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Abstract. Supply planning optimization is one of the most important
issues for manufacturers and distributors. Supply is planned to meet the
future demand. Under the uncertainty involved in demand forecasting,
profit is maximized and risk is minimized. In order to simulate the un-
certainty and evaluate the profit and risk, we introduced Monte Carlo
simulation. The fitness function of GA used the statistics of the simula-
tion. The supply planning problems are multi-objective, thus there are
several Pareto optimal solutions from high-risk and high-profit to low-
risk and low-profit. Those solutions are very helpful as alternatives for
decision-makers. For the purpose of providing such alternatives, a multi-
objective genetic algorithm was employed. In practice, it is important
to obtain good enough solutions in an acceptable time. So as to search
the solutions in a short time, we propose Boundary Initialization which
initializes population on the boundary of constrained space. The initial-
ization makes the search efficient. The approach was tested on the supply
planning data of an electric appliances manufacturer, and has achieved
a remarkable result.

1 Introduction

Manufacturers and distributors deal with a number of products. Supply planning
problems are to decide the quantity, the type, and the due time of each product
to supply as a replenishment. The supply plan is decided depending on the de-
mand forecast of the products, and the forecasted demand involves uncertainty.
If the demand exceeds the supply, opportunity losses occur while excess sup-
ply increases inventory level, and may result in dead stocks. In order to supply
products, several resources are consumed to produce, and deliver the products.
Materials, production machines, and transportation are the resources. The avail-
ability of the resources is limited, thus the supply quantity of the products also
has a limit. Under the resource constraints and the uncertainty of demands, the
supply plan is made to maximize the profit.

Traditionally, inventory management approach has been used to create sup-
ply plans[1]. This approach decides the supply plan to minimize the stockout
rate, or opportunity loss rate. However, in practice, this approach has a prob-
lem. This approach does not take account of the relationship between profit and
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risk. For example, under the resource constraints, we can expect more profit by
reducing the opportunity loss of the product with high gross margin than by
doing so with low gross margin. However, the demand of the high gross margin
product is often uncertain, while the demand of regular products with low gross
margin is relatively steady and the risk is low. Thus the best mixture of high risk
and low risk products is important to achieve a certain amount of profit with
minimizing risk. In other words, portfolio management needs to be introduced
in supply planning problems. It is desired to optimize profit and risk of supply
planning problems under uncertain demand.

There is also an operational problem. Supply planning problems are multi-
objective. Though the maximization of profit and the minimization of risk are
required simultaneously, those objectives are in trade-off relationship. Therefore,
the problem has some Pareto optimal solutions from high-risk and high-profit to
low-risk and low-profit. For decision-makers, such alternative solutions are very
helpful because what they should do is to simply select one solution, which fits
their strategy, from the alternatives. Many existing supply planning methods,
however, create only one solution while most decision-makers do not like the
black box system which proposes only one solution.

To produce an efficient supply plan, we introduced a Multi-objective Genetic
Algorithm (GA) and Monte Carlo Simulation into the supply planning. GAs
are considered as efficient ways of optimizing multi-objective problems[2,3,4]. In
GAs, a number of individuals promote optimization in parallel and this charac-
teristic is expedient to find Pareto optimal solutions all at once. We introduced
Monte Carlo simulation[5] into the evaluation process of GA. Monte Carlo sim-
ulation simulates the uncertainty of demand, then profit and risk are evaluated
from the simulation result. In order to search the solutions in an acceptable
time, we proposed boundary initialization which initializes population on the
boundary of constrained space and makes the search efficient.

We briefly describe the supply planning problems in section 2, and propose
a GA with Monte Carlo simulation-based evaluation for supply planning and
efficient population initialization method in section 3. Section 4 shows the result
of computational experiments. Then we conclude in section 5.

2 Demand and Supply Planning

2.1 Supply Planning and Resource Constraints

Manufacturers and distributors deal with many kinds of products. A firm deals
with I kinds of products and it wants to make a supply plan of a certain period
consisting of T terms. dti, pti, and qti are the demand, the supply quantity, and
the initial inventory quantity of product i in term t, respectively. Sales quantity
sti and opportunity loss quantity lti are obtained by the following equations.

sti = min (dti, pti + qti) (1)

lti = dti − sti (2)
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The initial inventory quantity of the next term is

q(t+1)i = pti + qti − sti . (3)

The firm sells the product i for unit price uti in term t, the unit supply cost
is vti and the unit inventory cost is wti. Then the gross profit of the firm through
the planning period is obtained by equation 4.

