
Finding Maximum Cliques with Distributed
Ants

Thang N. Bui and Joseph R. Rizzo, Jr.

Department of Computer Science
The Pennsylvania State University at Harrisburg

Middletown, PA 17057
tbui@psu.edu, jrr200@cs.hbg.psu.edu

Abstract. In this paper we describe an ant system algorithm (ASMC)
for the problem of finding the maximum clique in a given graph. In
the algorithm each ant has only local knowledge of the graph. Working
together the ants induce a candidate set of vertices from which a clique
can be constructed. The algorithm was designed so that it can be easily
implemented in a distributed system. One such implementation is also
described in the paper. For 22 of the 30 graphs tested ASMC found the
optimal solution. For the remaining graphs ASMC produced solutions
that are within 16% of the optimal, with most being within 8% of the
optimal. The performance of ASMC is comparable to existing algorithms.

1 Introduction

Let G = (V, E) be a graph with vertex set V and edge set E. A clique in G is a
complete subgraph, i.e., a subgraph of G in which there is an edge between any
two vertices in the subgraph. The size of a clique is the number of vertices in the
clique. The MAXCLIQUE problem is the problem of finding the largest clique
in a given graph. MAXCLIQUE arises in a variety of problems such as finding
good codes, identifying faulty processors in multiprocessor systems and finding
counterexamples to Keller’s conjecture in geometry [2][24][25][15][16]. However,
it is well known that MAXCLIQUE is NP-hard [11], hence it is not expected to
have a polynomial time algorithm. The next best thing to have would be a good
and efficient approximation algorithm. But it has been shown under various
complexity assumptions that finding a good approximation to an instance of
MAXCLIQUE is just as hard as finding an optimal solution. For example, it is
known that unless NP = co−RP no polynomial time algorithm can achieve an
approximation factor of n1−ε for MAXCLIQUE for arbitrarily small ε [13].

In practice heuristics are used to solve MAXCLIQUE. One of the simplest
such heuristics is the greedy heuristic, a version of which is described in Section 3.
Other heuristic approaches to MAXCLIQUE include tabu search, continuous-
based heuristics, genetic algorithms and ant colony optimization [26][12][4][10].
A good review of MAXCLIQUE and its algorithms is given in [7].

In this paper we give an ant system algorithm, called ASMC, for MAXCLI-
QUE. Our algorithm differs from ant colony optimization (ACO) algorithms in

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 24–35, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Finding Maximum Cliques with Distributed Ants 25

that each ant in ASMC does not solve the entire problem, and each ant has only
local knowledge of the graph. As in ACO, ants in ASMC use pheromone to help
guide the search. Also included in ASMC is a local optimization step where a
clique is constructed based on the positions of the ants in the graph. A major
impetus for the development of ASMC was to facilitate a variety of distribu-
ted implementations. This paper describes one such implementation. The paper
also gives a sequential implementation of ASMC. Experimental results on a set
of test graphs from DIMACS [14] show that ASMC is comparable to existing
algorithms for MAXCLIQUE.

The rest of the paper is organized as follows. In Section 2 we give some
preliminaries. In Section 3 we describe our ant system algorithm for the MA-
XCLIQUE problem. Section 4 describes a distributed implementation of this
algorithm. We compare the performance of our algorithm against some existing
algorithms in Section 5. The conclusion is given in Section 6.

