

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 2313–2324, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Evolving Consensus Sequence for Multiple Sequence
Alignment with a Genetic Algorithm

Conrad Shyu and James A. Foster

Initiatives for Bioinformatics and Evolutionary Studies (IBEST)
Department of Computer Science

University of Idaho, Moscow, Idaho 83843, USA
{tsemings,foster}@cs.uidaho.edu

Abstract. In this paper we present an approach that evolves the consensus
sequence [25] for multiple sequence alignment (MSA) with genetic algorithm
(GA). We have developed an encoding scheme such that the number of gene-
rations needed to find the optimal solution is approximately the same regardless
the number of sequences. Instead it only depends on the length of the template
and similarity between sequences. The objective function gives a sum-of-pairs
(SP) score as the fitness values. We conducted some preliminary studies and
compared our approach with the commonly used heuristic alignment program
Clustal W. Results have shown that the GA can indeed scale and perform well.

1 Introduction

Living things diverge from common ancestors through changes in deoxyribonucleic
acid (DNA) and millions of years of evolution [6]. DNA indeed plays a fundamental
role in the processes of life in various aspects. It contains the template for the syn-
thesis of proteins, which are crucial molecules for life. Moreover, DNA is essential to
life because it functions as a medium to transmit information from one generation to
another [10]. Evidently the most important regions in DNA are generally conserved to
ensure survival. Sequence alignment is commonly used to detect and quantify simi-
larities in DNA or protein sequences. Alignments of biological sequences generated
by computational algorithms are routinely used as a basis for inference about sequen-
ces whose structures or functions are not well known [7]. The most common approach
is to find the best-scoring algorithm between a pair of sequences where the score
records aligning similar residues and penalizes substitutions and gaps. The best-
scoring alignment is commonly found by the dynamic programming (DP) algorithms,
such as Smith-Waterman and Needleman-Wunsch algorithms [14, 23]. DP algorithms
guarantee a mathematically optimal alignment for the given evolutionary model; how-
ever, the complexity of DP algorithms grows exponentially as the length and number
of sequences increase. Specifically multiple sequence alignments (MSA) with DP
have been shown to be NP-hard [19]. Several heuristic approaches, such as Clustal W
[20], are frequently used to approximate the optimal alignments. In this paper, we
present an approach that utilizes the guided search in GA to evolve the most probable
consensus sequence [25] for MSA.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

2314 C. Shyu and J.A. Foster

The design of GA is derived from the most commonly used DP algorithms for
sequence alignments. In addition, we have developed an encoding scheme such that
the search complexity does not depend on the number of sequences. The search
complexity instead depends on the length of the consensus sequence and similarity
between sequences. The scheme encodes each possible matching nucleotide at given
column with binary masks. This compact representation greatly reduces the space
requirement as well as the search complexity. The GA constructs the final alignment
through the backtracking process, which is identical to the one found in DP
algorithms [14]. The objective or evaluation function gives the sum-of-pairs (SP)
scores to determine the fitness of each chromosome in the population. SP score has
been widely used to detect and quantify similarities between sequences; however it
does not provide any probabilistic or biological justifications [7]. To further improve
the performance of GA, we have devised a sequence profiling formulation that
reduces the complexity for calculating the SP scores. We have compared our
approach to the most commonly used heuristic alignment program Clustal W and
demonstrated that GA can indeed perform and scale well. In most cases, the GA
outperformed Clustal W and produced better alignments.

2 Sequence Alignment

There are diverse motivations behind the alignment of biological sequences. Genetic
sequences are inherited from common ancestors through millions of years of evolu-
tion. Therefore, it is of interest to trace evolutionary history of mutation and other
evolutionary changes through sequencing [2, 6]. Alignment of biological sequences in
this context is generally understood as comparisons based on the criteria of evolution.
For example, the number of mutations, insertions, and deletions of residues necessary
to transform one DNA sequence into another is a measure of phylogeny or evolu-
tionary relatedness [3, 13]. On the other hand, a comparison may pinpoint regions of
common origin, which may in turn coincide with regions of similar structure or
function [10]. A pairwise sequence alignment is a technique of arranging two sequen-
ces, so that the residues in certain positions are deemed to have a common evolu-
tionary origin. In other words, if the same residue occurs in both sequences at the
same position then it may have been conserved during the course of evolution. On the
other hand, if two resides differ then it is generally assumed that they may have
derived from a common ancestor. Homologous sequences, those related by common
descent, may have different lengths, which is generally explained through insertions
or deletions [6, 10].

