
Modeling the Search Landscape of Metaheuristic
Software Clustering Algorithms

Brian S. Mitchell and Spiros Mancoridis

Department of Computer Science
Drexel University, Philadelphia PA 19104, USA
{bmitchell, spiros.mancoridis}@drexel.edu

http://www.mcs.drexel.edu/˜{bmitchel,smancori}

Abstract. Software clustering techniques are useful for extracting archi-
tectural information about a system directly from its source code struc-
ture. This paper starts by examining the Bunch clustering system, which
uses metaheuristic search techniques to perform clustering. Bunch pro-
duces a subsystem decomposition by partitioning a graph formed from
the entities (e.g., modules) and relations (e.g., function calls) in the
source code, and then uses a fitness function to evaluate the quality of
the graph partition. Finding the best graph partition has been shown to
be a NP-hard problem, thus Bunch attempts to find a sub-optimal result
that is “good enough” using search algorithms. Since the validation of
software clustering results often is overlooked, we propose an evaluation
technique based on the search landscape of the graph being clustered. By
gaining insight into the search landscape, we can determine the quality
of a typical clustering result. This paper defines how the search land-
scape is modeled and how it can be used for evaluation. A case study
that examines a number of open source systems is presented.

1 Introduction and Background

Since many software systems are large and complex, appropriate abstractions
of their structure are needed to simplify program understanding. Because the
structure of software systems is usually not documented accurately, researchers
have expended a great deal of effort studying ways to recover design artifacts
from source code.

For small systems, source code analysis tools [3,9] can extract the source-
level components (e.g., modules, classes, functions) and relations (e.g., method
invocation, function calls, inheritance) of a software system. However, for large
systems, these tools are, at best, useful for studying only specific areas of the
system.

For large systems there is significant value in identifying the abstract (high-
level) entities, and then modeling them using architectural components such as
subsystems and their relations. Subsystems provide developers with structural
information about the numerous software components, their interfaces, and their
interconnections. Subsystems generally consist of a collection of collaborating

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 2499–2510, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

2500 B.S. Mitchell and S. Mancoridis

source code resources that implement a feature or provide a service to the rest
of the system. Typical resources found in subsystems include modules, classes,
and possibly other subsystems.

The entities and relations needed to represent software architectures are not
found in the source code. Thus, without external documentation, we seek other
techniques to recover a reasonable approximation of the software architecture
using source code information. Researchers in the reverse engineering community
have applied a variety of software clustering approaches to address this problem.
These techniques determine clusters (subsystems) using source code component
similarity [18,4,17], concept analysis [10,5,1], or information available from the
system implementation such as module, directory, and/or package names [2].

In this paper we examine the Bunch software clustering system [12,11,13].
Unlike the other software clustering techniques described in the literature, Bunch
uses search techniques to determine the subsystem hierarchy of a software sys-
tem, and has been shown to produce good results for many different types of
systems. Additionally, Bunch works well on large systems [16] such as swing
and linux, and some work has been done on evaluating the effectiveness of the
tool [14,15].

Bunch starts by generating a random solution from the search space, and then
improves it using search algorithms. Bunch rarely produces the exact same result
on repeated runs of the tool. However, its results are very similar – this simi-
larity can be validated by inspection and by using similarity measurements [14].
Furthermore, as we will demonstrate later in this paper, we validated that the
probability of finding a good solution by random selection is extremely small,
thus Bunch appears to be producing a family of related solutions.

The above observations intrigued us to answer why Bunch produces similar
results so consistently. The key to our approach will be to model the search
landscape of each system undergoing clustering, and then to analyze how Bunch
produces results within this landscape.

2 Software Clustering with Bunch

The goal of the software clustering process is to partition a graph of the source-
level entities and relations into a set of clusters such that the clusters represent
subsystems. Since graph partitioning is known to be NP-hard [7], obtaining
a good solution by random selection or exhaustive exploration of the search
space is unlikely. Bunch overcomes this problem by using metaheuristic-search
techniques.