2 Preliminaries

Ant colony optimization (ACO) is a meta heuristic inspired by the behavior of
foraging ants [9]. By using pheromone, ants are able to help each other find short
paths to food sources. The main idea in ACO is to have a collection of ants each
of which takes its turn solving the problem. For each solution found by an ant
an amount of pheromone proportionate to the quality of the solution is placed
in the appropriate places in the search space. The pheromone serves as a me-
ans of guiding later ants in their search for a solution. This technique has been
successfully applied to a number of problems including MAXCLIQUE, e.g., see
[9][10][21]. In an ACO algorithm, each individual ant has the full knowledge of
the problem and the placement of pheromone is done after an ant has solved the
problem, not while it is searching for the solution. In contrast, ants in our ant
system have only local knowledge. Here the placement of pheromone is done by
each ant as it is moving about the search space. Each individual ant follows the
same set of rules and none solves the problem by itself. It is from their collective
behavior that we obtain a solution to the problem. We can have more than one
species of ants in the system. Ants in different species can behave differently or
can follow the same sets of rules. The species may not interact directly except
perhaps through the pheromone. Species can be either collaborative or compe-
titive. This technique has been used successfully in solving other problems, e.g.,
see [5][6].

For MAXCLIQUE, each vertex in the input graph is considered as a location
that ants can occupy. In principle, each vertex can hold an arbitrary number of
ants. Ants in our system move from vertex to vertex along the edges of the graph.
As an ant traverses an edge of the graph it also puts down a certain amount of
pheromone on that edge. To allow for more exploration and possible escape from
local optima, pheromone evaporates over time. In addition to using pheromone
as a means of communication, ants in our system also use their positions to
communicate. For example, a vertex that is occupied by more ants of the same

26 T.N. Bui and J.R. Rizzo

species is more attractive to an ant of that species when it decides where to
move. As in most search algorithms of this type there is a constant tug-of-war
between exploration and exploitation of the search space. It is usually useful
to have more exploration in the beginning and more exploitation nearer to the
end so that the algorithm will not converge prematurely to a local optimum. To
allow for this type of strategy, ants in our system have an adaptive behavior. For
example, they rely less on pheromone and more on the structure of the graph
in the beginning of the algorithm. As the algorithm progresses ants make more
use of pheromone in determining their movement.

3 Ant System Algorithm for MAXCLIQUE (ASMC)

In this section we describe an ant system algorithm for the MAXCLIQUE pro-
blem. The main idea of the algorithm is as follows. Ants are distributed on the
graph vertices. Each ant follows the same set of rules to move from vertex to
vertex. The rules are designed so that ants are encouraged to aggregate on sets of
vertices that are highly connected. These highly connected portions of the graph
then serve as candidate sets of vertices from which we can construct cliques.

The algorithm starts by distributing ants of different species on to the vertices
of the graph according to some predetermined configuration. It then goes through
a number of stages. Each stage of the algorithm consists of a number of cycles. In
each cycle a fraction of the ants are selected to move. Each ant that is selected to
move will move with certain probability. Its destination is determined by various
factors such as pheromone and the structure of the neighborhood around the
ant. At the end of each stage, the algorithm constructs a clique based on the
current configuration of the ants. The algorithm then shuffles the ants around to
help them escape from local optima before moving on to the next stage. After
finishing all stages, the algorithm returns the largest clique found in all stages.
The algorithm is given in Figure 1. Details of the algorithm are given in the
remainder of this section.

3.1 Initialization

The algorithm starts by instantiating 6n ants for each species, where n is the
number of vertices in the graph. The number of species is a parameter to the
algorithm. The description that follows applies to each species. The ants are then
distributed to the vertices of the graph. To determine how the ants should be
distributed, the algorithm first runs a simple greedy algorithm to find a clique.
A large fraction (90%) of the ants are then distributed at random on vertices
of the clique found by the greedy algorithm. The remaining ants are distributed
randomly on the rest of the vertices. By distributing a majority of the ants to the
vertices of a clique found by the greedy algorithm we help speed up the search
process at the cost of a possible bias introduced by that clique. This potential
bias is alleviated somewhat by the random distribution of the remaining ants
and by the placement of different species.

