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Abstract. In this paper we present an approach that evolves the consensus 
sequence [25] for multiple sequence alignment (MSA) with genetic algorithm 
(GA). We have developed an encoding scheme such that the number of gene-
rations needed to find the optimal solution is approximately the same regardless 
the number of sequences. Instead it only depends on the length of the template 
and similarity between sequences. The objective function gives a sum-of-pairs 
(SP) score as the fitness values. We conducted some preliminary studies and 
compared our approach with the commonly used heuristic alignment program 
Clustal W. Results have shown that the GA can indeed scale and perform well. 

1 Introduction 

Living things diverge from common ancestors through changes in deoxyribonucleic 
acid (DNA) and millions of years of evolution [6]. DNA indeed plays a fundamental 
role in the processes of life in various aspects. It contains the template for the syn-
thesis of proteins, which are crucial molecules for life. Moreover, DNA is essential to 
life because it functions as a medium to transmit information from one generation to 
another [10]. Evidently the most important regions in DNA are generally conserved to 
ensure survival. Sequence alignment is commonly used to detect and quantify simi-
larities in DNA or protein sequences. Alignments of biological sequences generated 
by computational algorithms are routinely used as a basis for inference about sequen-
ces whose structures or functions are not well known [7]. The most common approach 
is to find the best-scoring algorithm between a pair of sequences where the score 
records aligning similar residues and penalizes substitutions and gaps. The best-
scoring alignment is commonly found by the dynamic programming (DP) algorithms, 
such as Smith-Waterman and Needleman-Wunsch algorithms [14, 23]. DP algorithms 
guarantee a mathematically optimal alignment for the given evolutionary model; how-
ever, the complexity of DP algorithms grows exponentially as the length and number 
of sequences increase. Specifically multiple sequence alignments (MSA) with DP 
have been shown to be NP-hard [19]. Several heuristic approaches, such as Clustal W 
[20], are frequently used to approximate the optimal alignments. In this paper, we 
present an approach that utilizes the guided search in GA to evolve the most probable 
consensus sequence [25] for MSA. 
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The design of GA is derived from the most commonly used DP algorithms for 
sequence alignments. In addition, we have developed an encoding scheme such that 
the search complexity does not depend on the number of sequences. The search 
complexity instead depends on the length of the consensus sequence and similarity 
between sequences. The scheme encodes each possible matching nucleotide at given 
column with binary masks. This compact representation greatly reduces the space 
requirement as well as the search complexity. The GA constructs the final alignment 
through the backtracking process, which is identical to the one found in DP 
algorithms [14]. The objective or evaluation function gives the sum-of-pairs (SP) 
scores to determine the fitness of each chromosome in the population. SP score has 
been widely used to detect and quantify similarities between sequences; however it 
does not provide any probabilistic or biological justifications [7]. To further improve 
the performance of GA, we have devised a sequence profiling formulation that 
reduces the complexity for calculating the SP scores. We have compared our 
approach to the most commonly used heuristic alignment program Clustal W and 
demonstrated that GA can indeed perform and scale well. In most cases, the GA 
outperformed Clustal W and produced better alignments. 

2 Sequence Alignment 

There are diverse motivations behind the alignment of biological sequences. Genetic 
sequences are inherited from common ancestors through millions of years of evolu-
tion. Therefore, it is of interest to trace evolutionary history of mutation and other 
evolutionary changes through sequencing [2, 6]. Alignment of biological sequences in 
this context is generally understood as comparisons based on the criteria of evolution. 
For example, the number of mutations, insertions, and deletions of residues necessary 
to transform one DNA sequence into another is a measure of phylogeny or evolu-
tionary relatedness [3, 13]. On the other hand, a comparison may pinpoint regions of 
common origin, which may in turn coincide with regions of similar structure or 
function [10]. A pairwise sequence alignment is a technique of arranging two sequen-
ces, so that the residues in certain positions are deemed to have a common evolu-
tionary origin. In other words, if the same residue occurs in both sequences at the 
same position then it may have been conserved during the course of evolution. On the 
other hand, if two resides differ then it is generally assumed that they may have 
derived from a common ancestor. Homologous sequences, those related by common 
descent, may have different lengths, which is generally explained through insertions 
or deletions [6, 10]. 

