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Abstract. We have developed an evolutionary approach for the flexible docking
that is now an important component of a rational drug design. This automatic
docking tool, referred to as the GEMDOCK (Generic Evolutionary Method for
DOCKing molecules), combines both global and local search strategies search
mechanisms. GEMDOCK used a simple scoring function to recognize compounds
by minimizing the energy of molecular interactions. The interactive types of atoms
between ligands and proteins of our linear scoring function consist only hydrogen-
bonding and steric terms. GEMDOCK has been tested on a diverse dataset of 100
protein-ligand complexes from Protein Data Bank. In total 76% of these com-
plexes, it obtained docked ligand conformations with root mean square deriva-
tions (RMSD) to the crystal ligand structures less than 2.0 Å when the ligand was
docked back into the binding site. Experiments shows that the scoring function is
simple and efficiently discriminates between native and non-native docked con-
formations. This study suggests that GEMDOCK is a useful tool for molecular
recognition and is a potential docking tool for protein structure variations.

1 Introduction

The molecular docking problem is the prediction of a ligand conformation and orientation
relative to the active site of a target protein. A computer-aided docking process, identi-
fying the lead compounds by minimizing the energy of intermolecular interactions, is
an important approach for structure-based drug designs [1]. Solving a molecular dock-
ing problem involves two critical elements: a good scoring function and an efficient
algorithm for searching conformation and orientation spaces.

A good scoring function should be fast and simple for screening large potential
solutions and effectively discriminating between correct binding states and non-native
docked conformations. Various scoring functions have been developed for calculating
binding free energy, including knowledge-based [2], physic-based [3], and solvent-based
scoring functions [4]. In general the binding energy landscapes of these scoring functions
are often complex and rugged funnel shapes [5].

Many automated docking approaches have been developed and can be roughly di-
vided into rigid docking, flexible ligand docking, and protein flexible docking methods.
The rigid-docking methods, such as DOCK program [6], treated both ligands and pro-
teins as rigid. In contrast the ligand is flexible and the protein is rigid for flexible ligand
docking methods including evolutionary algorithms [7,8,9,10], simulated annealing [11],
fragment-based approach [12], and other algorithms. For reasonably addressing protein
flexible problems, which both ligands and proteins are flexible, most of docking methods
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often allowed a limited model of protein variations, such as the side-chain flexible or
small motions of loops in the binding site [13]. Most of these previous docking methods
studied on a small test set (< 20 complexes), by contrast, the GOLD [8] and FlexX [12]
were tested on a test set of over 100 complexes.

In this paper, we proposed an automatic program, GEMDOCK (Generic Evolution-
ary Method for DOCKing molecules), for docking flexible molecules. Our program used
a simplified scoring function and a new evolutionary approach which is more robust than
standard evolutionary approaches [14,15,16] on some specific domains [17,18,19,20].
Our energy function consisted only of steric and hydrogen-bonding terms with a linear
model which was simple and fast enough to recognize potential complexes. In order to
balance exploration and exploitation, the core idea of our evolutionary approach is to
design multiple operators cooperating with each other by using the family competition
which is similar to a local search procedure. We have successfully applied a similar idea
to solve optimization problems in some differing fields [17,18,19,20].

In order to evaluate the performance and limitations of GEMDOCK on docking
flexible ligands, we have tested it on a diverse dataset of 100 complexes from the Protein
Data Bank. GEMDOCK achieved 76 ligands whose structures with RMSD values to the
ligand crystal structures are less than 2.0Å. The rate increases to 86% when the structure
water is considered. GOLD [8] achieved a 71% success rate in the same dataset and
FlexX [12] achieved a 70% success rate on a dataset of 200 complexes extended from
the data set of GOLD.