Finding Maximum Cliques with Distributed Ants 27

Initialize ants
Distribute ants on vertices of the graph
for stage=1 to MaxStage
for cycle=1 to MaxCycle
Randomly activate 75% of all ants
if an ant a is activated

move(a)
endfor
Find cliques through local optimization
Save solutions
Shuffle ants

endfor
return the best solution found

Fig. 1. Ant System Algorithm for MAXCLIQUE

The greedy algorithm is given in Figure 2. This completes the initialization
step. The algorithm then goes through a number of stages. Each stage in turn
consists of a number of cycles and at the end of which a clique is constructed.
In each cycle 75% of the ants are activated. An activated ant can decide to
stay where it is or move to another vertex. In our experiments we found that
it is sufficient to have about 25 stages and 10 cycles in each stage. The next
subsection describes this process in more detail.

R ← ∅
for each v ∈ V

mark v feasible
endfor
sort V into decreasing degree order
for each v ∈ V in the sorted order

if v is feasible
R ← R ∪ {v}
for each w ∈ V that is not adjacent to v

mark w infeasible
endfor

endfor
return R

Fig. 2. A Greedy Algorithm for Finding a Clique

28 T.N. Bui and J.R. Rizzo

3.2 How an Ant Moves

When an ant is activated, i.e., selected to move, it first determines whether it
will move or not. This choice is made probabilistically and ants that are older are
less likely to move than younger ants. The age of an ant is the number of times
that it has moved. This rule enables the ants to explore more in the beginning
and move less later on.

If an ant decides to move then it can either move to a randomly selected
vertex or to a vertex determined by the vertex attractiveness (VA) heuristic.
The former choice is made with a fixed probability. The availability of this choice
offers the ants a chance to escape from local optima. The latter choice, when
selected, uses the VA heuristic to help determine the ant’s destination. The
VA heuristics computes, for each vertex adjacent to the vertex that the ant is
currently on, the probability that the ant will move to that vertex. The ant then
selects its destination based on this probability. More specifically, if an ant is
currently on vertex i and j is a vertex adjacent to i then the probability that
the ant will move to j, called pi,j , is defined as follows.

pi,j =
κ · τi,j(t) + λ · νj(t) + µ · σd

j∑
j∈L(i) [κ · τi,j(t) + λ · νj(t) + µ · σd

j]

where κ, λ, and µ are nonnegative weights, L(i) is a list of vertices that are adja-
cent to i, and τi,j(t), νj(t), σd

j are the pheromone score, the population score and
the connectivity score, respectively. The pheromone score, τi,j(t), is the total
amount of pheromone on the edge (i, j) at time t. Each time an ant traverses
an edge of the graph, it lays down a certain amount of pheromone on that edge.
Under the assumption that frequently traversed edges most likely link groups of
highly connected vertices, the pheromone score, acting as a form of memory that
records the aggregate behavior of the ants, helps encourage ants to follow these
edges. The population score, νj(t), is the number of same-species ants on vertex j
at time t. This score helps to cluster ants of the same species. This score is helpful
as the final clique is extracted from groups of vertices that are occupied by ants
of the same species. Finally, the connectivity score, σd

j , measures how well the
vertices in the neighborhood of j with radius d connect to each other. More for-
mally, let V d

j = {u ∈ V | u is reachable from j by a path of length at most d}
and Ed

j be the set of edges of the graph that have both endpoints in V d
j . Then,

σd
j =

2|Ed
j |

|V d
j |(|V d

j | − 1)
.

The inclusion of the connectivity score in the computation of pi,j helps ants to
discover well-connected regions of the graph.

The nonnegative weights κ and λ are constants whereas µ decreases over
time. In the beginning µ is set to a value that is higher than both κ and λ so
that the structure of the graph plays a much larger role in the exploration of
the ants. µ is decreased linearly over time to allow the aggregate behavior of

Finding Maximum Cliques with Distributed Ants 29

the ants, expressed through pheromone scores and population scores, to help in
guiding the movement of an ant. We stop decreasing the value of µ when its
value is comparable to that of κ and λ.

The connectivity score depends on the neighborhood radius d, which increases
as the ant’s age increases. Initially, d is set to 1. Overall, as an ant gets older
it moves less often but when it does it looks at a larger neighborhood before
deciding where to move. This works well since, as time passes, more information
are stored in the pheromone deposited on the edges and ant positions.

