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Abstract. This study introduces the particle swarm metaphor to the
domain of organizational adaptation. A simulation model (OrgSwarm)
is constructed to examine the impact of strategic inertia, in the presence
of errorful assessments of future payoffs to potential strategies, on the
adaptation of the strategic fitness of a population of organizations. The
results indicate that agent (organization) uncertainty as to the payoffs of
potential strategies has the affect of lowering average payoffs obtained by
a population of organizations. The results also indicate that a degree of
strategic inertia, in the presence of an election mechanism, assists rather
than hampers adaptive efforts in static and slowly changing strategic
environments.

1 Introduction

The objective of this study is to investigate the affect of strategic inertia, in
the presence of uncertainty as to future payoffs to potential strategies, on the
rate of strategic adaptation of a population of organizations. Following a long-
established metaphor of adaptation as search [14], strategic adaptation is con-
sidered in this study as an attempt to uncover peaks on a high-dimensional
strategic landscape. Some strategic configurations produce high profits, others
produce poor results. The search for good strategic configurations is difficult
due to the vast number of configurations possible, uncertainty as to the nature
of topology of the strategic landscape faced by an organization, and changes in
the topology of this landscape over time. Despite these uncertainties, the se-
arch process for good strategies is not blind. Decision-makers receive feedback
on the success of their current and historic strategies, and can assess the payoffs
received by the strategies of their competitors [9]. Hence, certain areas of the
strategic landscape are illuminated. In an organizational setting, a strategy can
be conceptualized as being the choice of what activities an organization will
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perform, and the subsequent choices as to how these activities will be perfor-
med [12]. These choices define the strategic configuration of the organization.
Recent work by [10] and [13] has recognized that strategic configurations consist
of interlinked individual elements (decisions), and have applied general models
of interconnected systems such as Kauffman’s NK model to examine the impli-
cations of this for processes of organizational adaptation. This study adopts a
similar approach, and employs the NK framework to generate a series of strategic
landscapes. The performance of a population of organizations in searching the
landscapes for high payoff locations under differing search heuristics, is exami-
ned. A key characteristic of the framework which integrates the search heuristics
examined in this study, is that organizations do not adapt in isolation, but in-
teract with each other. Their efforts at strategic adaption are guided by ‘social’
as well as individual learning. The work of [5,8], drawing on a swarm metaphor,
has emphasized similar learning mechanisms. We extend this work into the or-
ganizational domain, by constructing a simulation model (OrgSwarm) based on
this metaphor to examine the affect of strategic inertia on the rate of strategic
adaptation of a population of organizations.

2 Particle Swarm Algorithm

This section provides an introduction to the basic Particle Swarm algorithm
(PSA).1 A fuller description of this algorithm and the cultural model which
inspired it is provided in [5,8]. Under the particle swarm metaphor, a swarm of
particles (entities) are assumed to move (fly) through an n-dimensional space,
typically looking for a function optimum. Each particle is assumed to have two
associated properties, a current position and a velocity. Each particle also has a
memory of the best location in the search space that it has found so far (pbest),
and knows the location of the best location found to date by all the particles
in the population (gbest). At each step of the algorithm, particles are displaced
from their current position by applying a velocity vector to them. The size and
direction of this velocity is influenced by the velocity in the previous iteration
of the algorithm (simulates ‘momentum’), and the current location of a particle
relative to its pbest and gbest. Therefore, at each step, the size and direction of
each particle’s move is a function of its own history (experience), and the social
influence of its peer group. A number of variants of the PSA exist. The following
paragraphs provide a description of the basic continuous version described by
[8]. Each particle i has an associated current position in search space xi, a
current velocity vi, and a personal best position in search space yi. During each
iteration of the algorithm, the location and velocity of each particle is updated
using equations (1-2). Assuming a function f is to be maximized, that the swarm
consists of n particles, and that r1, r2 are drawn from a uniform distribution in
the range (0,1), the velocity update is as follows:

1 The term PSA is used in place of PSO (Particle Swarm Optimization) in this paper,
as the object is not to develop a tool for ‘optimizing’, but to adapt and apply the
swarm metaphor as a model of organizational adaptation.
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vi(t + 1) = Υ (Wvi(t) + c1r1(yi − xi(t)) + c2r2(ŷ − xi(t))) (1)

where ŷ is the location of the global-best solution found by all the particles. In
every iteration of the algorithm, each particle’s velocity is stochastically acce-
lerated towards its previous best position and towards a neighborhood (global)
best position. The weight-coefficients c1 and c2 control the relative impact of
pbest and gbest locations on the velocity of a particle. The parameters r1 and r2
ensure that the algorithm is stochastic. A practical affect of the random coeffi-
cients r1 and r2, is that neither the individual nor the social learning terms are
always dominant. Sometimes one or the other will dominate [8]. Although the
velocity update has a stochastic component, the search process is not ‘random’.
It is guided by the memory of past ‘good’ solutions (corresponding to a psycho-
logical tendency for individuals to repeat strategies which have worked for them
in the past [6]), and by the global best solution found by all particles thus far.
W represents a momentum coefficient which controls the impact of a particle’s
prior-period velocity on its current velocity. Each component of a velocity vector
vi is restricted to a range [−vmax, vmax] to ensure that individual particles do
not leave the search space. The implementation of a vmax parameter can also
be interpreted as simulating the incremental nature of most learning processes
[6]. The value of vmax is usually chosen to be k ∗ xmax, where 0 < k < 1. Υ
represents a constriction coefficient which reduces in value during iterations of
the algorithm. This ensures that particles tend to converge over time, as the
amplitude of their oscillations (caused by the velocity equation) decreases [8].
Once the velocity update for particle i is determined, its position is updated and
pbest is updated (equations 3-4) if necessary.

xi(t + 1) = xi(t) + vi(t + 1) (2)

yi(t + 1) = yi(t) if, f(xi(t)) ≤ f(yi(t)), (3)

yi(t + 1) = xi(t) if, f(xi(t)) > f(yi(t)) (4)

After all particles have been updated, a check is made to determine whether
gbest needs to be updated (equation 5).

ŷ ∈ (y0, y1, ..., yn)|f(ŷ) = max (f(y0), f(y1), ..., f(yn)) (5)

Despite its simplicity, the algorithm is capable of capturing a surprising level
of complexity, as individual particles are capable of both individual and social
learning. Learning is ‘distributed’ and parallel. Communication (interactions)
between agents (individuals) in a social system may be direct or indirect. An
example of the former could arise when two organizations trade with one another.
Examples of the latter include
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i. The observation of the success (or otherwise) of a strategy being pursued by
another organization, and

ii. ‘Stigmergy’ which arises when an organization modifies the environment,
which in turn causes an alteration of the actions of another organization at
a later time

The mechanisms of the Particle Swarm algorithm bear prima facie similarities
to those of the domain of interest, organizational adaptation. It embeds concepts
of a population of entities which are capable of individual and social learning.
However, the model requires modification before it can employed as a plausible
model of organizational adaptation. These modifications, along with a definition
of the strategic landscape used in this study are discussed in the next section.

3 Simulation Model

The two key components of the simulation model are the landscape generator
(environment), and the adaption of the basic Particle Swarm algorithm to in-
corporate the activities and interactions of the agents (organizations).

3.1 Strategic Landscape

In this study, the strategic landscape is defined using Kauffman’s NK model [3,
4]. It is noted ab initio that application of the NK model to define a strategic
landscape is not atypical and has support from existing literature in organizatio-
nal science [10,13], [2]. The NK model considers the behavior of systems which
are comprised of a configuration (string) of N individual elements. Each of these
elements are in turn interconnected to K other of the N elements (K<N). In a
general description of such systems, each of the N elements can assume a finite
number of states. If the number of states for each element is constant (S), the
space of all possible configurations has N dimensions, and contains a total of
∏N

i=1 Si possible configurations.
In Kauffman’s operationalization of this general framework [4], the number of
states for each element is restricted to two (0 or 1). Therefore the configuration of
N elements can be represented as a binary string . The parameter K, determines
the degree of fitness interconnectedness of each of the N elements and can vary
in value from 0 to N-1. In one limiting case where K=0, the contribution of each
of the N elements to the overall fitness value (or worth) of the configuration are
independent of each other. As K increases, this mapping becomes more complex,
until at the upper limit when K=N-1, the fitness contribution of any of the N
elements depends both on its own state, and the simultaneous states of all the
other N-1 elements, describing a fully-connected graph.
If we let si represent the state of an individual element i, the contribution of
this element (fi) to the overall fitness (F ) of the entire configuration is given by
fi(si) when K=0. When K>0, the contribution of an individual element to over-
all fitness, depends both on its state, and the states of K other elements to which
it is linked (fi(si : si1, ..., sik)). A random fitness function (U(0,1)) is adopted,
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and the overall fitness of each configuration is calculated as the average of the
fitness values of each of its individual elements. Therefore, if the fitness values
of the individual elements are f1, ..., fN , overall fitness (F ) is F =

