
Predicate Expression Cost Functions to Guide
Evolutionary Search for Test Data

Leonardo Bottaci

Hull University, Hull, HU6 7RX, UK
l.bottaci@dcs.hull.ac.uk

Abstract. Several researchers are using evolutionary search methods to
search for test data with which to test a program. The fitness or cost
function depends on the test goal but almost invariably an important
component of the cost function is an estimate of the cost of satisfying
a predicate expression as might occur in branches, exception conditions,
etc. This paper reviews the commonly used cost functions and points out
some deficiencies. Alternative cost functions are proposed to overcome
these deficiencies. The evidence from an experiment is that they are more
reliable.

1 Introduction

Several researchers are using evolutionary search methods to search for test data
with which to test a program. The fitness or cost function depends on the test
goal but almost invariably an important component of the cost function is an
estimate of the cost of satisfying a predicate expression as might occur in a
branch condition, an exception condition, etc.

As an example of the most basic instrumentation, consider a search for test
data that will execute a given sequence of branches in a program. A record may
be kept of the values of all branch predicate expressions executed. A cost for the
given input is computed by counting the number of branches that have not been
satisfied. This is the method used by Pargas et al. [5].

Although a count of undesired branch decisions provides some guidance to
the search; all the test cases that fail to satisfy the same branch are given the
same cost. At this point, the cost surface over the search space has become flat
and the search becomes random. As an example, consider the program fragment
below.

...
if (a <= b)

... // EXECUTION REQUIRED TO ENTER THIS BRANCH

Suppose a test case is required to cause execution of the true branch of the
conditional shown above. If the required branch is difficult to enter, many test
cases will cause a <= b to be false. To discriminate between these tests, the
program is instrumented to calculate a cost measure that penalises those tests

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 2455–2464, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

2456 L. Bottaci

that may be considered to be “far from” satisfying a <= b. As an example of a
possible cost function for the condition a <= b, the value of a − b increases as a
becomes larger than b and a zero or negative cost indicates that a solution has
been found. Through instrumentation, the subject program has in effect been
converted into another program that computes a function that is to be minimised
to zero. This approach has been used by Korel [2], Tracey et al. [7], [8], Wegener
et al. [9], Jones [1] and Michael [4] [3].

Clearly, the effectiveness of the search depends on the reliability of the cost
functions used for the relational and logical expressions. This paper reviews the
commonly used cost functions and points out some cases where they are deficient.
Alternative cost functions are proposed to overcome these deficiencies. A small
experiment provides some evidence that the alternative cost functions are more
reliable, and more so for relatively simple programs.

2 Cost Functions for Relational Predicates

Table 1 shows the commonly used cost functions for the relational predicates.
a, b are numbers and ε is a positive number.

Since, logically equivalent expressions express the same condition, ideally
they should have equal costs. In purely integer domains, a + 1 ≤ b ⇔ a < b.
Since cost(a + 1 ≤ b) = a + 1 − b and cost(a < b) = a + ε − b, this entails ε = 1.
In real domains, ε is the smallest positive real.

It should be emphasised that a − b as the cost of satisfying a ≤ b is at best
a heuristic. Usually, the input test case determines the values of the operands
a, b only indirectly and any intervening statements have the potential to pro-
duce a cost surface as a function of the inputs that is far more complex than
a − b. Nonetheless, many arithmetic operations do not destroy the reliability of
the heuristic and it remains effective where inputs are modified in the manner
illustrated in the example below

a := a * a - k;
if (a <= 0)

It is, of course, possible for the heuristic to be deceptive. Consider the pro-
gram fragment

a := (a * a + 1) mod 65;
if (a <= 0)

Table 1. Relational predicate cost table using conventional cost functions

Predicate expression Cost of not satisfying predicate expression
a ≤ b a − b
a < b a − b + ε
a = b abs(a − b)
a �= b ε − abs(a − b)

Predicate Expression Cost Functions 2457

In this fragment, the cost of a <= 0 decreases as a (input) approaches 0. At
a = 0 the cost function attains a local minimum value of 1 but the solution is
a = 8. It is also possible for the heuristic to be completely uninformative as in

a := random(a);
if (a <= 0)

3 Cost Functions for Logical Operators

Cost functions may be defined for the logical operators not, or and and
in order to define a cost for compound predicate expressions such as
a <= b and not(a > 0). Consider first the logical negation operator.