At the end of a stage, the algorithm extracts a clique from the current ant
configuration. It also attempts to help the ants move away from a possible local
optimum by randomly moving a small fraction of the ants to different locations
on the graph.

3.3 Local Optimization

At the end of each stage, the algorithm takes the following actions for each
species. It first extracts a candidate set of vertices C based on the positions of the
ants in that species and the placement of pheromone on the graph. Specifically,
each vertex v in the graph is given a threshold score by the following formula

thresholdScore(v) = αnS
v + βpv,

where nS
v is the number of ants of species S occupying vertex v, pv is the total

amount of pheromone on all edges incident to v, and α and β are weights that
vary after each stage, from 10 to 5 and from 0.1 to 1, respectively. In this fashion,
the threshold scores emphasize the number of ants in the earlier stages, when
exploration is important, and emphasize the pheromone in the later stages when
exploitation is more important. The candidate set C is obtained by taking those
vertices whose threshold scores are in the top γ percent, where γ varies from
10% to 25% over the course of the algorithm. In the beginning stages it is not
expected that ant configurations would reflect the highly connected regions of
the graph very well as ants may not have enough time to explore the graph
yet. In later stages, ant configurations would be more accurate and hence it is
reasonable to increase γ.

The next step in the FindClique algorithm is to expand the size of the candi-
date set C. This is done by adding vertices to C until C has grown by δ%. The
added vertices are selected in order of how well they are connected to C. That
is, the more neighbors a vertex has in C the higher it is on the list of vertices to
be selected. This step is done to ensure that any nearby local optima that the
ant configuration missed are included in the candidate set. FindClique seems to
work well when δ varies over time from 0% to 1.3%.

Finally, a clique is extracted from this candidate set in a greedy manner
similar to the greedy algorithm described earlier. The full FindClique algorithm
is given in Figure 3.

The clique R obtained by the FindClique algorithm is then improved in a
simple manner by examining each vertex that is not in R and see if adding it to

30 T.N. Bui and J.R. Rizzo

FindClique (G = (V , E), S) // S: species name
// build candidate set
for each v ∈ V
thresholdScore(v) = α · nS

v + β · pv

endfor
Let C be the set of vertices whose threshold
scores are in the the top γ%
// expand candidate set
for each v ∈ V
solutionDegree(v) = |{u ∈ C | (v, u) ∈ E}|

endfor
Select vertices, in decreasing order of solution
degree, to add to C until C has grown by δ%

// identify clique
R← ∅
while C �= ∅
Update solutionDegree of vertices in C
v ← highest solutionDegree vertex in C
R← R ∪ {v}
C ← C − ({v} ∪ {u ∈ C | (u, v) �∈ E})

endwhile
return R

Fig. 3. The FindClique algorithm

R still gives us a clique. If so, the vertex is added to R. For each vertex that is
added to R in this manner, the algorithm also adds more ants of the appropriate
species to that vertex and adds pheromone to the edges incident to that vertex.
This is done to enforce the fact that the new R is a clique which can be utilized
by the ants in the next stage.

The last operation the algorithm performs before going to the next stage is
to perturb the ant configuration enough to allow the ants a chance to break
out of a possible local optimum. The perturbation is, however, not too large so
that all previous information gathered by the ants are destroyed. Specifically, the
algorithm selects 40% of the vertices at random. The ants on the selected vertices
are swapped randomly among these vertices. Furthermore, the pheromone on
10% of the edges incident to each of these selected vertices is reduced by a small
amount. Experimental results found that this perturbation produced desirable
effects.

The algorithm is now ready to start another stage. When all stages have
finished, the algorithm returns the largest clique found at the end of each stage.