DP has been commonly used to align two sequences because it guarantees a mathe-
matically optimal alignment. MSA, on the other hand, is simply an extension of pair-
wise sequence alignment. MSA is the process of aligning three or more sequences
simultaneously to bring as many similar residues into register as possible. The result-
ing alignments are commonly interpreted into two contexts; (a) to find regions that
define a conserved pattern or domain; and (b) to derive the possible phylogeny or
evolutionary relationships among the sequences [13]. The presence of similar do-
mains in several similar sequences implies a similar biochemical function or structural
fold that may be used as the basis for further experimental investigation. Simul-

Evolving Consensus Sequence for Multiple Sequence Alignment 2315

taneous alignment of three or more sequences with DP, however, poses a difficult
algorithmic challenge.

2.1 Dynamic Programming (DP)

Dynamic programming (DP) is a commonly used method for solving sequential or
multi-stage decision problems and is recursive in nature. The essence of DP is the
principle of optimality [15, 17]. DP has long been used to solve varieties of discrete
optimization problems such as scheduling, string-editing, packaging, and inventory
management [12]. It views a problem as a set of interdependent sub-problems. DP
solves sub-problems and uses the results to solve larger sub-problems. The solution to
a sub-problem is expressed as a function of solutions to one or more sub-problems at
the preceding levels [7]. In other words, DP expresses the problem in a recurrent
formulation. To make optimal decisions for the next and all future states, DP only
needs to know the current decision. This is also known as the Markovian property.
For a process to be Markovian the future must depend only on the present state, and
past should not have any effect on the future [7, 12]. The term programming in the
name actually refers to the mathematical rules that can be easily followed to solve a
problem; it has nothing to do with writing a computer program. DP is known to be an
efficient programming technique for solving certain combinatorial problems. It is
particular important in bioinformatics [17], as it is the basis of sequence alignments
for comparing DNA and protein sequences. The following figure shows the recurrent
formulation of DP for sequence alignment.

(1, 1) (,),

(,) max (1,) ,

(, 1) .

i jF i j s x y

F i j F i j d

F i j d

− − +
= − −
 − −

Fig. 1. This recurrent equation is applied repeatedly to fill the matrix of F(i, j) values. This
particular formulation gives the global alignment of two sequences. F(i, j) is the maximum of
three previous values, namely F(i-1, j-1), F(i-1, j), and F(i, j-1). The value s(x

i
, y

j
) is the score

for aligning the characters x
i
 and y

j
 and d is the penalty for inserting a gap

For pairwise sequence alignments, for example, DP first begins with the construction
of an alignment matrix F(i, j) with the indexes (i, j) for the two sequences Sx and Sy.
The matrix is initialized with F(0, 0)=0. The value of F(i, j) is the score of the best
alignment from the first character x1 to the character xi of sequence Sx and the first
character y1 to the character yj of Sy. There are three possible ways that xi and yj can be
aligned; (a) xi can align with yj, which gives a match or mismatch; (b) xi is aligned
with a gap; or (c) yj is aligned to a gap. Since the matrix is built recursively, in order
to calculate F(i, j), the previous states F(i-1, j-1), F(i-1, j), and F(i, j-1) must be
known beforehand [7].

2316 C. Shyu and J.A. Foster

2.2 Sum-of-Pairs (SP) Score

Carrillo and Lipman [5] first introduced the sum-of-pairs (SP) score function, which
defines the scores of a multiple alignment of N sequences as the sum of the scores of
the N(N-1)/2 pairwise alignments [5, 7]. Although SP score function has been widely
used to evaluate MSA, it doesn’t really provide any biological or probabilistic justi-
fication. Each sequence is scored as if it is descended from the N-1 other sequences
instead of a single ancestor. As a result, evolutionary events are often overestimated.
The problem worsens as the number of sequences increases [7]. A weighted SP score
function has been proposed to partially compensate the problem [1, 8]. Moreover,
despite the simplicity of the SP score function, its sheer running time and space con-
sumption makes it impractical even for modestly sized sets of short sequences.
Specifically it has been shown that the problem of computing MSA with optimal SP
score is NP-hard [22]. Several fast approximations and divide-and-conquer approa-
ches [18] have been proposed to overcome the computational complexity. The follow-
ing figure shows the mathematical formulation of the weighted SP score function.