DP has been commonly used to align two sequences because it guarantees a mathe-
matically optimal alignment. MSA, on the other hand, is simply an extension of pair-
wise sequence alignment. MSA is the process of aligning three or more sequences 
simultaneously to bring as many similar residues into register as possible. The result-
ing alignments are commonly interpreted into two contexts; (a) to find regions that 
define a conserved pattern or domain; and (b) to derive the possible phylogeny or 
evolutionary relationships among the sequences [13]. The presence of similar do-
mains in several similar sequences implies a similar biochemical function or structural 
fold that may be used as the basis for further experimental investigation. Simul-
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taneous alignment of three or more sequences with DP, however, poses a difficult 
algorithmic challenge. 

2.1 Dynamic Programming (DP) 

Dynamic programming (DP) is a commonly used method for solving sequential or 
multi-stage decision problems and is recursive in nature. The essence of DP is the 
principle of optimality [15, 17]. DP has long been used to solve varieties of discrete 
optimization problems such as scheduling, string-editing, packaging, and inventory 
management [12]. It views a problem as a set of interdependent sub-problems. DP 
solves sub-problems and uses the results to solve larger sub-problems. The solution to 
a sub-problem is expressed as a function of solutions to one or more sub-problems at 
the preceding levels [7]. In other words, DP expresses the problem in a recurrent 
formulation. To make optimal decisions for the next and all future states, DP only 
needs to know the current decision. This is also known as the Markovian property. 
For a process to be Markovian the future must depend only on the present state, and 
past should not have any effect on the future [7, 12]. The term programming in the 
name actually refers to the mathematical rules that can be easily followed to solve a 
problem; it has nothing to do with writing a computer program. DP is known to be an 
efficient programming technique for solving certain combinatorial problems. It is 
particular important in bioinformatics [17], as it is the basis of sequence alignments 
for comparing DNA and protein sequences. The following figure shows the recurrent 
formulation of DP for sequence alignment. 
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Fig. 1. This recurrent equation is applied repeatedly to fill the matrix of F(i, j) values. This 
particular formulation gives the global alignment of two sequences. F(i, j) is the maximum of 
three previous values, namely F(i-1, j-1), F(i-1, j), and F(i, j-1). The value s(x

i
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j
) is the score 

for aligning the characters x
i
 and y
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 and d is the penalty for inserting a gap 

 
For pairwise sequence alignments, for example, DP first begins with the construction 
of an alignment matrix F(i, j) with the indexes (i, j) for the two sequences Sx and Sy. 
The matrix is initialized with F(0, 0)=0. The value of F(i, j) is the score of the best 
alignment from the first character x1 to the character xi of sequence Sx and the first 
character y1 to the character yj of Sy. There are three possible ways that xi and yj can be 
aligned; (a) xi can align with yj, which gives a match or mismatch; (b) xi is aligned 
with a gap; or (c) yj is aligned to a gap. Since the matrix is built recursively, in order 
to calculate F(i, j), the previous states F(i-1, j-1), F(i-1, j), and F(i, j-1) must be 
known beforehand [7]. 
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2.2 Sum-of-Pairs (SP) Score 

Carrillo and Lipman [5] first introduced the sum-of-pairs (SP) score function, which 
defines the scores of a multiple alignment of N sequences as the sum of the scores of 
the N(N-1)/2 pairwise alignments [5, 7]. Although SP score function has been widely 
used to evaluate MSA, it doesn’t really provide any biological or probabilistic justi-
fication. Each sequence is scored as if it is descended from the N-1 other sequences 
instead of a single ancestor. As a result, evolutionary events are often overestimated. 
The problem worsens as the number of sequences increases [7]. A weighted SP score 
function has been proposed to partially compensate the problem [1, 8]. Moreover, 
despite the simplicity of the SP score function, its sheer running time and space con-
sumption makes it impractical even for modestly sized sets of short sequences. 
Specifically it has been shown that the problem of computing MSA with optimal SP 
score is NP-hard [22]. Several fast approximations and divide-and-conquer approa-
ches [18] have been proposed to overcome the computational complexity. The follow-
ing figure shows the mathematical formulation of the weighted SP score function. 
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Fig. 2. The SP function, w(M), sums all the pairwise substitution scores in the columns for the 
sequence pairs p and q. Each column is evaluated with a scoring matrix. The substitution 
scoring function, s(m

pj
, m

qj
), defines all possible alignments for nucleotides p

j
 and q

j
. The func-

tion s(m
pj
, m

qj
) gives the score of the alignment at column j for sequence p and q. The weight, 

α
p,q

, is intended to balance the overestimation problem in the SP score function [1, 7] 