Some researchers avoid an explicit cost function for logical negation and in-
stead rewrite expressions that contain negation into a form that is negation free.
So for example, not (a <= b) is rewritten as a > b. Introducing a cost function
for logical negation avoids the need to rewrite expressions; indeed by introduc-
ing a cost function for each relational and logical predicate, cost functions may
be isomorphic to predicate expressions which allows cost functions to be con-
structed in a simple syntax directed manner. This is an important consideration
when building tools.

The cost function for negation can be derived from the requirement that
cost(a ≤ b) = cost(¬(a > b)), i.e. a − b should equal −(b − a + ε) + ε and hence
cost(¬a) = −cost(a) + ε.

The use of logical negation also introduces the need for a cost to be assigned
to a true predicate expression. In particular, the logical constant, true may be
given a cost of −maxcost and the logical constant, false has a cost of maxcost.
The use of these large absolute values reflects the fact that the logical constant
false can never be satisfied, and true can never be falsified. In this scheme, all
cost functions are bounded by −maxcost and maxcost.

Consider next the cost function for a disjunction. Clearly, when the operands
have different truth values, the cost of the disjunction should be the cost of the
true operand. This leaves the cases where the operands have the same truth
value. In this case, a popular choice for the cost of a disjunction is the cost of
the operand with the lowest cost i.e. the cost function is the min function. The
common corresponding cost function for the conjunction is the max function.

The cost tables for logical negation, or and and are summarised in Table 2,
where ca is the cost of a boolean expression a. In Table 2, ca and cb are positive
(false) and ca′ and cb′ are non-positive (true).

The cost functions of Table 2 have been used by a number of researchers.
Tracey et al. [7] use essentially the same cost functions although their’s are
restricted to nonnegative values, they measure only the cost of not satisfy-
ing an expression and negation is removed by rewriting expressions. A notable
difference, however, is the use of + rather than max for conjunction so that
cost(a ∧ b) = cost(a) + cost(b).

2458 L. Bottaci

Table 2. Logical operator cost table using conventional cost functions

a b ¬a a ∨ b a ∧ b

ca cb −ca + ε min(ca, cb) max(ca, cb)
ca c′

b c′
b ca

c′
a cb −c′

a + ε c′
a cb

c′
a c′

b min(c′
a, c′

b) max(c′
a, c′

b)

4 Cost Function Reliability

4.1 Analytical Considerations

The functions min and max have become popular for various forms of logical
reasoning under uncertainty [6] since Zadeh proposed them for fuzzy logic [11].
In fuzzy logic, true is represented by 1 and false by 0 and intermediate values
lie in between. The truth value of a fuzzy disjunction is the maximum of the
truth values of the operands, the value of a fuzzy conjunction is the minimum
of the operand truth values. The common use of the functions min and max1

should not obscure the fact that the intended interpretation in test data search
is quite different.

Fuzzy logic is concerned with formalising reasoning with vague concepts
where the vagueness is formalised as a fuzzy set. The justification for the use of
min and max in fuzzy logic comes from the corresponding union and intersec-
tion operations for fuzzy sets. The costs associated with logical expressions to
guide search are not intended to measure vagueness.

Given that the costs of predicate expressions are intended to estimate search
effort, some properties which could be considered essential are:

1. The cost of a disjunction should be no more than the cost of either disjunct,
i.e. cost(a) ≥ cost(a ∨ b) and cost(b) ≥ cost(a ∨ b).