,
1 1

() (,)
N

p q pj qj
p q k j

w M a s m m
≤ < ≤ =

= ×

∑ ∑

Fig. 2. The SP function, w(M), sums all the pairwise substitution scores in the columns for the
sequence pairs p and q. Each column is evaluated with a scoring matrix. The substitution
scoring function, s(m

pj
, m

qj
), defines all possible alignments for nucleotides p

j
 and q

j
. The func-

tion s(m
pj
, m

qj
) gives the score of the alignment at column j for sequence p and q. The weight,

α
p,q

, is intended to balance the overestimation problem in the SP score function [1, 7]

2.3 Clustal W

Clustal W is a commonly used progressive alignment program for biological sequen-
ces. It is based on a heuristic algorithm and therefore cannot always find the optimal
alignments. Clustal W exploits the fact that homologous sequences are evolutionarily
related. It builds up multiple alignments progressively with a series of pairwise align-
ments moving from the leaves upward in a guide tree that estimates the phylogeny of
the sequences [9]. Clustal W first aligns regions of identical or highly conserved
residues and gradually adds in more distance ones [21]. This approach is sufficiently
fast and allows Clustal W to alignment virtually any number of sequences. Although
Clustal W doesn’t always find the optimal alignments; however, in most cases those
alignments at least give a good starting points for further automatic or manual refine-
ment. This type of alignment is generally useful for the study of identifying regions
that are highly conserved. The alignments can be further improved through sequence
weighting, positions-specific gap penalties and choice of weight matrix [20]. Clustal
W nonetheless suffers two major problems, the local maxima and the choice of align-
ment parameters.

The local maxima problem stems from the nature of the progressive alignment
strategy. As the algorithm follows the guide tree and merges sequences together, the
solution is never guaranteed to be globally optimal, as defined by some overall mea-

Evolving Consensus Sequence for Multiple Sequence Alignment 2317

sure of alignment quality [9, 16, 20]. Any misaligned regions made early in the align-
ment process cannot be corrected later as new information from other sequences is
introduced. This problem is frequently a result of an incorrect branching order in the
guide tree. The only way to correct this is to use an iterative or stochastic sampling
procedure such as bootstrapping [20]. The choice of alignment parameters is another
problem in Clustal W. If parameters are not chosen appropriately, alignments will not
converge to a globally optimal solution [7, 20]. For closely related sequences, any
reasonable scoring matrices should work fine because matches usually receive the
most weights [11]. Therefore, when matches dominate an alignment, almost any
weight matrices will find a good solution. However, when aligning more divergent
sequences, scores for gaps and mismatches become narrow and critical because they
occur more frequently. Moreover for highly conserved sequences, the range of gap
penalties that will find the correct or best possible solution can be very broad. As
more and more divergent sequences are added, however, the exact values for gap
penalties become critical for success [20]. Our observations have confirmed that this
is actually a common problem in most MSA algorithms. Statistically as the number of
sequences increases, the expected number of matches in each column also increases.
For example, the probability of finding a matching nucleotide in the column of ten
sequences is much higher than that of three sequences. If the gap penalty is too low,
alignments will generally contain excessive amounts of gaps. It is in general difficult
to justify why one scoring matrix is better than the others [7].

3 Design of GA

3.1 Consensus Sequence

The consensus sequence [25] is a unique as well as the most interesting and important
feature of our GA approach. It is essentially a compact formulation to represent all
possible alignments for virtually any given numbers of sequences [4]. The consensus
sequence borrows the idea from biology that sometimes it is necessary for certain
positions in a sequence to be made ambiguous when some residues simply cannot be
resolved during laboratory experiments. A sequence with ambiguity codes is actually
a mix of sequences, each having one of the nucleotides defined by the ambiguity at
that position. For example, if an R is encountered in the sequence, then the sequences
in the assortment will have either an adenine or a guanine at that position. The ambi-
guity enables conserved sequences to be condensed into one single representation.
The following figure lists the most commonly used ambiguity codes defined by the
Nomenclature Committee of the International Union of Biochemistry (IUB) and the
next figure shows a hypothetical alignment with five sequences and illustrates how
the ambiguity codes are used to derive the consensus sequence. It is assumed that the
optimal alignment is already known for a given evolutionary model. The consensus
sequence in essence is a condensed sequence with ambiguity codes that shows what
nucleotides are allowed in each column.