Figure 1 illustrates the clustering process used by Bunch. In the preparation
phase, source code analysis tools are used to parse the code and build a repository
of information about the entities and relations in the system. A series of scripts
are then executed to query the repository and create the Module Dependency
Graph (MDG). The MDG is a graph where the source code components are
modeled as nodes, and the source code relations are modeled as edges.

Once the MDG is created, Bunch generates a random partition of the MDG
and evaluates the “quality” of this partition using a fitness function that is called

Modeling the Search Landscape 2501

Preparation Phase

Source Code

Software Structure
Graph Generation

(e.g., MDG)

Source Code Analysis
(e.g., cia, Acacia)

MDG

System.out.println(…);

Clustering Phase

Search Space

Metaheuristic Search
Software Clustering

Algorithms
(e.g., Bunch)

Analysis & Visualization
Phase

Visualization

Additional Analysis
<gxl>
 <graph id=”G1">
 <node id=”C1">

 <node id=”M1"/>
 <node id=”M2"/>

 <edge from=”M1"

 to=”M2"/>

 ...
 </node>

 </graph>

</gxl>

Fig. 1. Bunch’s Software Clustering Process

Modularization Quality (MQ) [16]. MQ is designed to reward cohesive clusters
and penalize excessive inter-cluster coupling. MQ increases as the number of in-
traedges (i.e., internal edges contained within a cluster) increases and the num-
ber of interedges (i.e., external edges that cross cluster boundaries) decreases.

Given that the fitness of an individual partition can be measured, metaheuris-
tic search algorithms are used in the clustering phase of Figure 1 in an attempt to
improve the MQ of the randomly generated partition. Bunch implements several
hill-climbing algorithms [12,16] and a genetic algorithm [12].

Once Bunch’s search algorithms converge, a result can be viewed as XML [8]
or using the dotty [6] graph visualization tool.

2.1 Clustering Example with Bunch

This section presents an example illustrating how Bunch can be used to clus-
ter the JUnit system. JUnit is an open-source unit testing tool for Java, and
can be obtained online from http://www.junit.org. JUnit contains four main
packages: the framework itself, the user interface, a test execution engine, and
various extensions for integrating with databases and J2EE. The JUnit system
contains 32 classes and has 55 dependencies between the classes.

For the purpose of this example, we limit our focus to the framework pack-
age. This package contains 7 classes, and 9 inter-class relations. All remaining
dependencies to and from the other packages have been collapsed into a single
relation to simplify the visualization.

Figure 2 animates the process that Bunch used to partition the MDG of
JUnit into subsystems. In the left corner of this figure we show the MDG of
JUnit.

Step 2 illustrates the random partition generated by Bunch as a starting
point in the search for a solution. Since the probability of generating a “good”
random partition is small, we expect the random partition to be a low quality

http://www.junit.org

2502 B.S. Mitchell and S. Mancoridis

OtherPackagesFrameworkPackage

Extensions
Package

TestSuite

TestCase

Assert TestResult

UI
Package

TestFailure

Runner
Package

Comparison
Failure

Assertion
FailedError

OtherPackages
FrameworkPackage

Extensions
Package

UI
Package

TestSuite

TestCase

Assert

TestResult

TestFailure
Runner
Package

Comparison
Failure

Assertion
FailedError

OtherPackages

FrameworkPackage

RuntimeValidationSS

TestCaseSS

TestResultSS

Extensions
Package

Assert

TestSuite

TestCase

TestResult

UI
Package

TestFailure

Runner
Package

Assertion
FailedError

Comparison
Failure

1. JUnit MDG 2. A Random Partition of the
JUnit MDG

3. JUnit’s MDG After Clustering

Fig. 2. JUnit Example

solution. This intuition is validated by inspecting the random partition, which
contains 2 singleton clusters and a disproportionately large number of interedges
(i.e., edges that cross subsystem boundaries).