G =
T∑

t=1

I∑

i=1

(stiuti − ptivti − qtiwti) (4)

The first term represents the sales amount, the second and the third terms are
the supply cost and inventory cost. Opportunity loss amount L is the sales
amount which could be gained if the firm had enough supply and inventory, so
it is defined as the following equation.

L =
T∑

t=1

I∑

i=1

ltiuti (5)

Demand forecast dti is an uncertain estimate, that is a stochastic variable
while supply quantity pti is a decision variable. Since dti is stochastic, as its de-
pendent variables, gross profit G and opportunity loss L are naturally stochastic.
The distributions of G and L depend on the decision variable pti. Thus, the ob-
jective of the supply planning problem is to decide the supply quantity so that
the distributions are optimal.

Resources are consumed as products are supplied. For example, the machines
to produce products and the trucks to transport them are the resources. The firm
has J kinds of resources. rij of resource j is consumed to supply the unit quantity
of product i. atj is the available quantity of resource j in term t. The amount of
the consumption of the resource must not exceed the available quantity. On the
other hand, supply quantity should not be negative. Therefore, the constraints
of supply planning problems are defined as the following equations.

I∑

i=1

rijpti ≤ atj (t = 1, ..., T, j = 1, ..., J) (6)

pti ≥ 0 (t = 1, ..., T, i = 1, ..., I) (7)

The constraints space is convex.

2.2 Optimization Criteria

Supply planning problems are multi-objective. They have a number of criteria of
profit and risk. Statistics of the distributions of the gross profit and opportunity
loss are used as the optimization criteria. Figure 1 summarizes the statistics.
X axis indicates gross profit G or opportunity loss L, and y axis indicates the
probability of it.
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Fig. 1. Optimization Criterion

One of the most important objectives of business is maximizing profit. Thus,
expected gross profit is naturally used as a criterion of profit, and it should be
maximized. Variance of the gross profit reflects the volatility of outcome. Less
volatility is preferable, thus variance is used as a risk criterion, and it should
be minimized. Expected opportunity loss is also used as a risk criterion, and it
should be minimized. The lower confidence limit of the 100α percent confidence
interval is the lower 100(1−α)/2 percentile. For example, a lower confidence limit
of 95 percent confidence interval of the gross profit is the lower 2.5 percentile of
the profit. That means the probability of the gross profit falling below the limit
is only 2.5 percent. Lower confidence limit is an inverse criterion of risk since
it indicates the worst case of the profit, and it should be maximized. Likewise,
upper confidence limit of the opportunity loss is a risk criterion since it indicates
the worst case of the loss, and it should be minimized.

2.3 Demand Forecasting

Future demand can be forecasted according to the history of demand. There
are several forecasting methods such as Moving Average Method, Exponential
Smoothing Method, and Box-Jenkins Method [6].

In this paper, an existing commercial software was used to forecast future
demand. The software analyzes the history of demand and automatically chooses
the forecasting method which best fits to the historical data, then forecasts the
expected value and the variance of the future demand. The demand forecast is
supposed to follow Normal distribution though its left tail is truncated at zero.

3 Genetic Algorithms Approach

3.1 Genetic Representation

In order to optimize supply planning problems, we employed a real-coded
genetic algorithm. Each individual is a vector of real value, and the vector
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x = (x1, ..., xT×I) corresponds to the set of supply quantities. Its element
x(t−1)×I+i corresponds to supply quantity pti, i.e.

x = (p11, p12, ..., p1I , p21, p22, ..., p2I , ..., pT1, pT2, ..., pTI) . (8)

3.2 Fitness Function Using Monte Carlo Simulation

In order to evaluate the criteria of supply plan problems, we introduced Monte
Carlo Simulation in the fitness function of GA. Monte Carlo simulation is a simu-
lation method in which a large quantity of random numbers are used to calculate
statistics. It calculates multiple scenarios of the gross profit and the opportunity
loss by sampling demand quantities from the random number following their
probability distributions.

Figure 2 describes the detail of the Monte Carlo simulation to evaluate sup-
ply planning. The future demand of each product is forecasted as the expected
value and the variance. µti and σti denote the expected demand and its stan-
dard deviation of product i in term t. Demand is considered to follow normal
distribution.

