Press, 1996.

A. Oram, “Peer-to-Peer: harnessing the power of disruptive technologies,” O'Reilly &
Associates, 2001.

G. Pierre, M. van Steen and A. Tanenbaum, “Dynamically selecting optimal distribution
strategies for web documents,” IEEE Transactions on Computers, 51(6), 2002.

L. Qiu, V. N. Padmanabhan and G. M. Voelker, “On the placement of web server repli-
cas,” in Proceedings of the IEEE INFOCOM 2001, pages1587-1596, 2001.

M. Rabinovich, I. Rabinovich, R. Rajaraman and A. Aggarwal, “A dynamic object repli-
cation and migration protocol for an Internet hosting service,” in Proceedings of the Inter-
national Conference on Distributed Computing Systems, pages 101-113, 1999.

R. Schoonderwoerd, O. E. Holland, J. L. Bruten and L. J. M. Rothkrantz, “Ant-based load
balancing in telecommunications networks,” Adaptive Behavior, Vol. 5, No. 2, MIT
Press, pp.169-207, 1996.

T. Suda, T. Itao and M Matsuo, “The bio-networking architecture: the biologically in-
spired approach to the design of scalable, adaptive, and survivable/available network ap-
plications,” in K. Park (ed.), The Internet as a Large-Scale Complex System, Oxford Uni-
versity Press, 2003.

	1 Introduction
	2 Evolutionary Framework for Developing Network Applications
	2.1 Overview
	2.2 Agents and Their Behavior
	2.3 Evolutionary Adaptation Mechanisms

	3 Simulations in Static Network Environments
	3.1 Configurations
	3.2 Simulation Results

	4 Evolution in a Variety of Network Environments
	4.1 Simulation Configurations
	4.2 Simulation Results

	5 Conclusions