[∑N
i=1 fi

N

]
. Al-

tering the value of K affects the ruggedness of the described landscape (graph),
and consequently impacts on the difficulty of search on this landscape [3], [4].
As K increases, the landscape becomes more rugged, and the best peaks on the
landscape become higher, but harder to find. The strength of the NK model in
the context of this study is that by tuning the value of K it can be used to gene-
rate strategic landscapes (graphs) of differing degrees of local-fitness correlation
(ruggedness). The strategy of an organization is characterized as consisting of N
attributes [10]. Each of these attributes represents a strategic decision or policy
choice, that an organization faces. Hence, a specific strategic configuration s, is
represented as a vector s1, . . . , sN where each attribute can assume a value of
0 or 1 [13]. The vector of attributes represents an entire organizational form,
hence it embeds a choice of markets, products, method of competing in a cho-
sen market, and method of internally structuring the organization [13]. Good
consistent sets of strategic decisions - configurations, correspond to peaks on
the strategic landscape. The definition of an organization as a vector of strate-
gic attributes finds resonance in the work of Porter [11,12], where organizations
are conceptualized as a series of activities forming a value-chain. The choice of
what activities to perform, and subsequent decisions as to how to perform these
activities, defines the strategy of the organization. The individual attributes of
an organization’s strategy interact. For example, the value of an efficient ma-
nufacturing process is enhanced when combined with a high-quality sales force.
Differing values for K correspond to varying degrees of payoff-interaction among
elements of the organization’s strategy [13].

3.2 Simulation Model

Five characteristics of the problem domain which impact on the design of a
plausible simulation model are:

i. The environment is dynamic
ii. Organizations are prone to strategic anchoring (inertia)
iii. Organizations do not knowingly select poorer strategies than the one they

already have (election operator)
iv. Organizations make errorful ex-ante assessments of fitness
v. Organizations co-evolve

In this study, our experiments consider the first four of these factors. Future
work will include the fifth factor. We note that this model bears passing re-
semblance to the ‘eleMentals’ model of [7], which combined a swarm algorithm
and an NK landscape, to investigate the development of culture and intelligence
in a population of hypothetical beings called ‘eleMentals’. However, the ‘strate-
gic’ model developed in this study is differentiated from the eleMental model,
not just on grounds of application domain, but because of the inclusion of an
‘inertia’ operator, and also through the investigation of both static and dynamic
environments.
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Dynamic environment. Organizations do not compete in a static environ-
ment. The environment may alter as a result of exogenous events, for example
a ‘regime change’ such as the emergence of a new technology, or a change in
customer preferences. This can be mimicked in the simulation by stochastically
respecifing the strategic landscape during the course of a simulation run. These
respecifications simulate a dynamic environment, and a change in the environ-
ment may at least partially negate the value of past learning (adaptation) by
organizations. Minor respecifications are simulated by altering the fitness values
associated with one of the N dimensions in the NK model, whereas in major
changes, the fitness of the entire NK landscape is redefined.

Inertia. Organizations do not have complete freedom to alter their current stra-
tegy. Their adaptive processes are subject to ‘conservatism’ arising from inertia.
Inertia springs from the organization’s culture, history, and the mental models
of its management. Inertia could be incorporated into the PSA in a variety of
ways. We have chosen to incorporate it into the velocity update equation, so
that the velocity and direction of the particle at each iteration is also a function
of the location of its ‘strategic anchor’. Therefore for the simulations, equation 1
is altered by adding an additional ‘inertia’ term:

vi(t + 1) = vi(t) + R1(yi − xi(t)) + R2(ŷ − xi(t) + R3(ai − xi(t)) (6)

where ai represents the position of the anchor for organization i (a full descrip-
tion of the other terms such as R1 is provided in the pseudo-code below). The
anchor can be fixed at the initial position of the particle at the start of the
algorithm, or it can be allowed to ‘drag’, thereby being responsive to the re-
cent adaptive history of the particle. Both the weight attached to the anchor
parameter (relative to those attached to pbest and gbest), can be altered by
the modeler. Two other alterations are made to the velocity update equation
as originally stated in equation 1. The momentum term W and the constriction
coefficient Υ are omitted on the grounds that these factors implicitly embed an
inertia component. Including these terms could therefore bias the comparison of
populations of organizations operating with/without an inertia heuristic.