01 begin evaluation 
02     m := 1 
03     repeat            *** Repeat simulation for an evaluation *** 
04         Gm :=0,  Lm :=0  *** Initialize gross profit and opp. loss of m-th simulation *** 
05         i :=1 
06         repeat          
07             q1i :=0 
08             t :=1 
09             repeat      
10                 *** Calculate the profit and the loss from product i in term t *** 
11                 *** and sum up them into n-th profit and loss            *** 
12                 dti := Random number following N( µti, σti ) 
13                 sti := min( dti, pti + qti ) 
14                 lti := dti − sti 
15                 Gm := Gm + ( stiuti − ptivti − qtiwti ) 
16                 Lm := Lm + ltiuti 
17                 q(t+1)i := pti + qti – sti 
18                 t :=t +1 
19             until t <= T 
20             i := i +1 
21         until i <= I 
22         m := m +1 
23     until m <= M 
24     Calculate optimization criteria 
25 End evaluation 

Fig. 2. Monte Carlo Simulation to Evaluate Supply Plan
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The evaluation of one individual, or one supply plan, consists of M simula-
tions of the gross profit and the opportunity loss. The block from line 4 to 22
in the figure corresponds to one simulation. In each simulation, the demand of
each product in each term is simulated by the random number following normal
distribution N(µ, σ)(line 12 in the figure). After the iterations, we obtain M
samples of gross profit Gm and opportunity loss Lm (m = 1, ..., M). Statistics
as the optimization criteria are calculated from the samples. For example, the
expected gross profit and its variance are estimated by equation 9 and 10.

Ĝ =
1
M

M∑

m=1

Gm (9)

U (G) =
1

M − 1

M∑

m=1

(
Gm − Ĝ

)2
(10)

Ĝ should be maximized as a matter of course and U (G) should be minimized
since less volatility is preferable.

3.3 Genetic Operators and Selection

Supply planning problems are multi-objective. The outcome of multi-objective
optimization is not a single solution, but a set of solutions known as Pareto opti-
mal solutions. Among the solutions, each objective cannot be improved without
the other objectives being degenerated. A vector u = (u1, ..., un) is superior to
v = (v1, ..., vn) when u is partially greater than v, i.e.,

∀i, ui ≥ vi ∧ ∃i, ui > vi . (11)

Any solution to which no other solution is superior is considered as optimal.
Since supply plan optimization is multi-objective, it has several Pareto optimal
solutions.

The supply plan optimization problem has convex constraints. The genetic
operators proposed by Michalewicz [7][8] can handle convex constraints effec-
tively. Thus we employed the operators and modified for multi-objective prob-
lems. The GA has two mutation operators, uniform and boundary, and two
cross-over operators, arithmetic and heuristic.

The mutation operator selects one locus k from individual x randomly and
changes the value of xk in the range satisfying constraints. Uniform mutation
changes xk to a random number following uniform distribution, and boundary
mutation changes xk to the boundary of constrained space.

x and y denote parents, and z denotes offspring. Arithmetic crossover re-
produces offspring as z = λx + (1 − λ) y where λ is a random value following
uniform distribution [0, 1]. Since the constrained solution space is convex, when-
ever both x and y satisfy the constraints, arithmetic crossover guarantees the
feasibility of z.
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Heuristic crossover uses the evaluation of two parents to determine the search
direction. The offspring reproduced by heuristic crossover is z = x + λ (x − y)
where the evaluation of individual x is superior to y and λ is a random number.
The range of λ is [0, 1], and in the case when the offspring is not feasible, the
operator makes attempts to generate a feasible one.

The supply plan problems we deal with are multi-objective. Thus, in order
to determine the search direction of heuristic crossover, we introduced a com-
parison procedure consisting of three steps. Ei (x) , (i = 1, ..., K) denotes the
evaluation of i-th criterion of individual x. K is the number of criteria. In case
of maximization, the procedure is as follows:

– Step 1
Compare two parents according to Pareto optimality. Individual x
is superior to y when

∀i, Ei (x) ≥ Ei (y) ∧ ∃i, Ei (x) > Ei (y) . (12)

Otherwise, go to step 2.
– Step 2

Compare the number of individuals superior to each parent. The
parent dominated by the smaller number of other individuals in the
current population is considered to be superior. If the same number
of individuals dominate both x and y, go to step 3.

– Step 3
Randomly Select either of two parents as a superior.