Finding Maximum Cliques with Distributed Ants 31

4 The Distributed Implementation

ASMC is especially suited to distributed implementation since ants contribute
partial solutions based on local information. Distribution makes it possible to
optimize the algorithm for speed, due to parallel processing, or for space, due to
partitioning ants and large graphs over several machines. Though the benefits
gained depend on the specific implementation, ASMC itself does not preclude
any of the benefits.

The distributed implementation built for this paper is a simple proof of con-
cept and, as such, perfoms synchronous interprocess communication through a
central server. Ants are distributed across four machines, each of which has a
complete copy of the graph. The idea is for ants to move from processor to
processor. One machine is designated the server and the others clients 1, 2 and
3. The server coordinates four synchronous transactions: starting, ant transfer,
local optimization and ending.

– To start, the server first waits for each client to connect. It then partitions
the vertices into four roughly equal sets and assigns each set to a processor,
including itself. It sends each client a list of which vertices are “owned” by
which processors.

– Ant transfer occurs at the end of each stage. The server asks each client
for a list of ants that are moving to other processors. It sorts these ants
according to their destinations and sends each client a list of incoming ants.
Each processor instantiates the ants on its copy of the graph. It also updates
cached data regarding vertices and edges connected to its “owned” vertices.
The cached data makes it possible for ants to make informed decisions about
whether to move to another processor in the future.

– Local optimization occurs after each ant transfer. Each client sends the
server vertex and edge data, and the server performs the same operations as
in the sequential implementation of ASMC. In principle, this step could be
redesigned to be less centralized.

– The server ends by letting each client know that the run has ended. Syn-
chonized starting and ending makes it simpler to invoke the program from
a script.

Though this implementation is rather simple, other distributed ASMC de-
signs are possible. For example, one could build a less centralized, peer-to-peer
model. The ant transfers could occur asynchronously throughout each stage. The
graph partitions could adapt over time to minimize the number of shared edges.
The graph itself could be distributed so that each client is completely unaware
of vertices it does not “own,” thereby enabling runs on extremely large graphs
in a reasonable time.

5 Experimental Results

In this section we describe the results obtained from testing the sequential im-
plementation and the distributed implementation of ASMC.

32 T.N. Bui and J.R. Rizzo

Sequential Implementation. The algorithm was implemented in C++ and
run on an Intel Pentium IV 2.4GHz machine. The algorithm was tested on a
set of 30 graphs selected from the benchmark graphs of the Second DIMACS
Implementation Challenge [14]. The graphs that we used have up to 1,500 verti-
ces and over 500,000 edges. There are 9 classes of graphs. The C-fat graphs are
from fault diagnosis problems [2], the Johnson and Hamming graphs are from
problems in coding theory [24][25]. The Keller graphs are from tiling problems
in geometry [15][16]. The remaining families of graphs: San, Sanr, Brock, P-hat
and Mann are various types of random graphs with known optimal cliques. In
our implementation of ASMC only one species was used.

For each graph, ASMC is run 100 times. Table 1 summarizes the results
produced by ASMC. Overall, ASMC did very well for graphs in the classes C-
fat, Keller, Johnson and Hamming. It always found the optimal solution. For
all but two of the tested graphs in the San and Sanr families ASMC found
the optimal solution. For the Mann graphs the solutions returned by ASMC
were within 1% of the optimal solution. The most difficult families of graphs for
ASMC were the Brock and P-hat graphs. For the P-hat graphs ASMC produced
solutions that were within 10% of the optimal solution, with some being optimal.
However, for the Brock graphs solutions given by ASMC were as bad as 18%
from the optimal. These results seem to be consistent with those obtained by
other algorithms. It should be noted that in developing ASMC, the parameters
used were derived from experiments based only on three graphs from this set:
keller4, san200 0.7 1 and p hat300 1.