2 Method

The basic structure of the GEMDOCK (Figure 1) is as follows: Randomly generate a
starting population with N solutions by initializing the orientation and conformation of
the ligand relating to the center of the receptor. Each solution is represented as a set of four
n-dimensional vectors (xi, σi, vi, ψi), where n is the number of adjustable variables of a
docking system and i = 1, . . . , N whereN is the population size. The vectorx represents
the adjustable variables to be optimized in which x1, x2, and x3 are the 3-dimensional
location of the ligand; x4, x5, and x6 are the rotational angles; and from x7 to xn are
the twisting angles of the rotatable bonds inside the ligand. σ, v, and ψ are the step-size
vectors of decreasing-based Gaussian mutation, self-adaptive Gaussian mutation, and
self-adaptive Cauchy mutation. In other words, each solution x is associated with some
parameters for step-size control. The initial values of x1, x2, and x3 are randomly chosen
from the feasible box, and the others, from x4 to xn, are randomly chosen from 0 to 2π in
radians. The initial step sizesσ is 0.8 and v andψ are 0.2.After GEMDOCK initializes the
solutions, GEMDOCK enters the main evolutionary loop which consists of three main
stages in every iteration: decreasing-based Gaussian mutation, self-adaptive Gaussian
mutation, and self-adaptive Gaussian mutation. Each stage is realized by generating
a new quasi-population (with N solutions) as the parent of the next stage. As shown
in Figure 1, these stages apply a general procedure “FC adaptive” with only different
working population and the mutation operator.

The FC adaptive procedure (Figure 1) employs two parameters, namely, the working
population (P , with N solutions) and mutation operator (M ), to generate a new quasi-
population. The main work of FC adaptive is to produce offspring and then conduct the
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(a)

M: Mutation Operator (Mdg, Mg, Mc or MDE)
Mdg:Decreasing-based Gaussian mutation
Mg: Self-adaptive Gaussian mutation
Mc: Self-adaptive Cauchy mutation

L: Family Competition Length
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recombination and mutation M

FC_adaptive (P, M)

Repeat for
each individual

in P

(b)

Select the best solution from
these L solutions

Return the offspring population
FC_adaptive procedure with self-

adaptive Gaussian mutation (Mc) and
P2(g) generates Pnext(g+1)

FC_adaptive procedure with self-
adaptive Gaussian mutation (Mg) and

P1(g) generates P2(g)

Fig. 1. Overview of GEMDOCK for molecular docking: (a) Main procedure (b) FC adaptive
procedure.

family competition. Each individual in the population sequentially becomes the “family
father.” With a probability pc, this family father and another solution that is randomly
chosen from the rest of the parent population are used as parents for a recombination
operation. Then the new offspring or the family father (if the recombination is not
conducted) is operated on by a mutation. For each family father, such a procedure is
repeated L times called the family competition length. Among these L offspring and
the family father, only the one with the lowest scoring function value survives. Since
we create L children from one “family father” and perform a selection, this is a family
competition strategy. This method avoids the population prematureness but also keeps
the spirit of local searches. Finally, the FC adaptive procedure generates N solutions
because it forces each solution of the working population to have one final offspring.

In the following, genetic operators are briefly described. We use a = (xa, σa, va, ψa)
to represent the “family father” and b = (xb, σb, vb, ψb) as another parent. The offspring
of each operation is represented as c = (xc, σc, vc, ψc). The symbol xs

j is used to denote
the jth adjustable optimization variable of a solution s, ∀j ∈ {1, . . . , n}.

2.1 Recombination Operators

GEMDOCK implemented modified discrete recombination and intermediate recom-
bination [15]. A recombination operator selected the “family father (a)” and another
solution (b) randomly selected from the working population. The former generates a
child as follows:

xc
j =

{
xa

j with probability 0.8
xb

j with probability 0.2.
(1)
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The generated child inherits genes from the “family father” with a higher probability
0.8. Intermediate recombination works as:

wc
j = wa

j + β(wb
j − wa

j )/2, (2)

where w is σ, v, or ψ based on the mutation operator applied in the FC adaptive proce-
dure.The intermediate recombination only operated on step-size vectors and the modified
discrete recombination was used for adjustable vectors (x).

2.2 Mutation Operators

After the recombination, a mutation operator, the main operator of GEMDOCK, is
applied to mutate adjustable variables (x).