The random partition shown in step 2 is converted by Bunch into the final
result shown in step 3 of Figure 2. The solution proposed by Bunch has many
good characteristics as it groups the test case modules, the test result modules,
and the runtime validation modules into clusters.

The overall result shown in step 3 is a good result, but Bunch’s search algo-
rithms are not guaranteed to produce exactly the same solution for every run.
Thus, we would like to gain confidence in the stability of Bunch’s clustering
algorithms by analyzing the search landscape associated with each MDG.

3 Modeling the Search Landscape

This section presents an approach to modeling the search landscape of software
clustering algorithms. The search landscape is modeled using a series of views,
because software clustering results have many dimensions, and combining too
much detail into a single view is confusing.

The search landscape is examined from two different perspectives. The first
perspective examines the structural aspects of the search landscape, and the
second perspective focuses on the similarity aspects of the landscape.

3.1 The Structural Search Landscape

The structural search landscape highlights similarities and differences from a
collection of clustering results by identifying trends in the structure of graph
partitions. Thus, the goal of the structural search landscape is to validate the
following hypotheses:

– We expect to see a relationship between MQ and the number of clusters.
Both MQ and the number of clusters in the partitioned MDG should not
vary widely across the clustering runs.

Modeling the Search Landscape 2503

– We expect a good result to produce a high percentage of intraedges (edges
that start and end in the same cluster) consistently.

– We expect repeated clustering runs to produce similar MQ results.
– We expect that the number of clusters remains relatively consistent across

multiple clustering runs.

3.2 The Similarity Search Landscape

The similarity search landscape focuses on modeling the extent of similarity
across all of the clustering results. For example, given an edge < u, v > from
the MDG, we can determine, for a given clustering run, if modules u and v are
in the same or different clusters. If we expand this analysis to look across many
clustering runs we would like to see modules u and v consistently appearing (or
not appearing) in the same cluster for most of the clustering runs. The other
possible relationship between modules u and v is that they sometimes appear in
the same cluster, and other times appear in different clusters. This result would
convey a sense of dissimilarity with respect to these modules, as the < u, v >
edge drifts between being an interdedge and an intraedge.

4 Case Study

This section describes a case study illustrating the effectiveness of using the
search landscape to evaluate Bunch’s software clustering results. Table 1 de-
scribes the systems used in this case study, which consist of 7 open source sys-
tems and 6 randomly generated MDGs. Mixing the random graphs with real
software graphs enables us to compare how Bunch handles real versus randomly
generated graphs.

Table 1. Application descriptions

Application Modules Relations Application
Name in MDG in MDG Description

Telnet 28 81 Terminal emulator
PHP 62 191 Internet scripting language
Bash 92 901 Unix terminal environment
Lynx 148 1,745 Text-based HTML browser
Bunch 220 764 Software clustering tool
Swing 413 1,513 Standard Java user interface framework
Kerberos5 558 3,793 Security services infrastructure
Rnd5 100 247 Random graph with 5% edge density
Rnd50 100 2,475 Random graph with 50% edge density
Rnd75 100 3,712 Random graph with 75% edge density
Bip5 100 247 Random bipartite graph with 5% edge density
Bip50 100 2,475 Random bipartite graph with 50% edge density
Bip75 100 3,712 Random bipartite graph with 75% edge density