2. The cost of a conjunction should be no less than the cost of either conjunct,
i.e. cost(a) ≤ cost(a ∧ b) and cost(b) ≤ cost(a ∧ b).

3. The cost of logically equivalent expressions should be equal.

Property 1 can be justified on the grounds that adding an alternative means
of satisfying a condition cannot make that condition more difficult to satisfy and
so cannot increase the cost. The min function satisfies property 1 but makes the
assumption that the cost of a disjunction is the maximum cost consistent with
property 1. The argument for property 2 is analogous to that for the disjunction.
The max function satisfies property 2 but makes the assumption that the cost
of a conjunction is the lowest cost consistent with property 2.

Property 3 requires the cost functions to be consistent with the associa-
tive, commutative and distributive laws. Examples of other laws include: cost(a)

1 In fuzzy logic truth increases with numerical value so min corresponds to max and
vice versa.

Predicate Expression Cost Functions 2459

should equal cost(a ∨ a) and cost(a ∨ b) should equal cost(¬(¬ a ∧ ¬ b)). The
cost functions of Table 2 satisfy all three of these properties.

Although all three properties would appear necessary, it might be advanta-
geous to trade some violation of the third property for a more reliable or informa-
tive function. Recall the use by Tracey [7] of + instead of max as the cost of a con-
junction. To use + instead of max for the cost of a conjunction, while retaining
min for the cost of a disjunction is to give up the property that logically equiv-
alent expressions have the same cost. In particular, the distributive law of dis-
junction over conjunction is not satisfied because cost(a∨(b∧c)) = min(a, b+c)2

but cost((a∨b)∧(a∨c)) = min(a, b)+min(a, c). De Morgan’s law is not satisfied
either.

A possible consequence of this is illustrated in the code fragment below where
two logically equivalent expressions appear in distinct subgoals. Assume that the
test goal is to find a test that will execute either of the statements z := 0;, i.e.
to satisfy either (x < 4 or y < 4) or not (x >= 4 and y >= 4).

if (x + y >= 16)
if (x < 4 or y < 4)

z := 0;
else

if (not (x >= 4 and y >= 4))
z := 0;

To exaggerate the inconsistency and also for the sake of clarity, variables are
taken to be integer so that ε = 1. When x = 8, y = 8, the cost is min(5, 5) = 5 but
when x = 7, y = 8, which is a better test, the cost is higher at −(−3+−4)+1 = 8.

The possible bias this might introduce in examples such as that shown above
might well be compensated for by a more general reliability advantage of +
over max. + rewards a decrease in the costs of both conjuncts more than it
rewards a corresponding decrease in the cost of just one. For example, consider
the problem of satisfying the condition x = 0 and y = 0. A move by a search
algorithm from the (x, y) point (4, 6) to the point (3, 5) is rewarded by + in
a cost decrease of 2 but max produces only a cost decrease of 1. Similarly, a
detrimental move from (4, 6) to (5, 7) is penalised more heavily by + than by
max. The function + would seem to be more discriminating.

Continuing in this direction, the use of min as the cost function for dis-
junction may be reconsidered in the hope of finding some different function,
analogous to +, that is more discriminating than min. Consider, for example,
the following program fragment.

x := 1;
while (x <= 0 or y = 5) // EXECUTION REQUIRED TO ENTER LOOP

2 Note that the notation of ca as the numeric cost of the boolean expression a is being
dropped from here on. A symbol a may denote either a boolean expression or its
numeric cost, as determined by the context.

2460 L. Bottaci

Table 3. As y approaches 5, the cost decreases towards 0

y 9 8 7 6 5
x <= 0 1 1 1 1 1
y = 5 4 3 2 1 0

x <= 0 or y = 5 0.8 0.75 0.67 0.5 0

Table 4. Proposed logical or and logical and cost table

a b a ∨ b a ∧ b

a b ab
a+b

a + b

a b′ b′ a
a′ b a′ b

a′ b′ a′ + b′ a′b′
a′+b′

When searching for values for the variables x and y to enter the while loop,
the value of x is 1 when the conditional is first evaluated and so the cost of
x <= 0 is 1 and this will in fact be the cost of the predicate expression for all
input values unless y = 5. A flat surface in the cost function provides no guidance
to the search.