We compare the results given by ASMC against the following three algo-
rithms for MAXCLIQUE: (i) GMCA – a hybrid genetic algorithm [4], (ii) CBH
– a global optimization algorithm that uses a continuous formulation of MAXC-
LIQUE [12], and (iii) IHN – a neural approximation algorithm based on discrete
Hopfield networks [3]. These algorithms are chosen to represent different appro-
aches to MAXCLIQUE as well as for the availability of their test results. Table 1
summarizes the results of ASMC together with these three algorithms. It is clear
that ASMC is comparable to the other algorithms. We provided no running time
comparisons since the algorithms were tested on different machines and there
were not sufficient information for us to derive reasonable conversion factors for
the running times. We believe, however, that ASMC might be slower than some
of these algorithms.

There are other more recent algorithms for MAXCLIQUE [1][10][19]. Their
results are not included in Table 1 since there are not enough overlapped test
results [1][10] or the problem solved is slightly different from MAXCLIQUE (the
size of the largest known clique is required as an input to the algorithm) [19].
Based on the available data ASMC is also comparable to the algorithms of [1]
and [10].

Distributed Implementation. The distributed implementation of ASMC was
run on four Sun Blade 100 450MHz workstations. Due to time limitations we
were able to run the algorithm only on a subset of the 30 test graphs. Also, we

Finding Maximum Cliques with Distributed Ants 33

ran the algorithm 100 times for each graph. The results are comparable to that
of the sequential implementation. Table 2 summarizes the results.

Table 1. ASMC solution quality (sequential implementation)

Graph Vertices Edges Opt ASMC ASMC (StdDev) Avg GMCA CBH IHN
Best∗ Avg∗ Time∗† Best Best Best

c-fat200-1 200 1534 12 12 12.00 (0.00) 0.46 12 12 12
c-fat500-1 500 4459 14 14 14.00 (0.00) 1.55 14 14 14
johnson16-2-4 120 5460 8 8 8.00 (0.00) 1.58 8 8 8
johnson32-2-4 496 107880 16 16 16.00 (0.00) 48.97 16 16 16
keller4 171 9435 11 11 10.44 (0.76) 3.16 11 10 –
keller5 776 225990 27 26 21.90 (1.20) 110.34 18 21 –
hamming10-2 1024 518656 512 512 512.00 (0.00) 281.04 512 512 512
hamming8-2 256 31616 128 128 128.00 (0.00) 11.20 128 128 128
san200 0.7 1 200 13930 30 30 18.81 (5.35) 4.85 30 15 30
san200 0.9 1 200 17910 70 70 47.72 (4.18) 5.75 – – 70
san200 0.9 2 200 17910 60 60 40.80 (5.73) 5.76 – – 41
san200 0.9 3 200 17910 44 37 32.72 (1.12) 6.02 – – –
san400 0.5 1 400 39900 13 13 8.35 (0.91) 16.61 7 8 –
san400 0.9 1 400 71820 100 100 55.74 (11.67) 29.83 50 50 –
sanr200 0.7 200 13868 18 18 15.32 (0.83) 4.80 17 18 17
sanr400 0.5 400 39984 13 13 10.58 (0.57) 16.56 12 12 12
san1000 1000 250500 15 15 9.66 (0.74) 135.42 8 8 10
brock200 1 200 14834 21 20 17.98 (0.93) 5.12 20 20 –
brock400 1 400 59723 27 25 20.14 (0.80) 25.23 20 23 –
brock800 1 800 207505 23 20 16.65 (0.77) 102.46 18 20 –
p hat300 1 300 10933 8 8 7.17 (0.38) 4.26 8 8 8
p hat300 2 300 21928 25 25 23.93 (0.81) 8.84 – – 25
p hat300 3 300 33390 36 36 31.82 (1.04) 12.83 – – 36
p hat500 1 500 31569 9 9 8.19 (0.47) 14.19 9 9 9
p hat500 2 500 62946 36 36 32.03 (1.45) 29.40 – – 36
p hat700 1 700 60999 11 11 8.42 (0.54) 30.87 8 11 11
p hat1000 1 1000 122253 10 10 8.73 (0.57) 68.00 8 10 10
p hat1500 1 1500 284923 12 11 9.54 (0.66) 177.70 10 11 –
MANN a27 378 70551 126 125 124.64 (0.52) 27.89 125 121 –
MANN a45 1035 533115 345 341 338.93 (1.01) 282.15 337 336 –
∗Results for 100 runs per graph. †All times are in seconds.