2318 C. Shyu and J.A. Foster

Fig. 3. The most commonly used DNA ambiguity codes are defined by the International Union
of Biochemistry (IUB). The presence of ambiguity generally indicates that some residues can
not be resolved during the laboratory experiments. Ambiguity codes also enable sequences to
be represented in a more condensed form

3.2 Design of Encoding Scheme

To further enhance the design, our chromosomes are broken into four pieces accord-
ing to the nucleotide they represent. In other words, our GA uses four parallel chrom-
osomes to represent four different nucleotides. Each chromosome encodes the relative
occurrences and locations of a nucleotide and is only evolved with the chromosome
that encodes the same nucleotide. The fitness of the entire chromosomes is determi-
ned by how well they fit together to derive the final alignment. The geometry of the
parallel chromosomes is very similar to the four dimensional hyper-plane. Each dime-
nsion is evolved and optimized separately and independently.

Fig. 4. Sequences are split up into four subsequences according to the nucleotides. Each sub-
sequence only encodes the information where such a nucleotide can be found. Since each
nucleotide is individually encoded, any possible ambiguities can be fully represented. Further,
chromosomes are represented as binary strings, where 1 signals the existence of such a nucleo-
tide at the given location while 0 signals the absence

The length of chromosomes is difficult to determine precisely. It depends on the
evolutionary model as well as the similarity of the sequences. If sequences are highly
conserved, chromosomes can be relatively short. Intuitively any two randomly gener-

Evolving Consensus Sequence for Multiple Sequence Alignment 2319

ated sequences will have at least 25% similarity. For this study, we assumed that
sequences have at least 50% similarity to be biologically significant. Therefore, we
arbitrarily defined the length of the chromosome to be 1.5 times longer than the long-
est sequences. For most of our studies, this assumption worked fine. Furthermore, for
implementation convenience, each chromosome is further divided into smaller blocks
called loci. Biologically, a locus is a block of alleles where genes can be found. The
length of a locus is determined by the length of an integer on the hardware platform.
The number of loci depends on the length of the chromosome.

3.3 Crossover and Mutation Operations

For this research, we implemented a simple one-point crossover. A point is randomly
selected in each locus for each chromosome and alleles are exchanged between two
parent chromosomes to form an offspring. An offspring is produced at each gener-
ation and then competes with the population. Since each chromosome has separate
string for the four nucleotides, the crossover points are chosen separately. Further-
more, we have implemented a bias function for selecting the parent chromosomes
from the entire population. The bias function is like an “unfair” randomly number
generator. It is essentially a quadratic equation that randomly generates a series of
numbers with bias toward the lower indexes. Since the initial population has been
sorted in the descending order according to the fitness values, consequently the
individuals with higher fitness values are more likely to be selected. Mutation is an
important operator that prevents the population from stagnating at local optima [24].
In our implementation, the mutation is only applied to the newly created offspring
chromosomes. The GA first calculates the expected number of mutations for each
locus in the chromosomes with a random factor. It then iteratively picks random
locations on each locus for each of the four parallel chromosomes and changes the
alleles. The mutation operator randomly flips the alleles independently on each locus
with the binary XOR operator. It inverts the alleles from 0 to 1 or 1 to 0.