Election operator. Real-world organizations do not usually intentionally move
to ‘poorer’ strategies. Hence, an ‘election’ operator is implemented, whereby po-
sition updates which would worsen an organization’s strategic fitness are discar-
ded. In these cases, an organization remains at its current location. One economic
interpretation of the election operator, is that strategists carry out a mental si-
mulation or ‘thought experiment’. If the expected fitness of the new strategy
appears unattractive, the ‘bad idea’ is discarded. The simulation incorporates a
conditional update or ratchet operator option, which if turned on, ensures that
an organization only updates (alters) its strategy if the new strategy being con-
sidered is better than its current strategy. Unfortunately, such evaluations in the
real-world, are subject to error. Strategists do not evaluate proposed strategies



18 A. Brabazon et al.

perfectly due to uncertainty and bounded rationality. The affect of errorful asses-
sments is simulated by subjecting the assessments to ‘noise’ using the following
formula:

fitness estimate = actual fitness of the new strategy * (1+ ‘error’) (7)

where error is drawn from a normal distribution with a mean of zero and a
modeler-defined standard deviation. Hence, despite the election operator, a stra-
tegist may sometimes choose a ‘bad’ strategy because of an incorrect assessment
of its fitness.

Outline of algorithm. A number of further modifications to the basic PSA
are required. As the strategic landscape is defined using a binary representation,
the basic PSA is adapted for the binary case. The pseudocode for the algorithm
is as follows:

For each dimension n
v[n]=v[n]+R1*(p[n]-x[n])+R2*(l[n]-x[n])+R3*(a[n]-x[n])
If(v[n]>Max) v[n]=Vmax
If(v[n]<-Vmax) v[n]=-Vmax
If(Pr<S(v[n]))t[n]=1
Else t[n]=0

If(fitness(t)*err)>fitness(x)) //conditional move
For each dimension n

x[n]=t[n]
UpdateAnchor(a) //if iteratively update anchor

//option is selected

R1, R2 and R3 are random weights drawn from a uniform distribution ranging
from 0 to R1max, R2max and R3max respectively, and they weight the importance
attached to gbest, lbest and the anchor in each iteration of the algorithm. R1,
R2 and R3 are constrained to sum up to 4.0. Therefore changing the weight
value of the anchor alters its significance in the adaptive process, relative to the
importance of gbest and lbest. x is the particle’s actual position, p is its past
best position, l the local best and a is the position of the particle’s anchor. Vmax

is set to 4.0. Pr is a probability value drawn from a uniform distribution ranging
from 0 to 1, and S is the sigmoid function: S(x) = 1

1+exp(−x) , which squashes v

into a 0 to 1 range, in order to implement a binary PSA. t is a temporary record
which is used in order to implement conditional moving. If the new strategy is
accepted, t is copied into x, otherwise t is discarded and x remains unchanged.
err is the error or noise, injected in the fitness evaluation, in order to mimic an
errorful forecast of the payoff to a proposed strategy.

4 Results

All reported fitnesses are the average population fitnesses, and average environ-
ment best fitnesses, across 30 separate simulation runs at the conclusion of the
5,000 iterations. On each simulation run, the NK landscape is specified anew,
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and the positions and velocities of particles are randomly initialized at the start
of each run. The simulations employ a population of 20 particles, with a circular
neighborhood of size 18. ‘Real-world’ strategy vectors consist of a large array
of strategic decisions. A value of N=96 is selected (arbitrary) in defining the
landscapes in this simulation. A series of landscapes of differing K values (0,4
and 10), representing differing degrees of fitness interconnectivity, were used in
the simulations.

Tables 1 and 2 provide the results for each of ten distinct PSA ‘variants’, at
the end of 5,000 iterations, across three static and dynamic NK landscape ‘scena-
rios’. In each scenario, the same series of simulations are undertaken. Initially, a
basic PSA is employed, without an anchor or a conditional move operator. This
simulates a population of organizations searching a strategic landscape, where
members of the population have no strategic inertia, and where organizations
do not utilize a ratchet (conditional move) operator in deciding whether to alter
their position on the strategic landscape. The basic PSA is then supplemented
by a series of strategic anchor formulations, ranging from a fixed position (fixed
at a randomly chosen initial position) anchor which does not change position
during the simulation, to one which adapts after a time-lag (moving anchor).
In both the initial and moving anchor experiments, a weight value of 1 is atta-
ched to the inertia term in the velocity equation, and a time-lag of 20 periods
is used for the moving anchor. In the experiments concerning the affect of error
when assessing the future payoffs to potential strategies, three values of error
are examined, 0, 0.05 (5%) and 0.20 (20%).