One way to interpret this problem is to consider that the cost of 1 for x <= 0
should, initially at least, be much higher given the impossibility of changing the
value of x from this value until entry into the loop. Determining such facts about
the values of arbitrary variables in a program is of course just as hard a problem
as that of finding test data.

Since the min function ignores improvement in the cost of the more costly
operand, a more discriminating function might be constructed that takes account
of a cost improvement in either operand. Such an alternative is the ratio of the
product of the costs to the sum of the costs, i.e.

cost(a ∨ b) =
ab

a + b
.

The table of costs below shows how this cost function solves the problem in
the previous example.

The proposed cost functions for or and and are shown in Table 4. Note
that when a′ = b′ = 0 then cost(a ∧ b) = 0. The above cost functions satisfy
properties 1 and 2 but do not satisfy the property of equal costs for logically
equivalent expressions. The error in satisfying De’Morgan’s law, i.e. cost(a∨b) �=
cost(¬(¬a ∧ ¬b)) is due to the presence of ε, the positive offset from zero for the
costs of all false predicates that is absent from the costs of true expressions.

This anomaly can be removed by modifying the relational predicate cost func-
tions to produce values symmetrical about zero in the range [−maxcost,−ε] ∪
[ε, maxcost] (as shown in Table 5) and to define the cost of logical negation as
cost(¬p) = −cost(p).

Other inconsistencies remain, however. For example, cost(a) �= cost(a ∨ a).
The difference between cost(a) and cost(a ∨ a ∨ a) is greater still with the dif-

Predicate Expression Cost Functions 2461

Table 5. Relational predicates with costs symmetrical about zero

Predicate expression Cost of predicate expression
a ≤ b a − b, a > b

a − b − ε, a ≤ b

a < b a − b + ε, a ≥ b
a − b, a < b

a = b abs(a − b), a �= b
−ε, a = b

Table 6. A flat cost function when x = 0.0

i 6.0 7.0 8.0 9.0 10.0
i <= 9.0 −3.0 − ε −2.0 − ε −1.0 − ε −ε 1.0 + ε
x = 0.0 −ε −ε −ε −ε −ε

i <= 9.0 and x = 0.0 −ε −ε −ε −ε 1.0 + ε

not(i <= 9.0 and x = 0.0) ε ε ε ε −1.0 − ε

ference bounded by cost(a). The difference between cost(a) and cost(a ∧ a) is
cost(a) and is unbounded as the number of conjunctions of a increases. In prac-
tice, such expressions are likely to be relatively rare because programmers tend
to avoid writing expressions that are clearly inefficient.

One of the problems with the cost function ab
a+b is that when one operand

is very small, changes in the other are not significant. When the cost of
b = ε then ab

a+b = aε
a+ε which because of rounding error can only safely

be taken to be ε. As an example of this problem, consider the condition
not((i <= 9.0) and (x = 0.0)) where x and i are real and so ε is the small-
est positive real. Table 6 shows the cost calculations for different values of i
when x = 0.0. The cost remains the same at ε for all values of i up to 9 and so
provides no guidance for the search.

To assign a cost of ε (the least positive value is the relevant number domain
and the lowest possible cost for a false predicate expression) to a single relational
expression such as a < b leaves no room to give a lower cost to disjunctive
expressions that include a < b as one of the disjuncts. Recall the requirement
that cost(a) ≥ cost(a ∨ b).

Cost functions for relational predicates can be modified to overcome this
problem by setting the absolute minimum cost for any single relational predicate
expression to be some value significantly larger than ε, say R ≥ 1. The costs of
relational predicates in this scheme is given in Table 7.