Fig. 5. The crossover operator retrieves the alleles from two parent chromosomes to create an
offspring. A point is randomly selected on each locus for each chromosome. The offspring
receives approximately a half of alleles from each parent. The length of a locus is 32-bit, which
corresponds to the length of an integer on our machines

2320 C. Shyu and J.A. Foster

3.4 Objective Function

The objective function measures the quality of MSA. Therefore, ideally the better the
score the more biologically relevant the multiple alignments are. The substitution
costs are evaluated using a predefined substitution matrix. The matrix assigns every
possible substitution or conservation according to its biological likeliness. We used
the nucleic scoring matrix defined by IUB that each match receives 10 points and
mismatch 0. The gap penalty is 10.0 for opening and 0.2 extending a gap. The align-
ment with the highest score is considered a potentially optimal solution. In addition,
the objective function subtracts the fitness value with both the mismatch and gap
scores multiplied by the numbers of nucleotides that are missing in the alignment for
the chromosomes that do not include all nucleotides. Our experiments have confirmed
that this strategy worked quite well. The calculation of SP scores for N sequences
takes O(M×N2) time [4, 26] where M is the average length of the sequences. To
further improve the GA performance, we have devised a sequence profiling technique
that simplifies the calculations of SP scores.

Fig. 6. The figure shows the sequence profile for the column in the red color. The profiling
process simply accumulates the frequencies or occurrences of each nucleotide on a given
column. The process simplifies the calculations of the SP scores into three smaller tasks and
reduces the complexity. Matches are only possible when two identical nucleotides are aligned
together. Therefore, the score for matches is the sum of all possible combinations of identical
nucleotides multiplied by the matching scores S(i, i) from the substitution matrix. The number
of mismatches is the sum of all combinations between two different nucleotides. There are only
six such combinations. The gap penalties are the sum of all arrangements between each nucleo-
tide and gaps

The objective function first computes the profile of the sequences for each column.
A profile is simply the occurrences or frequencies of each nucleotide. The profiling
process accumulates the occurrences of each nucleotide and reduces the calculations
of SP scores into three smaller tasks. Matches are only possible when two identical
nucleotides are aligned together. Therefore, the matching score is simply the sum of
all possible combinations of the same nucleotides multiplied by the match score in the
substitution matrix. The number of mismatches, on the other hand, is the sum of all
the combinations of two different nucleotides. There are only six such combinations.
The number of gap alignments is derived from the sum of the frequencies of each
nucleotide multiplied by the number of gaps. The result is then multiplied by the gap
penalty to obtain the overall gap score.

Evolving Consensus Sequence for Multiple Sequence Alignment 2321

3.5 Alignment Construction

The construction of the final alignment is very similar to that of the DP algorithm [14,
23]. The GA derives the alignment from the last nucleotide to the first and the chrom-
osomes are accordingly decoded backward. If a nucleotide is permitted at a given
column, then it is consumed and added in the final alignment. The process moves on
to the preceding ones. Otherwise a gap is inserted into the alignment. If no nucleo-
tides are ever used in the column, then the allele is skipped. Alleles that are not used
to derive the final alignment are considered the non-coding regions. One of the very
interesting and important features of the scheme is that the alleles that are used to
derive the alignment do not have to be consecutive. In addition, two different chrom-
osomes can potentially give the same alignments. In other words, the alignment const-
ruction process picks the “appropriate” alleles as it moves along. The chromosomes
do not have to encode exact bit patterns for the alignments. This makes every allele in
the chromosome a potential solution for the alignment. Experiments have confirmed
that the GA discovered the optimal alignment, as defined by the substitution matrix,
quickly and effectively. The alignments produced by the GA are at least as good as
the ones obtained from Clustal W. If the GA is allowed to continue evolving, better
alignments are very likely to be found. As the number of sequences increases, the
effectiveness of the GA begins to surface. Our experiments have shown that regard-
less the number of sequences being aligned; the GA performed extremely well and
produced alignments with competitive scores.

Fig. 7. The figure shows how the final alignment is constructed from the chromosomes. The
alignment is derived in the reverse order. The spaces in between are the alleles that did not
match up any of the nucleotides in the sequences. If a particular nucleotide does not present in
the sequence, a gap is inserted. Chromosomes do not have to encode the exact bit patterns for
the alignments. The alignment process simply picks the “appropriate” alleles

4 Experiment Settings

The objective of our experiments was to demonstrate that the GA could scale better as
well as produce competitive alignments. For the purpose of this study, we assumed
that Clustal W always gave the optimal scores. Sequences were first aligned with
Clustal W and the scores were used as the stopping condition for the GA. We applied
the standard IUB nucleic scoring matrix and used the gap penalties identical to that of
Clustal W. For this study, we have gathered 20 short random DNA sequences of an