Gaussian and Cauchy Mutations: Gaussian and Cauchy Mutations are accomplished
by first mutating the step size (w) and then mutating the adjustable variable x:

w′
j = w′

jA(·), (3)

x′
j = xj + w′

jD(·), (4)

wherewj and xj are the ith component ofw and x, respectively, andwj is the respective
step size of the xj where w is σ, v, or ψ. If the mutation is a self-adaptive mutation,
A(·) is evaluated as exp[τ ′N(0, 1) + τNj(0, 1)] where N(0, 1) is the standard normal
distribution, Nj(0, 1) is a new value with distribution N(0, 1) that must be regenerated
for each index j. When the mutation is a decreasing-based mutation A(·) is defined as
a fixed decreasing rate γ = 0.95. D(·) is evaluated as N(0, 1) or C(1) if the mutation
is, respectively, Gaussian mutation or Cauchy mutation. For example, the self-adaptive
Cauchy mutation is defined as

ψc
j = ψa

j exp[τ ′N(0, 1) + τNj(0, 1)], (5)

xc
j = xa

j + ψc
jCj(t). (6)

We set τ and τ ′ to (
√

2n)−1 and (
√

2
√
n)−1, respectively, according to the suggestion

of evolution strategies [15]. A random variable is said to have the Cauchy distribution
(C(t)) if it has the density function: f(y; t) = t/π

t2+y2 , −∞ < y < ∞. In this paper
t is set to 1. The formulation of the self-adaptive Gaussian mutation is similar to the
self-adaptive Cauchy mutation and is given

vc
j = va

j exp[τ ′N(0, 1) + τNj(0, 1)], (7)

xc
j = xa

j + vc
jNj(0, 1). (8)

Our decreasing-based Gaussian mutation uses the step-size vector σ with a fixed de-
creasing rate γ = 0.95 and works as

σc = γσa, (9)

xc
j = xa

j + σcNj(0, 1). (10)
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Fig. 2. The linear energy function of the pair-wise atoms for steric and hydrogen bonds in GEM-
DOCK (bold line) with a standard Lennard- Jones potential (light line).

Rotamer-Mutation: This operator is only used for x7 to xn to find the conformations
of the rotatable bonds inside the ligand. For each ligand, this operator mutates all of the
rotatable angles according to the rotamer distribution and works as:

xj = rki with probability pki, (11)

where rki and pki are the angle value and the probability, respectively, of ith rotamer of
kth bond type including sp3 − sp3 and sp3 − sp2 bond. The values of rki and pki are
based on the energy distributions of these two bond types.

2.3 Scoring Function

In this work, we used a simple scoring function given as

Etot = Einter + Eintra + Epenal, (12)

whereEinter andEintra are the intermolecular and intramolecular energy, respectively,
Epenal is a large penalty value if the ligand is out of range of the search box. In this
paper, Epenal is set to 10000.

The intermolecular energy is defined as

Einter =
lig∑
i=1

pro∑
j=1

[
F (rBij

ij ) + 332.0
qiqj
4rij

]
, (13)

where rij is the distance between the atoms i and j, qi and qj are the formal charges
and 332.0 is a factor that converts the electrostatic energy into kilocalories per mole.
The lig and pro denote the numbers of the heavy atoms in the ligand and receptor,
respectively.F (rBij

ij ) is a simple atomic pair-wise potential function (Figure 2) modified
from previous works [7,21] and given as
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Table 1. Atom types of GEMDOCK

Atom type Heavy atom name
Donor primary and secondary amines, sulfur, and metal atoms
Acceptor oxygen and nitrogen with no bound hydrogen
Both structural water and hydroxy1 groups
Nonpolar other atoms (such as carbon and phosphorus)

F (rBij

ij ) =






V6 − V6r
Bij
ij

V1
if r

Bij

ij ≤ V1

V5(r
Bij
ij −V1)

V2−V 1 if V1 < r
Bij

ij ≤ V2

V5 if V2 < r
Bij

ij ≤ V3

V5 − V5(r
Bij
ij −V3)