In Table 8 the cost calculations of the previous example are repeated but
with the use of the modified relational predicate cost functions with R = 1. The
cost of not(i <= 9.0 and x = 0.0) now decreases as i approaches 9.0.

4.2 Experiment to Compare Cost Function Reliability

Ultimately, the validity of cost functions for test data search is an empirical issue.
Ideally, cost functions should be compared over a large sample of programs from

2462 L. Bottaci

Table 7. Modified relational predicate cost functions

Predicate expression Cost of predicate expression
a ≤ b a − b + R − ε, a > b

a − b − R, a ≤ b

a < b a − b + R, a ≥ b
a − b − R + ε, a < b

a = b abs(a − b) + R − ε, a �= b
−R, a = b

Table 8. A decreasing cost function

i 6.0 7.0 8.0 9.0 10.0
i <= 9.0 −4.0 −3.0 −2.0 −1.0 2.0
x = 0.0 −1.0 −1.0 −1.0 −1.0 −1.0

i <= 9.0 and x = 0.0 −0.8 −0.75 −0.67 −0.5 2.0
not(i <= 9.0 and x = 0.0) 0.8 0.75 0.67 0.5 −2.0

various application areas. A less time consuming experiment can be done with
synthetic programs generated automatically. Consequently, a sample of programs
was generated by modifying the following program.

x := a + b + c;
y := a + b + c;
z := a + b + c;
if (x = a or y = b or z = c)

The modification rules, allowed: all occurrences of + to be replaced by any
arithmetic operator, all occurrences of = to be replaced by any relational pred-
icate, all occurrences of or to be replaced by any binary logical operator with
the possible insertion of a negation operator, in addition two binary operators
leftoperand and rightoperand were allowed throughout (each returning the
value of one operand) as a way of reducing the length of expressions. The modi-
fication rules, allowed variables (other than x, y and z) to be replaced with any
other variable or a constant drawn from a small set of integers.

For each program generated, at random, three copies were produced, the
first was instrumented with the min and max cost functions of (Table 2) (herein
called the min-max functions), the second with the ab

a+b and a + b functions of
(Table 4) (herein called the ratio-sum functions) and the third with constant
functions so that a uniform random search is done. The relational predicate
expression cost functions of Table 7 were used throughout with R = 1. For all
programs, the test goal was to find values of a, b and c, each from the domain
[−4999, 5000] to cause entry into the conditional.

The genetic algorithm used for the search was of the steady-state variety
and similar to Genitor [10]. Test inputs were coded not as binary strings but as
strings of integer. Reproduction takes place between two individuals who produce
one or two offspring (depending on the choice of reproduction operator). These

Predicate Expression Cost Functions 2463

Table 9. Performance of cost functions

program min-max ratio-sum random trivial failed
type solns evals solns evals solns evals
simple 1116 504 1309 456 97 436 0 0
complex 1853 308 2059 313 789 301 16992 6237

offspring are then immediately inserted into the population (of size 50) expelling
the one or two least fit. The population is kept sorted according to cost and the
probability of selection for reproduction is based on rank in this ordering.

4.3 Results

For each set of cost functions, Table 9 shows the number of trials (solns column)
in which a solution was found. Three attempts were made at each problem
and the table shows the total number of solutions found. The column headed
‘evals’ shows the mean number of fitness function evaluations used per solution,
counting only cases where a solution was found. A number of the programs
generated were not counted against any cost function because they were either
too easy to solve (column headed ‘trivial’), namely a solution was found in less
than 10 random attempts, or too difficult (column headed ‘failed’), because a
solution was not found within the limit on fitness function evaluations, set at
1000.

A crude attempt was made to distinguish between simple and more complex
programs according to the syntactic complexity of the arithmetic expressions.
All programs of the following form (where only or, and may be replaced by
or, and) were classed as simple.

x := a;
y := b;
z := c;
if (x = 1 or y = 1 and z = 1)

Simple programs all have a smooth cost surface (smoothest in the case of ratio-
sum) but the solution set is small. In Table 9, the set of programs classed as
complex is simply the entire sample of synthetic programs generated.