2.3 Clustal W 

Clustal W is a commonly used progressive alignment program for biological sequen-
ces. It is based on a heuristic algorithm and therefore cannot always find the optimal 
alignments. Clustal W exploits the fact that homologous sequences are evolutionarily 
related. It builds up multiple alignments progressively with a series of pairwise align-
ments moving from the leaves upward in a guide tree that estimates the phylogeny of 
the sequences [9]. Clustal W first aligns regions of identical or highly conserved 
residues and gradually adds in more distance ones [21]. This approach is sufficiently 
fast and allows Clustal W to alignment virtually any number of sequences. Although 
Clustal W doesn’t always find the optimal alignments; however, in most cases those 
alignments at least give a good starting points for further automatic or manual refine-
ment. This type of alignment is generally useful for the study of identifying regions 
that are highly conserved. The alignments can be further improved through sequence 
weighting, positions-specific gap penalties and choice of weight matrix [20]. Clustal 
W nonetheless suffers two major problems, the local maxima and the choice of align-
ment parameters. 

The local maxima problem stems from the nature of the progressive alignment 
strategy. As the algorithm follows the guide tree and merges sequences together, the 
solution is never guaranteed to be globally optimal, as defined by some overall mea-
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sure of alignment quality [9, 16, 20]. Any misaligned regions made early in the align-
ment process cannot be corrected later as new information from other sequences is 
introduced. This problem is frequently a result of an incorrect branching order in the 
guide tree. The only way to correct this is to use an iterative or stochastic sampling 
procedure such as bootstrapping [20]. The choice of alignment parameters is another 
problem in Clustal W. If parameters are not chosen appropriately, alignments will not 
converge to a globally optimal solution [7, 20]. For closely related sequences, any 
reasonable scoring matrices should work fine because matches usually receive the 
most weights [11]. Therefore, when matches dominate an alignment, almost any 
weight matrices will find a good solution. However, when aligning more divergent 
sequences, scores for gaps and mismatches become narrow and critical because they 
occur more frequently. Moreover for highly conserved sequences, the range of gap 
penalties that will find the correct or best possible solution can be very broad. As 
more and more divergent sequences are added, however, the exact values for gap 
penalties become critical for success [20]. Our observations have confirmed that this 
is actually a common problem in most MSA algorithms. Statistically as the number of 
sequences increases, the expected number of matches in each column also increases. 
For example, the probability of finding a matching nucleotide in the column of ten 
sequences is much higher than that of three sequences. If the gap penalty is too low, 
alignments will generally contain excessive amounts of gaps. It is in general difficult 
to justify why one scoring matrix is better than the others [7]. 

 

3 Design of GA 

3.1 Consensus Sequence 

The consensus sequence [25] is a unique as well as the most interesting and important 
feature of our GA approach. It is essentially a compact formulation to represent all 
possible alignments for virtually any given numbers of sequences [4]. The consensus 
sequence borrows the idea from biology that sometimes it is necessary for certain 
positions in a sequence to be made ambiguous when some residues simply cannot be 
resolved during laboratory experiments. A sequence with ambiguity codes is actually 
a mix of sequences, each having one of the nucleotides defined by the ambiguity at 
that position. For example, if an R is encountered in the sequence, then the sequences 
in the assortment will have either an adenine or a guanine at that position. The ambi-
guity enables conserved sequences to be condensed into one single representation. 
The following figure lists the most commonly used ambiguity codes defined by the 
Nomenclature Committee of the International Union of Biochemistry (IUB) and the 
next figure shows a hypothetical alignment with five sequences and illustrates how 
the ambiguity codes are used to derive the consensus sequence. It is assumed that the 
optimal alignment is already known for a given evolutionary model. The consensus 
sequence in essence is a condensed sequence with ambiguity codes that shows what 
nucleotides are allowed in each column. 
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Fig. 3. The most commonly used DNA ambiguity codes are defined by the International Union 
of Biochemistry (IUB). The presence of ambiguity generally indicates that some residues can 
not be resolved during the laboratory experiments. Ambiguity codes also enable sequences to 
be represented in a more condensed form 

3.2 Design of Encoding Scheme 

To further enhance the design, our chromosomes are broken into four pieces accord-
ing to the nucleotide they represent. In other words, our GA uses four parallel chrom-
osomes to represent four different nucleotides. Each chromosome encodes the relative 
occurrences and locations of a nucleotide and is only evolved with the chromosome 
that encodes the same nucleotide. The fitness of the entire chromosomes is determi-
ned by how well they fit together to derive the final alignment. The geometry of the 
parallel chromosomes is very similar to the four dimensional hyper-plane. Each dime-
nsion is evolved and optimized separately and independently. 