6 Conclusion

This paper describes an ant system algorithm for MAXCLIQUE which seems
to perfom comparably with the current best known algorithms for this problem.
One possible improvement of ASMC is to increase the diversity of the initial ant
configuration. This can be done by generating several cliques instead of just one
using the same greedy algorithm. Another direction is to make the distributed
implementation more scalable, more network efficient and less centralized.

34 T.N. Bui and J.R. Rizzo

Table 2. ASMC solution quality (distributed implementation)

Graph Vertices Edges Opt ASMC ASMC (StdDev) Avg
Best∗ Avg∗ Time∗†

c-fat200-1 200 1534 12 12 12.00 (0.00) 0.72
c-fat500-1 500 4459 14 14 14.00 (0.00) 2.61
johnson16-2-4 120 5460 8 8 8.00 (0.00) 1.37
keller4 171 9435 11 11 10.49 (0.64) 3.21
hamming8-2 256 31616 128 128 127.26 (2.78) 32.70
san200 0.7 1 200 13930 30 30 17.16 (1.93) 6.29
san200 0.9 1 200 17910 70 48 47.09 (0.40) 10.64
sanr200 0.7 200 13868 18 17 15.44 (0.69) 6.22
brock200 1 200 14834 21 20 18.49 (0.64) 7.21
p hat300 1 300 10933 8 8 8.00 (0.00) 4.52
p hat500 1 500 31569 9 9 8.11 (0.31) 33.60
∗Results for 100 runs per graph. †All times are in seconds.

Acknowledgements. The authors would like to thank Sue Rizzo and Linda
Null for useful discussions.

References

1. R. Battiti and M. Protasi, “Reactive Local Search for Maximum Clique,” Procee-
dings of the Workshop on Algorithm Engineering (WAE’97), Venice, G. F. Italiano
and S. Orlando, Eds., Venice, Italy, 1997, pp. 74–82.

2. P. Berman and A. Pelc, “Distributed Fault Diagnosis For Multiprocessor Systems,”
Proceedings of the 20th Annual International Symposium on Fault-Tolerant Com-
puting, pp. 340–346, Newcastle, UK, 1990.

3. A. Bertoni, P. Campadelli and G. Grossi, “A Discrete Neural Algorithm for the
Maximum Clique Problem: Analysis and Circuit Implementation,” Proceedings of
the Workshop on Algorithm Engineering (WAE’97), Venice, G. F. Italiano and S.
Orlando, Eds., Venice, Italy, 1997.

4. T. N. Bui and P. H. Eppley, “A Hybrid Genetic Algorithm for the Maximum
Clique Problem,” Proceedings of the Sixth International Conference on Genetic
Algorithms (ICGA), L. Eshelman (Ed.), pp. 748–484, Morgan Kauffman Publis-
hers, 1995.

5. T. N. Bui and C. M. Patel, “An Ant System Algorithm for Coloring Graphs,”
Computational Symposium on Graph Coloring and Generalizations (COLOR02),
Ithaca, NY, September 2002.

6. T. N. Bui and L. C. Strite, “An Ant System Algorithm for Graph Bisection,”
GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Con-
ference, W. B. Langdon et al. (Eds.), pp. 43–51, Morgan Kauffman Publishers,
2002.

7. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The Maximum Cli-
que Problem,” D.-Z. Du and P. M. Pardalos (Eds.), Handbook of Combinatorial
Optimization, 4, Kluwer Academic Publishers, Boston, MA, 1999.