It can be seen that for simple programs, the performance of the ratio-sum
cost functions is better, the data shows a 17% outperformance. For all programs,
the ratio-sum cost functions outperform the min-max cost functions by about
10%. A possible explanation for this difference is that there is less opportunity
for ratio-sum to take advantage of an improvement in more than one predicate
expression cost at once since such moves are less likely to occur as the jaggedness
of the cost surface increases.

5 Conclusion

Several researchers are using evolutionary search methods to search for test data
with which to test a program. The fitness or cost function depends on the test

2464 L. Bottaci

goal but almost invariably an important component of the cost function is an
estimate of the cost of satisfying a predicate expression as might occur in a
branch condition, an exception condition, etc.

It has been shown that the set of commonly used cost functions for the sat-
isfaction of logical predicates (the min-max functions) perform poorly in certain
cases. An alternative set of cost functions (the ratio-sum functions) has been
proposed which overcome these specific problem cases. To determine the effec-
tiveness of the ratio-sum functions on a wider range of problems, an experiment
was done to compare cost functions for a sample of synthetic programs. It has
been shown the ratio-sum cost functions modestly outperform the min-max cost
functions but more so for relatively simple programs. A possible explanation
for this is that the ability of ratio-sum to take advantage of an improvement
in more than one predicate expression cost at once can be better exploited in
simple programs.

Synthetic programs are an inexpensive way of subjecting cost functions to a
relatively large sample of programs but they can at best provide only an insight
into the behaviour of different cost functions. In terms of assessing the reliability
of different cost functions in practice, they can be no more than a prelude to an
experiment with a large sample of real programs. Work is underway to do this.

References

1. B. F. Jones, H. Sthamer, and D.E. Eyres. Automatic structural testing using
genetic algorithms. Software Engineering Journal, 11(5):299–306, 1996.

2. B. Korel. Automated software test data generation. IEEE Transactions on Soft-
ware Engineering, 16(8):870–879, August 1990.

3. G. McGraw, C. Michael, and M Schatz. Generating software test data by evolution.
Technical Report RSTR-018-97-01, RST Corporation, Suite 250, 21515 Ridgetop
Circle, Sterling VA 20166, 1998.

4. C. Michael, G. McGraw, M. Schatz, and C. Walton. Genetic algorithms for dynamic
test data generation. Technical Report RSTR-003-97-11, RST Corporation, Suite
250, 21515 Ridgetop Circle, Sterling VA 20166, 1997.

5. R. P. Pargas, M. J. Harrold, and R. P. Peck. Test-data generation using genetic
algorithms. Software Testing, Verification and Reliability, 9:263–282, 1999.

6. Judea Pearl. Probabilistic reasoning in intelligent systems. Morgan Kaufmann,
1988.

7. N. Tracey, J. Clark, and K. Mander. Automated program flaw finding using sim-
ulated annealing. Software Engineering Notes, 23(2):73–81, March 1998.

8. N. Tracey, J. Clark, K. Mander, and J. McDermid. Automated test data generation
for exception conditions. Software – Practice and Experience, 30:61–79, 2000.

9. J Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment for auto-
matic structural testing. Information and Software Technology, 43:841–854, 2001.

10. D. Whitley. The genitor algorithm and selective pressure: why rank based alloca-
tion of reproductive trials is best. Proceedings of the Third International Conference
GAs., pages 116–121, 1989.

11. L. A. Zadeh. Fuzzy logic and approximate reasoning. Synthese, 30:407–428, 1975.

	Introduction
	Cost Functions for Relational Predicates
	Cost Functions for Logical Operators
	Cost Function Reliability
	Analytical Considerations
	Experiment to Compare Cost Function Reliability
	Results

	Conclusion