 

 
 

Fig. 4. Sequences are split up into four subsequences according to the nucleotides. Each sub-
sequence only encodes the information where such a nucleotide can be found. Since each 
nucleotide is individually encoded, any possible ambiguities can be fully represented. Further, 
chromosomes are represented as binary strings, where 1 signals the existence of such a nucleo-
tide at the given location while 0 signals the absence 

The length of chromosomes is difficult to determine precisely. It depends on the 
evolutionary model as well as the similarity of the sequences. If sequences are highly 
conserved, chromosomes can be relatively short. Intuitively any two randomly gener-
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ated sequences will have at least 25% similarity. For this study, we assumed that 
sequences have at least 50% similarity to be biologically significant. Therefore, we 
arbitrarily defined the length of the chromosome to be 1.5 times longer than the long-
est sequences. For most of our studies, this assumption worked fine. Furthermore, for 
implementation convenience, each chromosome is further divided into smaller blocks 
called loci. Biologically, a locus is a block of alleles where genes can be found. The 
length of a locus is determined by the length of an integer on the hardware platform. 
The number of loci depends on the length of the chromosome. 

 

3.3 Crossover and Mutation Operations 

For this research, we implemented a simple one-point crossover. A point is randomly 
selected in each locus for each chromosome and alleles are exchanged between two 
parent chromosomes to form an offspring. An offspring is produced at each gener-
ation and then competes with the population. Since each chromosome has separate 
string for the four nucleotides, the crossover points are chosen separately. Further-
more, we have implemented a bias function for selecting the parent chromosomes 
from the entire population. The bias function is like an “unfair” randomly number 
generator. It is essentially a quadratic equation that randomly generates a series of 
numbers with bias toward the lower indexes. Since the initial population has been 
sorted in the descending order according to the fitness values, consequently the 
individuals with higher fitness values are more likely to be selected. Mutation is an 
important operator that prevents the population from stagnating at local optima [24]. 
In our implementation, the mutation is only applied to the newly created offspring 
chromosomes. The GA first calculates the expected number of mutations for each 
locus in the chromosomes with a random factor. It then iteratively picks random 
locations on each locus for each of the four parallel chromosomes and changes the 
alleles. The mutation operator randomly flips the alleles independently on each locus 
with the binary XOR operator. It inverts the alleles from 0 to 1 or 1 to 0. 

 

 

Fig. 5. The crossover operator retrieves the alleles from two parent chromosomes to create an 
offspring. A point is randomly selected on each locus for each chromosome. The offspring 
receives approximately a half of alleles from each parent. The length of a locus is 32-bit, which 
corresponds to the length of an integer on our machines 
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3.4 Objective Function 

The objective function measures the quality of MSA. Therefore, ideally the better the 
score the more biologically relevant the multiple alignments are. The substitution 
costs are evaluated using a predefined substitution matrix. The matrix assigns every 
possible substitution or conservation according to its biological likeliness. We used 
the nucleic scoring matrix defined by IUB that each match receives 10 points and 
mismatch 0. The gap penalty is 10.0 for opening and 0.2 extending a gap. The align-
ment with the highest score is considered a potentially optimal solution. In addition, 
the objective function subtracts the fitness value with both the mismatch and gap 
scores multiplied by the numbers of nucleotides that are missing in the alignment for 
the chromosomes that do not include all nucleotides. Our experiments have confirmed 
that this strategy worked quite well. The calculation of SP scores for N sequences 
takes O(M×N2) time [4, 26] where M is the average length of the sequences. To 
further improve the GA performance, we have devised a sequence profiling technique 
that simplifies the calculations of SP scores. 