V4−V3
if V3 < r

Bij

ij ≤ V4

0 if r
Bij

ij > V4

. (14)

r
Bij

ij is the distance between the atoms i and j with bond type Bij which is the inter-
action bonding type forming by the pair-wise heavy atoms of a ligand and a protein.
Bij is either hydrogen binding or steric state. The values of parameters, V1, . . . , V6, are
given in Figure 2. In this atomic pair-wise model, the interactive types are only hydro-
gen binding and steric potential which have the same function form but with different
parameters, V1, . . . , V6. The energy value of hydrogen binding should be larger than the
one of steric potential. In this model, the atom is divided into four different atom types
(Table 1) : donor, acceptor, both, and nonplar. The hydrogen binding can be formed by
the following pair atom types: donor-acceptor (or acceptor-donor), donor-both (or both-
donor), acceptor-both (or both-acceptor), and both-both. Other pair-atom combinations
are to form the steric state.

The intramolecular energy of a ligand is

Eintra =
lig∑

i=1

lig∑

j=i+2

F (rBij

ij ) +
dihed∑

k=1

A[1 − cos(mθk − θ0)], (15)

where F (rBij

ij ) is defined as Equation 14 except the value is set to 1000 when rBij

ij <

2.0 Å and dihed is the number of rotatable bonds. We followed the work of Gehlhaar et
al. (1995) to set the values of A,m, and θ0. For the sp3 − sp3 bondA,m, and θ0 are set
to 3.0, 3, and π; and A = 1.5, m = 6, and θ0 = 0 for the sp3 − sp2 bond.

3 Results

3.1 Parameters of GEMDOCK

Table 2 indicates the setting of GEMDOCK parameters, such as initial step sizes, family
competition length (L = 3), population size (N = 200), and recombination probability
(pc = 0.3) in this work. The GEMDOCK optimization stops when either the convergence
is below certain threshold value or the iterations exceed a maximal preset value which
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Table 2. Parameters of GEMDOCK

Parameter Value of parameters
Initial step sizes σ = 0.8, v = ψ = 0.2 (in radius)
Family competition length L = 3
Population size N = 200
Recombination rate pc =0.3
# of the maximum generation 100

was set to 100. Therefore, GEMDOCK generated 2400 solutions in one generation and
terminated after it exhausted 240000 solutions in the worse case. These parameters were
decided after experiments conducted to recognize complexes of test docking systems
with various values.

3.2 Test Data Set

In order to evaluate the strength and limitation of GEMDOCK, we tested it on a highly
diverse dataset of 100 protein-ligand complexes proposed by Jones et al. [8] (Table 3).
The ligand input files were generated by GENLIG which assigned the formal charge and
atom type (donor, acceptor, both, or nonplar) of each atom and the bond type (sp3 −sp3,
sp3 − sp2, or others) of a rotatable bond inside a ligand. These materials were used
in Equation 12 to calculate the scoring value of a solution. Table 3 shows the ligand
summary, including the minimum, average, and maximum values of the number of
rotatable bonds and the number of heavy atoms.

When preparing the proteins, we removed all structural water molecules and metal
atoms except we discussed the influence of considering these hetero atoms. In order to
decide the size of active site, GEMDOCK was tested on four different sizes (d Å): 6Å,
8Å, 10Å, and 12Å. The size with d Å means that all protein atoms in the active site
are selected if they are located less than d Å apart from each ligand atom. GEMDOCK
automatically decide the cube of a binding site based on the maximum and minimum of
coordinates of these selected protein atoms. Experiments shows that GEMDOCK had
little influence on the different sizes. In this paper, the distance d is set to 10Å when a
ligand is docked back into the active site. Among these 100 test systems, the minimum
cube is 23Å×24Å×20Å (2mcp) and the maximum cube is 41Å×40Å×30Å (2r07).