Finding Maximum Cliques with Distributed Ants 35

8. K. Corradi and S. Szabo, “A Combinatorial Approach for Keller’s Conjecture,”
Periodica Mathematica Hungarica, 21, pp. 95–100, 1990.

9. M. Dorigo and G. Di Caro, “The Ant Colony Optimization Meta-Heuristic,” New
Ideas In Optimization, D.Corne, M. Dorigo and F. Glover (Eds.), McGraw-Hill,
London, pp. 11–32, 1999.

10. S. Fenet and C. Solnon “Searching for Maximum Cliques with Ant Colony
Optimization,” in Applications of Evolutionary Computing, Proceedings of the
EvoWorkshops 2003, April 2003 Lecture Notes in Computer Science, No. 2611,
Springer-Verlag, pp. 236-245

11. M. Garey and D. Johnson, Computers and Intractibility: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco, 1979.

12. L. E. Gibbons, D. W. Hearn and P. M. Pardalos, “A Continuous Based Heuristic
for the Maximum Clique Problem,” in [14], pp. 103–124, 1996.

13. J. Hastad, “Clique Is Hard to Approximate within n1−ε,” Acta Mathematica, 182,
pp. 105–142, 1999.

14. D. S. Johnson and M. A. Trick (Editors), Cliques, Coloring and Satisfiability –
Second DIMACS Implementation Challenge 1993, DIMACS Series in Discrete Ma-
thematics and Theoretical Computer Science, American Mathematical Society, Vo-
lume 26 (1996).

15. O. H. Keller, “Über die lückenlose Erfüllung des Raumes mit Würfen,” Journal für
die reine und angewandte Mathematik, 163, pp. 231–238, 1930.

16. J. C. Lagarias and P. W. Shor, “Keller’s Cube-Tiling Conjecture Is False In High
Dimensions,” Bulletin of the American Mathematical Society, 27(2), pp. 279–283,
1992.

17. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North-
Holland, Amsterdam, 1979.

18. C. Mannino and A. Sassano, “Solving Hard Set Covering Problems,” Operations
Research Letters, 18, pp. 1–5, 1995.

19. E. Marchiori, “Genetic, Iterated and Multistart Local Search for the Maximum
Clique Problem,” Applications of Evolutionary Computing, Proceedings of the
EvoWorkshops 2002: EvoCOP, EvoIASP, EvoSTIM/EvoPLAN, Kinsale, Ireland,
S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, G.R. Raidl (Eds.), pp. 112–121,
April 3-4, 2002.

20. H. Minkowski, Diophantische Approximationen, Teubner, Leipzig, 1907.
21. G. Navarro Varela and M.C. Sinclair, “Ant Colony Optimisation for Virtual-

Wavelength-Path Routing and Wavelength Allocation,” Proceedings of the Con-
gress on Evolutionary Computation (CEC’99), Washington DC, July 1999.

22. O. Perron, “Über lückenlose Ausfüllung des n-dimensionalen Raumes durch kon-
gruente Würfel,” Mathematische Zeitschrift, 46, pp. 1–26, 161–180, 1940.

23. L. Sanchis and A. Jagota, “Some Experimental and Theoretical Results on Test
Case Generators for the Maximum Clique Problem,” INFORMS Journal on Com-
puting, 8(2), pp. 87–102, Spring 1996.

24. N. J. A. Sloane, “Unsolved Problems in Graph Theory Arising from the Study of
Codes,” Graph Theory Notes of New York, XVIII, pp. 11–20, 1989.

25. N. J. A. Sloane and F. J. MacWilliams, The Theory of Correcting Codes, North
Holland, Amsterdam, 1979.

26. P. Soriano and M. Gendreau, “Tabu Search Algorithms for the Maximum Clique
Problem,” in [14], pp. 221–244, 1996.

	Introduction
	Preliminaries
	Ant System Algorithm for MAXCLIQUE (ASMC)
	Initialization
	How an Ant Moves
	Local Optimization

	The Distributed Implementation
	Experimental Results
	Conclusion