We employed tournament selection [9]. It selects k individuals at random and se-
lects the best one among these k individuals. k is a parameter called tournament
size which determines selective pressure. Pareto optimality is also applied to de-
termine which individual wins the tournament. Superior individuals have more
chances to be selected. Consequently, Pareto optimal solution set is explored.

3.4 Boundary Initialization

In the GA we introduced, all the individuals in the initial population must
satisfy the constraints. Thus, the population is generally initialized randomly in
the constrained space.

In practice, it is more important to find good enough solutions in acceptable
time than to find genuine optimal solutions. Thus, we propose a new initial-
ization method, Boundary Initialization. Practically and empirically, most of
optimal solutions of the real-world constraints problems are on the boundary of
constraints. The method initializes the population randomly on the boundary of
constrained space, and makes the search of solutions efficient. In figure 3, black
dots are the individuals produced by Boundary Initialization, and white dots are
produced by Random Initialization.

It is said that the diversity of initial population is very important because
it ensures the exploration through the whole search space. Therefore, there is a
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Constraints

Random Initalization

Boundary Initalization

Fig. 3. Boundary Initialization and Random Initialization

possibility that search fails to reach optimal solutions when the initial population
is biased on the boundary. However, we expect that the bias boosts the search
efficiency in solving practical problems, and that Boundary Initialization should
work well.

4 Computational Experiments

The supply planning method with GA was tested on the data provided by an
electric appliances manufacturer. The data consist of ten product groups and four
key resources. In our experiments, each product group is treated as a product.

In our experiments, population size was set to 100, termination was 50 gen-
erations, and tournament size was 4. We adopted the elitist policy [10] and elite
size was 5. The iteration of simulations in one evaluation was 1000. That means
gross profit and opportunity loss were calculated 5,000,000 times in one opti-
mization run. It took about 255 seconds to run one optimization on Windows
2000 PC with Pentium IV 2.2GHz and 1GBytes RAM. The test program was
implemented in C++. We carried out two experiments. In the first experiment,
the objectives were maximizing expected gross profit and minimizing the stan-
dard deviation of the profit. The standard deviation was minimized since smaller
volatility was preferable. In the second experiment, the objectives were maximiz-
ing expected gross profit and minimizing expected opportunity loss. Standard
deviation of the profit and opportunity loss are the criteria of risk. We tested
Random and Boundary Initialization in both experiments.

Figure 4 and Figure 5 show the Pareto optimal individuals, i.e. solutions at
the last generation of five trials. Each marker corresponds to one solution and
each line corresponds to the efficiency frontier of each trial. (a) is the result with
Random Initialization and (b) is with Boundary Initialization. For comparison,
we also tested conventional inventory management method.

Figure 4 is the result of the first experiment maximizing expected gross profit
and minimizing the standard deviation. Obviously, the optimization with Bound-
ary Initialization is better than that with Random Initialization. The standard
deviation was minimized with both methods. However, Random Initialization
could not obtain a better solution even than the conventional method.

Figure 5 is the result of the second experiment maximizing expected gross
profit and minimizing opportunity loss. The optimization with Boundary Ini-
tialization is much better than that with Random Initialization.
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Fig. 4. Maximization of expected profit and minimization of standard deviation of
profit

Fig. 5. Maximization of expected profit and minimization of opportunity loss

We can observe the trade-off between profit and risk from the figures. The so-
lutions are appropriate as reasonable alternatives for decision-makers. We found
that the supply planning GA with Boundary Initialization obtained extremely
good solutions. The proposed approach could also provide several pareto-optimal
solutions as alternatives, from high-risk and high-profit to low-risk and low-
profit.

5 Conclusion

In this paper, we proposed a supply planning method employing a multi objec-
tive GA. The method uses Monte Carlo Simulation in the fitness function of GA.
Monte Carlo simulation simulates uncertain demand, then profit and risk as fit-
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ness values are calculated from the simulation result. The GA searches a number
of Pareto optimal solutions in one optimization run. We also proposed Boundary
Initalization which initializes population on the boundary of constraints.

We tested our approach on the actual data from an electric appliances man-
ufacturer. The proposed approach successfully optimized the supply planning
problem. We also found that Boundary Initialization is more effective than Ran-
dom Initialization.

The GA provided a number of Pareto optimal solutions covering from high-
risk and high-profit to low-risk and low-profit. We believe this feature is very
helpful to decision-makers. Since the Pareto optimal solutions can be the al-
ternative choices, decision-makers can select one preferable solution from the
alternatives according to their risk appetite and business strategies.
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