3.3 Results on the Dataset of 100 Complexes

GEMDOCK executed 10 independent runs for each complex. The solution with lowest
scoring function was then compared with the observed ligand crystal structure. Table 3
shows the summary information and performance. We based the results on root mean
square deviation (RMSD) error in ligand heavy atoms between the docked conformation
and the crystal structure. By contrast, Jones et al [8] used four subjective categories (good,
close, error, and wrong) to evaluate the performance. Because they found all of good
and close solutions with RMSD were below 2.0 Å, we considered that a docking result
is acceptable if the RMSD value is less than 2.0 Å [8,12].
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Table 3. GEMDOCK results and summary of ligands in the dataset of 100 complexes

rank any
RMSD(Å) 1 rank PDB code with rank 1
≤ 0.5 24 41 1abe 1acm 1aco 1did 1epb 1fki 1hdy 1hsl 1ida 1lst 1pbd 1pha 1rob

1stp 1tpp 2ada 2cgr 2cht 2dbl 3aah 3tpi 4phv 6abp 6rsa
> 0.5,≤ 1.0 39 32 1acj 1ack 1acl 1aha 1dbb 1dbj 1die 1dr1 1dwd 1eap 1etr 1fkg 1ghb

1hri 1hyt 1ldm 1lic 1mrk 1nis 1phd 1phg 1rds 1slt 1srj 1tka 1tmn 1ulb
1glq 2ak3 2ctc 2mcp 2pk4 2r07 2sim 3cpa 3hvt 4cts 4dfr 4est

> 1.0,≤ 1.5 10 11 1aaq 1apt 1cbx 1cps 1hdc 1icn 1poc 4fab 5p2p 8gch
> 1.5,≤ 2.0 3 6 1aec 1tdb 3ptb
> 2.0,≤ 2.5 1 0 1mdr
> 2.5,≤ 3.0 3 6 1ase 1blh 2yhx
> 3.0 20 10 1eta 1eed 1azm 1rne 6rnt 1mcr 2mth 1mup 2plv 1baf 1ive 2phh 3gch

1hef 1igj 1coy 1xid 1xie 3cla 7tim

(a) 1glq (b) 4dfr (c) 4phv

Fig. 3. Acceptable docking examples: The docked ligand conformation (red) is similar to the
crystal ligand structure (yellow). The RMSD values are 0.78 Å for 1glq, 0.56 Å for 4dfr, and 0.42
Å for 4phv.

Table 3 shows that GEMDOCK achieved a 76% success rate in identifying the
experimental binding model if the solutions at the first rank are considered. The RMSD
values of 63 complexes are less than 1.0 Å. This rate further rises to 84% based on
the solutions with any rank. The performance of GEMDOCK was little influenced by
the number of rotatable bonds and the number of heavy atoms of a ligand. When the
structural water and metal atoms are considered, the success rate is improved to 86%
with the first rank. On average GEMDOCK took 305 seconds for a docking run on
Pentium 1.4 GHz personal computer with single processor. The maximum time was 883
seconds for the complex, 1rne, and the shortest time was 102 seconds for 2pk4. In the
following, we discussed some acceptable examples and unacceptable examples.

Figure 3 shows three typical acceptable solutions in which GEMDOCK predicted
correct positions of all ligand groups. The predicted ligand is red and crystal ligand
is yellow. All of these three examples are identical with the crystal structures and the
RMSD values are 0.78 Å (1glq: nitrophenyl ligand for glutathione S-transferase), 0.56 Å
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(a) 1eta (b) 1ive (c) 3cla

Fig. 4. Results of three poor docking examples. The docked ligand conformation is red and the
crystal ligand structure is cpk. The RMSD values are 3.62 Å for 1eta, 6.32 Å for 1ive, and 7.56 Å
for 3cla.

(4dfr: methotrexate ligand for dihydrofolate reductase), and 0.42 Å (4phv: peptide-like
ligand for HIV-1 protease).

3.4 Examples of Unacceptable Solutions

Table 3 shows 24 unacceptable docking complexes with RMSD values more than 2.0 Å.
Three poor examples are shown in Figure 4 in which the structures of predicted ligands
and crystal ligands are displayed with red and cpk color, respectively. The RMSD values
are 3.62 Å for 1eta (tetraiodo L-thyronine ligand for transthyretin), 6.32 Å for 1ive
(acetylamino ligand for influenza ), and 7.56 Å for 3cla (chloramphenicol ligand for
Type III chloramphenicol acetyltransferase).