2504 B.S. Mitchell and S. Mancoridis

MQ

Cluster Count

Sample Number

(|IntraEdges|/|E|)%

Sample Number

MQ

Sample Number

Cluster Count

Black = Bunch Gray = Random

0

25
50

75

100

0 50 100

0

1

2

3

4

0 50 100

0

10

20

30

0 50 100

T
E

L
N

E
T

0

6

12

18

5.6 5.8 6 6.2

0

25
50

75

100

0 50 100

0

2

4

6

8

0 50 100

0

20

40

60

80

0 50 100

P
H

P

0

10

20

30

40

0 5 10

0

25
50

75

100

0 50 100

0

2

4

6

8

0 50 100

0

20

40

60

80

0 50 100

B
A

S
H

0

10

20

30

40

4 6 8

0

25

50

75

100

0 50 100

0

2

4
6

8

0 50 100

0
30
60
90

120
150

0 50 100

L
Y

N
X

0

10

20

30

40

16 18 20

0

25

50

75

100

0 50 100

0

5

10

15

20

0 50 100

0
25
50
75

100
125

0 50 100

B
U

N
C

H

0

20

40

60

80

60 65 70

0

25

50

75

100

0 50 100

0

20

40

60

80

0 50 100

0
100
200
300
400
500

0 50 100

S
W

IN
G

0

20

40

60

80

64 66 68 70

0

25
50

75

100

0 50 100

0

20

40

60

80

0 50 100

0

150

300

450

600

0 50 100

K
E

R
B

E
R

O
S

5

0

2

4

6

8

0 2 4

Y-Axis:

X-Axis:

Fig. 3. The Structural Search Landscape for the Open Source Systems

Some explanation is necessary to describe how the random MDGs were gen-
erated. Each MDG used in this case study consists of 100 modules, and has a
name that ends with a number. This number is the edge density of the MDG.

Modeling the Search Landscape 2505

0
10
20
30
40
50

0 2 4

0

25

50

75

100

0 50 100

0

1

2

3

4

0 50 100

0

25

50

75

100

0 50 100

0
10
20
30
40
50

0 5

0

25
50

75

100

0 50 100

0

2

4

6

0 50 100

0

25

50

75

100

0 50 100

0

5

10

15

20

5.6 5.8 6 6.2

0

25
50

75

100

0 50 100

0

2

4

6

8

0 50 100

0

25

50

75

100

0 50 100

0
10
20
30
40
50

0 2 4

0

25

50

75

100

0 50 100
0

1

2

3

4

0 50 100

0

25

50

75

100

0 50 100

0
10
20
30
40
50

0 5

0

25

50

75

100

0 50 100

0

1

2

3

4

0 50 100

0

25

50

75

100

0 50 100

0
10
20
30
40
50

14 16 18

0

25

50

75

100

0 50 100

0

5

10

15

20

0 50 100

0

25

50

75

100

0 50 100

R
N

D
5

R
N

D
50

R
N

D
75

B
IP

5
B

IP
50

B
IP

75

MQ

Cluster Count

Sample Number

(|IntraEdges|/|E|)%

Sample Number

MQ

Sample Number

Cluster Count

Black = Bunch Gray = Random

Y-Axis:

X-Axis:

Fig. 4. The Structural Search Landscape for the Random MDGs

For example a 5% edge density means that the graph will have an edge count of
0.05 ∗ (n(n − 1)/2), which is 5% of the total possible number of edges that can
exist for a graph containing n modules.

Each system in Table 1 was clustered 100 times using Bunch’s default set-
tings.1 It should also be noted that although the individual clustering runs are
independent, the landscapes are plotted in order of increasing MQ. This sorting
highlights some results that would not be obvious otherwise.

1 An analysis on the impact of altering Bunch’s clustering parameters was done in a
2002 GECCO paper [16].

2506 B.S. Mitchell and S. Mancoridis

4.1 The Structural Landscape

Figure 3 shows the structural search landscape of the open source systems, and
Figure 4 illustrates the structural search landscape of the random graphs used
in this study.

The results produced by Bunch appear to have many consistent properties.
This observation can be supported by examining the results shown in Figures 3
and 4:

– By examining the views that compare the cluster counts (i.e., the number of
clusters in the result) to the MQ values (far left) we notice that Bunch tends
to converge to one or two “basins of attraction” for all of the systems studied.
Also, for the real software systems, these attraction areas appear to be tightly
packed. For example, the php system has a point of concentration were all
of the clustering results are packed between MQ values of 5.79 and 6.11.
The number of clusters in the results are also tightly packed ranging from a
minimum of 14 to a maximum of 17 clusters. An interesting observation can
be made when examining the random systems with a higher edge density
(i.e., rnd50, rnd75, bip50, bip75). Although these systems converged to
a consistent MQ, the number of clusters varied significantly over all of the
clustering runs. We observe these wide ranges in the number of clusters,
with little change in MQ for most of the random systems, but do not see
this characteristic in the real systems.