4.1 Static Landscape

Table 1 provides the results for the static NK landscape. Examining these results
suggests that the basic PSA, without inertia or ratchet operators, performs po-
orly on a static landscape, even when there is no error in assessing the ‘payoffs’
to potential strategies. The average populational fitness (averaged over each po-
pulation, across all 30 simulation runs) obtained after 5,000 iterations is not
better than random search, suggesting that unfettered adaptive efforts, based
on ‘social communication’ between organizations (gbest), and a memory of good
past strategies (pbest) is not sufficient to achieve high levels of populational fitn-
ess, even when organizations can make error-free assessments of the ‘payoff’ of
potential strategies. When a ratchet operator is added to the basic PSA (Rat-
chet PSA-No Anchor), a significant improvement (statistically significant at the
5% level) in both average populational, and average environment best fitness is
obtained across landscapes of all K values, suggesting that the simple decision
heuristic of only abandon a current strategy for a better one leads to notable
increases in populational fitness.

Errorful Assessment of Strategic Fitness. In real-world organizations, as-
sessments of the payoffs to potential strategies are not error-free. A priori we
do not know whether this could impact positive or negatively on the evolution
of populational fitness, as permitting errorful assessments of payoff could allow
an organization to escape from a local optimum on the strategic landscape, and
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Table 1. Average fitness after 5,000 iterations, static landscape.

Algorithm Fitness
(N=96, K=0) (N=96, K=4) (N=96, K=10)

Basic PSA 0.4641 0.5002 0.4991
Ratchet PSA-No Anchor 0.5756 0.6896 0.6789

Ratchet-No Anchor, e=0.05 0.4860 0.6454 0.6701
Ratchet-No Anchor, e=0.20 0.4919 0.5744 0.5789
Ratchet-Initial Anchor, w=1 0.6067 0.6991 0.6884

Ratchet-Initial Anchor, w=1, e=0.05 0.5297 0.6630 0.6764
Ratchet-Initial Anchor, w=1, e=0.20 0.4914 0.5847 0.5911

Ratchet-Mov. Anchor (20,1) 0.6692 0.7211 0.6976
Ratchet-Mov. Anchor (20,1, e=0.05) 0.5567 0.6675 0.6770
Ratchet-Mov. Anchor (20,1, e=0.20) 0.4879 0.5757 0.5837

possibly therefore to uncover a new ‘gbest’. In essence, an errorful assessment of
payoff may allow a short-term ‘wrong-way’ move (one which temporarily reduces
an organization’s payoff), but which in the longer-term leads to higher payoffs.
Conversely, it could lead to the loss of a promising but under-developed strategy,
if an organization is led away from a promising part of the strategic landscape
by an incorrect payoff assessment. To examine the impact of errorful payoff as-
sessment, results are reported for the Ratchet PSA-No Anchor, for values of the
error ratio of 0.05 and 0.20. Examining Table 1 shows that these produce lower
results (statistically significant at 5%) than the error-free case. As the size of the
error ratio increases, the average populational fitness declines, suggesting that
the utility of the ratchet operator decreases as the level of error in assessing the
payoff to potential strategies rises.
The experiments implementing strategic inertia (initial anchor with weight=1,
and moving anchor on a 20-lag period with weight=1) for each of the three values
of the error ratio generally indicate that the addition of strategic inertia enhances
average populational fitness. Comparing the results for the two forms of strategic
inertia indicates that a moving anchor performs better when organizations can
make error-free assessments of the payoff to potential strategies, but when these
payoffs are subject to error neither form of strategic inertia clearly dominates the
other in terms of producing the higher average populational fitness. In summary,
the results for the static landscape scenario do not support a hypothesis that er-
rorful assessments of payoffs to potential strategies are beneficial for populations
of organizations. In addition, the results broadly suggest that strategic inertia,
when combined with an election operator, produces higher average populational
fitness, but the benefits of this combination dissipates when the level of error in
assessing ex-ante payoffs gets large.