We have analyzed these poor examples to understand why GEMDOCK failed to
recognize the binding models by using numerical experiments. These experiments were
based on three main factors: the scoring functions, the docking materials, and the search
methods. For the scoring functions we tested various uses and parameter values (Equa-
tion 12) on the dataset of 100 complexes. According to our experimental results, the
Einter was the main factor in our system, theEintra andEpenal were minor factors that

influenced some specific docking cases. The element, F (rBij

ij ), of the Einter (Equation
13) dominated the performance. Figure 5 shows the relationship between the RMSD
values and scoring values with 100 independent runs. For the good docking example
(4dfr) 95 solutions with RMSD values are less than 1.0 Å and the scoring value is similar
in each run (Figure 5(a)). By contrast, for a poor example the RMSD value is more than
3.0 Å and the score is diverse (Figure 5(b)). These experiments indicate that our scoring
function seems to be simple and fast to discriminate native binding state and non-native
docked conformations for 90% testing complexes.

For the docking materials we have discussed the influences of the sizes of the binding
site (see Subsection Test data set) and of the hetero atoms in the binding site.Among these
100 complexes there are 17 proteins with metal atoms, and 84 proteins with structural
water atoms. When the metal atoms are included, GEMDOCK can consistently im-
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Fig. 5. Typical relationship between the values of the scoring function and the RMSD on 100
independent runs. (a) For a good docking example the 95 solutions with RMSD values are less
than 0.5 Å and the scoring values are similar. (b) For a poor docking example the RMSD values
are often more than 3.0 Å and the scoring values are diverse.

prove docking accuracy, such as the complexes 1xid and 1xie. In general GEMDOCK
is able to improve the docking accuracy when both structural water and metal atoms are
considered.

3.5 Comparison with Other Approaches

According to our best survey, most of previous docking works studied on a small dataset
(< 20 complexes) except the GOLD [8] and FlexX [12] used. Here we compared GEM-
DOCK with GOLD and FlexX on the dataset of 100 complexes. Table 4 shows the
summary of these three docking tools. The rates of FlexX based on a test set of 200
complexes enlarged the GOLD test set. GOLD was a steady-state genetic algorithm and
FlexX was an incremental approach. GEMDOCK obtained a 76% success rate based on
the condition of an RMSD value less than 2 Å. In contrast GOLD [8] achieved a 71%
success rate in identifying the experimental binding model based on their assessment
categories, and the rate was 66% if based on the RMSD condition. FlexX [12] achieved
a 70% success rate based on solutions with any rank and the RMSD condition. The rate
was 46.5% if the solutions at the fist rank were considered. The results of FlexX were
often sensitive to the choice of the base fragment and its placement and the number of
the fragments.

4 Conclusions

In this work, we have developed a robust evolutionary approach with a simple fitness
function for docking flexible molecules. Experiments on 100 test systems verify that
the proposed approach achieved a 76% success rate in recognizing the binding models.
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Table 4. Comparsion GEMDOCK with GOLD and FlexX on the dataset of 100 complexes

RMSD(Å) GEMDOCK GOLDa FlexXb

≤ 0.5 24% 8% 12.5%
> 0.5,≤ 1.0 39% 27% 38.5%
> 1.0,≤ 1.5 10% 20% 12.5%
> 1.5,≤ 2.0 3% 11% 5.5 %
> 2.0,≤ 2.5 1% 2% 7.5 %
> 2.5,≤ 3.0 3% 4% 2 %

> 3.0 20% 28% 21.5%

a: GOLD [8] is a steady-state genetic algorithm.
b: The rate of FlexX [12], a fragment-based approach, is based on any rank with a dataset of 200
complexes extended from the GOLD data set.

GEMDOCK seamlessly blends local search and global search to work cooperatively by
the integration of a number of genetic operators, each having unique search mechanism.
In summary, we have demonstrated the robustness and adaptability of GEMDOCK
for exploring the conformational space of a molecular docking problem and efficiently
finding the solution under the constraint of the fitness function used. Our scoring function
seems to be simple and fast to discriminate native binding states and non-native docked
conformations. We believe that GEMDOCK is an effective tool for docking flexible
molecules.
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