– The view that shows the percentage of intraedges in the clustering results
(second column from the left) indicates that Bunch produces consistent so-
lutions that have a relatively large percentage of intraedges. Also, since the
100 samples were sorted by MQ, we observe that the intraedge percentage
increases as the MQ values increase. By inspecting all of the graphs for this
view it appears that the probability of selecting a random partition (gray
data points) with a high intraedge percentage is rare.

– The third view from the left shows the MQ value for the initial random par-
tition, and the MQ value of the partition produced by Bunch. The samples
are sorted and displayed by increasing MQ value. Interestingly, the clustered
results produce a relatively smooth line, with points of discontinuity cor-
responding to different “basins of attraction”. Another observation is that
Bunch generally improves MQ much more for the real software systems,
when compared to the random systems with a high edge density (rnd50,
rnd75, bip50, bip75).

– The final view (far right column) compares the number of clusters produced
by Bunch (black) with the number of clusters in the random starting point
(gray). This view indicates that the random starting points appear to have
a uniform distribution with respect to the number of clusters. We expect the
random graphs to have from 1 (i.e., a single cluster containing all nodes)
to N (i.e., each node is placed in its own cluster) clusters. The y-axis is
scaled to the total number of modules in the system (see Table 1). This view
shows that Bunch always converges to a “basin of attraction” regardless of
the number of clusters in the random starting point. This view also supports

Modeling the Search Landscape 2507

the claim made in the first view where the standard deviation for the cluster
counts appears to be smaller for the real systems than they are for the
random systems.

When examining the structural views collectively, the degree of commonality
between the landscapes for the systems in the case study is surprisingly similar.
We do not know exactly why Bunch converges this way, although we speculate
that this positive result may be based on a good design property of the MQ
fitness function. Section 2 described that the MQ function works on the premise
of maximizing intraedges, while at the same time, minimizing interedges. Since
the results converge to similar MQ values, we speculate that the search space
contains a large number of isomorphic configurations that produce similar MQ
values. Once Bunch encounters one of these areas, it’s search algorithms cannot
find a way to transform the current partition into a new partition with higher
MQ.

4.2 The Similarity Landscape

The main observation from analyzing the structural search landscapes is that
the results produced by Bunch are stable. For all of the MDGs we observe similar
characteristics, but we were troubled by the similarity of the search landscapes
for real software systems when compared to the landscapes of the random graphs.
We expected that the random graphs would produce different results when com-
pared to the real software systems.

In order to investigate the search landscape further we measured the degree of
similarity of the placement of nodes into clusters across all of the clustering runs
to see if there were any differences between random graphs and real software
systems. Bunch creates a subsystem hierarchy, where the lower levels contain
detailed clusters, and higher levels contain clusters of clusters. Because each
subsystem hierarchy produced by Bunch may have a different height,2 we decided
to measure the similarity between multiple clustering runs using the initial (most
detailed) clustering level.

The procedure used to determine the similarity between a series of clustering
runs works as follows:

1. Create a counter C<u,v> for each edge < u, v > in the MDG, initialize the
counter to zero for all edges.

2. For each clustering run, take the lowest level of the clustering hierarchy and
traverse the set of edges in the MDG:

– If the edge < u, v > is an intraedge increment the counter C<u,v> asso-
ciated with that edge.

2 The height of the subsystem hierarchy produced by Bunch generally does not differ
by more than 3 levels for a given system, but the heights of the hierarchy for different
systems may vary dramatically.