2322 C. Shyu and J.A. Foster

average length of 60 base pairs. Sequences were manually verified to have at least
50% similarity. Each chromosome was about 96 bits long and had three loci. The
mutation rate was 0.0625 and the average expected number of mutations on each
locus was about one. The GA began with a randomly generated population of 64
individuals. The population was first evaluated and sorted in the descending order
according to the fitness values. At each generation, the bias function randomly picked
two individuals from the population that served as the parent chromosomes. The
crossover operator exchanged alleles from two parent chromosomes and created an
offspring. Mutation was applied to the offspring repeatedly until the fitness is higher
than both parent chromosomes. The offspring then competed with the entire popu-
lation and removed the individual with the lowest fitness. We gradually increased the
number of sequences in each trial. Due to the stochastic nature of GA, all trials were
performed at least three times in order to obtain more reliable results.

5 Experiment Results and Discussions

Experiments show promising results for our GA approach. In most cases, the GA out-
performed Clustal W and produced better alignments. The number of generations
needed to find the optimal solutions remained approximately the same even though
the quantity of sequences increased. This is tribute to the fact that the GA was able to
utilize the guided search effectively and found the optimal alignments.

During the course of experiments, we have tried various chromosome lengths in
order to understand how they affect the performance of the GA. Notably the perfor-
mance dropped dramatically when the length of sequences reached to 300 base pairs.
Further investigation is still needed in order to gain a better understanding. The exact
length of the consensus sequence is difficult to determine because it largely depends
on the similarity of sequences and the evolutionary model. Our observations revealed
that if the consensus sequence is too short, GA frequently failed to converge. On the
other hand, if it is too long, the progress becomes extremely slow. In addition, we
have confirmed that the SP scoring function was never a good measurement for MSA.
If the gap is not heavily penalized, the same score can be easily achieved with more
matches but excessive amounts of gaps. The relative difference in score between the
correct and incorrect alignments decreases as the number of sequences increases.
Clearly this is very counterintuitive and not realistic. The relative difference should
increase when more sequences are introduced into the alignment.

Table 1. This table summarizes the numbers of generations needed to find the optimal align-
ments, at least as good as Clustal W, with various amounts of sequences

Number of Sequences / Generations
Trial 10 12 14 16 18 20

1 29,044 36,286 32,225 25,304 35,893 42,805
2 20,835 31,012 22,244 35,447 27,701 46,888
3 26,080 39,906 26,141 32,720 43,989 44,452

Evolving Consensus Sequence for Multiple Sequence Alignment 2323

Fig. 8. The figure shows the GA performance on a set of 18 sequences. The GA typically found
a good alignment within 50,000 generations. If the GA is allowed to continue evolving, align-
ments with even higher scores are very likely to be found. The horizontal line indicates the
score found by Clustal W, which is about 35,294

6 Future Works

The consensus sequence with GA showed very promising performance and results.
For future work, we would like to extend this approach to align protein sequences and
implement statistical scoring techniques. In addition, we plan to incorporate the
weighting scheme and analyze the impact on the GA performance. We are currently
investigating an approach that incorporates several statistical and simulation techni-
ques to try to quantify the significance of alignment scores.

Acknowledgements. Shyu was partially funded by a grant from Proctor and Gamble
and Foster was part-ially funded for this research by NIH NCRR 1P20 RR16448.

References

1. Altschul, S.F., Carroll, R.J., and Lipman, D. Weights for data related by a tree. Journal of
Molecular Biology, 207: 647–653 (1989).

2. Altschul, S.F. and Lipman, D. Trees, stars, and multiple sequence alignment. SIAM
Journal of Applied Mathematics, 49: 197–209 (1989).

3. Altschul, S.F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. Basic local alignment
search tool. Journal of Molecular Biology, 215 (3):403–410 (1990).

4. Day, W.H. and McMorris, F.R. The computation of consensus patterns in DNA sequence.
Mathematical and Computational Model. 17, 49–52 (1993).

5. Carrillo, H. and Lipman, D. The multiple sequence alignment problem in biology. SIAM
Journal of Applied Mathematics, 48: 1073–1082 (1988).