4.2 Dynamic Landscapes

The real world is rarely static, and changes in the environment can trigger adap-
tive behavior by agents in a system [1]. When the strategic landscape is wholly
or partially respecified, the benefits of past strategic learning by organizations is
eroded. In this simulation, two specific scenarios are examined. Table 2 provides
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the results for the case where a single dimension of the NK landscape is respeci-
fied in each iteration of the algorithm with a probability of P=0.00025, and also
the results for the case where the entire NK landscape is respecified with the
same probability (Figures 1 and 2 provides a graphic of the adaptive trajectories
of each search heuristic for K=4 and K=10, on both the static and dynamic
‘full respecification’ landscapes, and demonstrate that the simulation results are
not qualitatively sensitive to the choice of end-point). Qualitatively, the results
from both scenarios are similar to those obtained on the static landscape. The
basic PSA does not perform any better than random search. Supplementing the
basic PSA with the ratchet mechanism leads to a significant improvement in
populational fitness, with a further improvement in fitness occurring when the
ratchet is combined with an anchor. Adding errorful assessment of the payoffs
to potential strategies leads to a deterioration in populational fitnesses as the
error ratio increases, but as for the static landscape case, the addition of stra-
tegic inertia generally enhances average populational fitness for lower levels of
error in assessing payoffs. Comparing the results for the two forms of strategic
inertia indicates that a moving anchor performs better when organizations can
make error-free assessments of the payoff to potential strategies, but when these
payoffs are subject to error, neither form of strategic inertia dominates the other
in terms of producing the higher average populational fitness.

Table 2. Average fitness after 5,000 iterations, one dimension (entire landscape)
respecified stochastically.

Algorithm Fitness
(N=96, K=0) (N=96, K=4) (N=96, K=10)

Basic PSA 0.4667 (0.4761) 0.4987 (0.4886) 0.4955 (0.4961)
Ratchet PSA-No Anchor 0.5783 (0.5877) 0.6859 (0.6802) 0.6808 (0.6754)

R-No Anchor, e=0.05 0.4927 (0.5143) 0.6458 (0.6309) 0.6673 (0.6568)
R-No Anchor, e=0.20 0.4945 (0.5027) 0.5769 (0.5672) 0.5810 (0.5779)
R-Initial Anchor, w=1 0.6207 (0.6187) 0.6994 (0.6874) 0.6895 (0.6764)

R-Initial Anchor, w=1, e=0.05 0.5390 (0.5612) 0.6636 (0.6551) 0.6766 (0.6599)
R-Initial Anchor, w=1, e=0.20 0.4914 (0.5045) 0.5848 (0.5819) 0.5881 (0.5873)

R-Mov. Anchor (20,1) 0.6689 (0.6575) 0.7193 (0.7152) 0.6974 (0.6819)
R- Mov. Anchor (20,1, e=0.05) 0.5612 (0.5613) 0.6679 (0.6622) 0.6814 (0.6670)
R- Mov. Anchor (20,1, e=0.20) 0.4926 (0.5004) 0.5785 (0.5689) 0.5830 (0.5810)

5 Conclusions

In this paper, a novel synthesis of a strategic landscape defined using the NK
model, and a Particle Swarm metaphor is used to model the strategic adaption
of organizations. The results suggest that a degree of strategic inertia, in the
presence of an election operator, can generally assist rather than hamper the
adaptive efforts of populations of organizations in static and slowly changing
strategic environments, when organizations can accurately assess payoffs to fu-
ture strategies. The results also suggest that errorful assessments of the payoffs
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Fig. 1. Plot of the mean average fitness on the static (left) and dynamic (right)
landscape where k=4.
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Fig. 2. Plot of the mean average fitness on the static (left) and dynamic (right)
landscape where k=10.

to potential strategies leads to a deterioration in populational fitnesses as the
error ratio increases. It is also noted that despite the claim for the importance of
social learning in populations of agents, the results suggest that social learning
is not always enough, unless learnt lessons can be maintained by means of an
election mechanism.
No search heuristic will perform equally on all landscapes and across all scales of
environmental change. Hence, we acknowledge that the results of this study will
not generalize to all possible forms of landscape, and all rates of environmental
change. The affect of gbest, pbest and inertia terms, is to ‘pin’ each organization
to a region of the strategic landscape. To the extent that the entire population
of organizations have converged to a relatively small region of the landscape,
they may find it impossible to migrate to a new high-fitness region if that region
is far away from their current location. This suggests that the benefits of an
inertia heuristic for a population of organizations comes at a price, the risk
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of catastrophic failure of the entire population to adapt to a major change in
the strategic landscape. In real-world environments, this is compensated for by
the birth of new organizations. Finally, it is noted that the concept of inertia
or ‘anchoring’ developed in this paper is not limited to organizations, but is
plausibly a general feature of social systems. Hence, the extension of the social
swarm model to incorporate inertia may prove useful beyond this study.
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