2508 B.S. Mitchell and S. Mancoridis

3. Given that there are N clustering runs, each counter C<u,v> will have a final
value in the range of 0 ≤ C<u,v> ≤ N . We then normalize the C<u,v>, by
dividing by N , which provides the percentage P<u,v> of the number of times
that edge < u, v > appears in the same cluster across all clustering runs.

4. The frequency of the P<u,v> is then aggregated into the ranges: {[0,0], (0,10],
(10,75), [75,100]}. These ranges correspond to no (zero), low, medium and
high similarity, respectively. In order to compare results across different
systems, the frequencies are normalized into percentages by dividing each
value in the range set by the total number of edges in the system (|E|).

Using the above process across multiple clustering runs enables the overall
similarity of the results to be studied. For example, having a large zero and high
similarity is good, as these values highlight edges that either never or always
appear in the same cluster. The low similarity measure captures the percentage
of edges that appear together in a cluster less than 10% of the time, which is
desirable. However, having a large medium similarity measure is undesirable,
since this result indicates that many of the edges in the system appear as both
inter- and intraedges in the clustering results.

Table 2. The Similarity Landscape of the Case Study Systems

Edge Similarity Percentage (S)
Application Density Zero (%) Low (%) Medium (%) High (%)

Name Percent (S = 0%) (0% < S ≤ 10%) (10% < S < 75%) (S ≥ 75%)

Telnet 21.42 34.56 27.16 13.58 24.70
PHP 10.10 48.16 19.18 11.70 20.96
Bash 21.52 58.15 22.86 6.32 12.67
Lynx 16.04 49.28 30.64 8.99 11.09
Bunch 3.17 48.70 20.23 9.36 21.71
Swing 1.77 61.53 13.81 9.84 14.82
Kerberos5 2.44 57.55 19.06 9.75 13.64
Rnd5 5.00 12.14 54.65 24.71 8.50
Rnd50 50.00 32.46 37.97 29.49 0.08
Rnd75 75.00 33.80 30.39 35.81 0.00
Bip5 5.00 37.27 20.97 13.46 28.30
Bip50 50.00 47.21 23.89 28.60 0.30
Bip75 75.00 29.90 38.36 31.74 0.00

Now that the above approach for measuring similarity has been described,
Table 2 presents the similarity distribution for the systems used in the case study.
This table presents another interesting view of the search landscape, as it exhibits
characteristics that differ for random and real software systems. Specifically:

– The real systems tend to have large values for the zero and high categories,
while the random systems score lower in these categories. This indicates

Modeling the Search Landscape 2509

that the results for the real software systems have more in common than the
random systems do.

– The random systems tend to have much higher values for the medium cat-
egory, further indicating that the similarity of the results produced for the
real systems is better than for the random systems.

– The real systems have relatively low edge densities. The swing system is
the most sparse (1.77%), and the bash system is the most dense (21.52%).
When we compare the real systems to the random systems we observe a
higher degree of similarity between the sparse random graphs and the real
systems than we do between the real systems and the dense random graphs
(rnd50, rnd75, bip50, bip75).

– It is noteworthy that the dense random graphs typically have very low num-
bers in the high category, indicating that it is very rare that the same edge
appears as an intraedge from one run to another. The result is especially
interesting considering that the MQ values presented in the structural land-
scape change very little for these random graphs. This outcome also supports
the isomorphic “basin of attraction” conjecture proposed in the previous sec-
tion, and the observation that the number of clusters in the random graphs
vary significantly.

5 Conclusions

Ideally, the results produced by Bunch could be compared to an optimal solution,
but this option is not possible since the graph partitioning problem is NP-hard.
User feedback has shown that the results produced by Bunch are “good enough”
for assisting developers performing program comprehension and software mainte-
nance activities, however, work on investigating why Bunch produces consistent
results had not been performed until now.

Through the use of a case study, we highlighted several aspects of Bunch’s
clustering results that would not have been obvious by examining individual clus-
tering results. We also gained some intuition about why the results produced by
Bunch have several common properties regardless of whether the MDGs were
real or randomly generated. A final contribution of this paper is that it demon-
strates that modeling the search landscape of metaheuristic search algorithms is
a good technique for gaining insight into the solution quality of these types of
algorithms.