6. Carroll, S.B., Grenier, J.K., and Weatherbee, S.D. From DNA to diversity: molecular
genetics and the evolutionary of animal designs. Malden, MA: Blackwell Science (2001).

2324 C. Shyu and J.A. Foster

7. Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. Biological sequence analysis: proba-
bilistic models of proteins and nucleic acids. Cambridge, UK: Cambridge University
(1998).

8. Fogel, D.B. and Corne, D.W. (ed.). Evolutionary Computation in Bioinformatics. San
Fran-cisco, CA: Morgan Kaufmann Publishers (2003).

9. Feng, D. and Doolittle, R.F. Progressive sequence alignment as a prerequisite to correct
phylogenetic trees. Journal of Molecular Evolutionary, 25: 351–360 (1987).

10. Graur, D. and Li, W.H. Fundamental of Molecular Evolution, 2nd ed. Sunderland, MA:
Sinauer Associates (2000).

11. Wang, L., and Gusfield, D. Improved approximation algorithms for tree alignment.
Journal of Algorithms, 25: 255–273 (1998)

12. Gusfield, D. Algorithms on strings, trees and sequences: computer science and compu-
tational biology. New York, NY: Cambridge University Press (1997).

13. Hall, B.G. Phylogenetics trees made easy: a how-to manual for molecular biologists. Sun-
derland, MA: Sinauer Associates (1997).

14. Needleman, S.B. and Wunsch, C.D. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. of Mol. Biol. 48: 443–453
(1970).

15. Sean, R.E. A memory-efficient dynamic programming algorithm for optimal alignment of
sequence to an RNA secondary structure. BMC Bioinformatics, 3: 13 (2002).

16. Sauder, J., Arther, J., and Dunbrack, R. Large-scale of comparison of protein sequence
alignment algorithms with structure alignments. Proteins: structures, function, and
genetics, 40: 6–32 (2000).

17. Setubal, J. and Meidanis, J. Introduction to computational molecular biology. Boston,
MA: PWS Publishing (1997).

18. Stoye, J., Perry, S.W., and Dress, A.W.M. Improving the divide-and-conquer approach to
sum-of-pairs multiple sequence alignment. Applied Mathematical Literature, vol. 10, no.
2, pp. 67–73 (1997).

19. Thomsen, R., Fogel, G.B., and Kirnk, T. A Clustal alignment improver using evolutionary
algorithms. Congress on Evolutionary Computation, vol. 1; p. 121–126 (2002).

20. Thompson, J.D., Higgins, D.G., and Gibson, T.J. Clustal W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position specific
gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673–4680 (1994).

21. Thompson, J. D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. The
Clustal X windows interface: flexible strategies for multiple sequence alignment aided by
quality analysis tools. Nucleic Acids Research, 24: 4876–4882 (1997).

22. Wang, L. and Jiang, T. On the complexity of multiple sequence alignment. Journal of
Computational Biology, 1: 337–348 (1994).

23. Waterman, S.M. and Eggert, M. A new algorithm for best subsequence alignments with
application to tRNA-rRNA comparisons. J. of Molecular Biology, 197: 723–725 (1987).

24. Whitley, D. A genetic algorithm tutorial. Statistics and Computing, vol. 4: 65–85 (1994).
25. Keith, J.M., Adams, P., Bryant, D. Kroese, D.P., Mitchelson, K.R., Cochran, D.A.E., and

Lala, G.H. A simulated annealing algorithm for finding consensus sequences. Bioinfor-
maics, vol. 18, no. 11, p. 1494–1499 (2002).

26. Wang, L., Jiang, T. and Gusfield, D. A more efficient approximation scheme for tree
align-ment. SIAM Journal of Computational Biology. 30: 283–299 (2000).

	1 Introduction
	2 Sequence Alignment
	2.1 Dynamic Programming (DP)
	2.2 Sum-of-Pairs (SP) Score
	2.3 Clustal W

	3 Design of GA
	3.1 Consensus Sequence
	3.2 Design of Encoding Scheme
	3.3 Crossover and Mutation Operations
	3.4 Objective Function
	3.5 Alignment Construction

	4 Experiment Settings
	5 Experiment Results and Discussions
	6 Future Works