Acknowledgements. This research is sponsored by grants CCR-9733569 and
CISE-9986105 from the National Science Foundation (NSF). Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the NSF.

2510 B.S. Mitchell and S. Mancoridis

References

1. Anquetil, N.: A Comparison of Graphis of Concept for Reverse Engineering. In
Proc. Intl. Workshop on Program Comprehension, June 2000.

2. Anquetil, N., Lethbridge, T.: Recovering Software Architecture from the Names
of Source Files. In Proc. Working Conf. on Reverse Engineering, October 1999.

3. Chen, Y-F.: Reverse engineering. In B. Krishnamurthy, editor, Practical Reusable
UNIX Software, chapter 6, pages 177–208. John Wiley & Sons, New York, 1995.

4. Choi, S., Scacchi, W.: Extracting and Restructuring the Design of Large Systems.
In IEEE Software, pages 66–71, 1999.

5. van Deursen,A., Kuipers, T.: Identifying Objects using Cluster and Concept Analy-
sis. In International Conference on Software Engineering, ICSM’99, pages 246–255.
IEEE Computer Society, May 1999.

6. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P: A Technique for Drawing
Directed Graphs. IEEE Transactions on Software Engineering, 19(3):214–230,
March 1993.

7. Garey, M.R., Johnson, D.S: Computers and Intractability. W.H. Freeman, 1979.
8. GXL: Graph eXchange Language: Online Guide. http://www.gupro.de/GXL/.
9. Korn, J., Chen, Y-F., Koutsofios, E.: Chava: Reverse Engineering and Tracking

of Java Applets. In Proc. Working Conference on Reverse Engineering, October
1999.

10. Lindig, C., Snelting, G.: Assessing Modular Structure of Legacy Code Based on
Mathematical Concept Analysis. In Proc. International Conference on Software
Engineering, May 1997.

11. Mancoridis, S., Mitchell, B.S., Chen, Y-F., Gansner, E.R.: Bunch: A Clustering
Tool for the Recovery and Maintenance of Software System Structures. In Pro-
ceedings of International Conference of Software Maintenance, pages 50–59, August
1999.

12. Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y-F., Gansner, E.R.: Using Au-
tomatic Clustering to Produce High-Level System Organizations of Source Code.
In Proc. 6th Intl. Workshop on Program Comprehension, June 1998.

13. Mitchell, B.: A Heuristic Search Approach to Solving the Software Clustering Prob-
lem. PhD thesis, Drexel University, Philadelphia, PA, USA, 2002.

14. Mitchell, B.S., Mancoridis, S.: Comparing the Decompositions Produced by Soft-
ware Clustering Algorithms using Similarity Measurements. In Proceedings of In-
ternational Conference of Software Maintenance, November 2001.

15. Mitchell, B.S., Mancoridis, S.: CRAFT: A Framework for Evaluating Software
Clustering Results in the Absence of Benchmark Decompositions. In Proc. Working
Conference on Reverse Engineering, October 2001.

16. Mitchell, B.S., Mancoridis, S.: Using Heuristic Search Techniques to Extract De-
sign Abstractions from Source Code. In Proceedings of Genetic and Evolutionary
Computation Conference, 2002.

17. Müller, H., Orgun, M., Tilley, S., Uhl., J.: A Reverse Engineering Approach to
Subsystem Structure Identification. Journal of Software Maintenance: Research
and Practice, 5:181–204, 1993.

18. Schwanke, R., Hanson, S.: Using Neural Networks to Modularize Software. Machine
Learning, 15:137–168, 1998.

	Introduction and Background
	Software Clustering with Bunch
	Clustering Example with Bunch

	Modeling the Search Landscape
	The Structural Search Landscape
	The Similarity Search Landscape

	Case Study
	The Structural Landscape
	The Similarity Landscape

	Conclusions