 

  

Fig. 6. The figure shows the sequence profile for the column in the red color. The profiling 
process simply accumulates the frequencies or occurrences of each nucleotide on a given 
column. The process simplifies the calculations of the SP scores into three smaller tasks and 
reduces the complexity. Matches are only possible when two identical nucleotides are aligned 
together. Therefore, the score for matches is the sum of all possible combinations of identical 
nucleotides multiplied by the matching scores S(i, i) from the substitution matrix. The number 
of mismatches is the sum of all combinations between two different nucleotides. There are only 
six such combinations. The gap penalties are the sum of all arrangements between each nucleo-
tide and gaps 

The objective function first computes the profile of the sequences for each column. 
A profile is simply the occurrences or frequencies of each nucleotide. The profiling 
process accumulates the occurrences of each nucleotide and reduces the calculations 
of SP scores into three smaller tasks. Matches are only possible when two identical 
nucleotides are aligned together. Therefore, the matching score is simply the sum of 
all possible combinations of the same nucleotides multiplied by the match score in the 
substitution matrix. The number of mismatches, on the other hand, is the sum of all 
the combinations of two different nucleotides. There are only six such combinations. 
The number of gap alignments is derived from the sum of the frequencies of each 
nucleotide multiplied by the number of gaps. The result is then multiplied by the gap 
penalty to obtain the overall gap score. 



Evolving Consensus Sequence for Multiple Sequence Alignment         2321 

 

3.5 Alignment Construction 

The construction of the final alignment is very similar to that of the DP algorithm [14, 
23]. The GA derives the alignment from the last nucleotide to the first and the chrom-
osomes are accordingly decoded backward. If a nucleotide is permitted at a given 
column, then it is consumed and added in the final alignment. The process moves on 
to the preceding ones. Otherwise a gap is inserted into the alignment. If no nucleo-
tides are ever used in the column, then the allele is skipped. Alleles that are not used 
to derive the final alignment are considered the non-coding regions. One of the very 
interesting and important features of the scheme is that the alleles that are used to 
derive the alignment do not have to be consecutive. In addition, two different chrom-
osomes can potentially give the same alignments. In other words, the alignment const-
ruction process picks the “appropriate” alleles as it moves along. The chromosomes 
do not have to encode exact bit patterns for the alignments. This makes every allele in 
the chromosome a potential solution for the alignment. Experiments have confirmed 
that the GA discovered the optimal alignment, as defined by the substitution matrix, 
quickly and effectively. The alignments produced by the GA are at least as good as 
the ones obtained from Clustal W. If the GA is allowed to continue evolving, better 
alignments are very likely to be found. As the number of sequences increases, the 
effectiveness of the GA begins to surface. Our experiments have shown that regard-
less the number of sequences being aligned; the GA performed extremely well and 
produced alignments with competitive scores. 

 

 

Fig. 7. The figure shows how the final alignment is constructed from the chromosomes. The 
alignment is derived in the reverse order. The spaces in between are the alleles that did not 
match up any of the nucleotides in the sequences. If a particular nucleotide does not present in 
the sequence, a gap is inserted. Chromosomes do not have to encode the exact bit patterns for 
the alignments. The alignment process simply picks the “appropriate” alleles 

4 Experiment Settings 

The objective of our experiments was to demonstrate that the GA could scale better as 
well as produce competitive alignments. For the purpose of this study, we assumed 
that Clustal W always gave the optimal scores. Sequences were first aligned with 
Clustal W and the scores were used as the stopping condition for the GA. We applied 
the standard IUB nucleic scoring matrix and used the gap penalties identical to that of 
Clustal W. For this study, we have gathered 20 short random DNA sequences of an 
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average length of 60 base pairs. Sequences were manually verified to have at least 
50% similarity. Each chromosome was about 96 bits long and had three loci. The 
mutation rate was 0.0625 and the average expected number of mutations on each 
locus was about one. The GA began with a randomly generated population of 64 
individuals. The population was first evaluated and sorted in the descending order 
according to the fitness values. At each generation, the bias function randomly picked 
two individuals from the population that served as the parent chromosomes. The 
crossover operator exchanged alleles from two parent chromosomes and created an 
offspring. Mutation was applied to the offspring repeatedly until the fitness is higher 
than both parent chromosomes. The offspring then competed with the entire popu-
lation and removed the individual with the lowest fitness. We gradually increased the 
number of sequences in each trial. Due to the stochastic nature of GA, all trials were 
performed at least three times in order to obtain more reliable results. 

5 Experiment Results and Discussions 

Experiments show promising results for our GA approach. In most cases, the GA out-
performed Clustal W and produced better alignments. The number of generations 
needed to find the optimal solutions remained approximately the same even though 
the quantity of sequences increased. This is tribute to the fact that the GA was able to 
utilize the guided search effectively and found the optimal alignments. 

During the course of experiments, we have tried various chromosome lengths in 
order to understand how they affect the performance of the GA. Notably the perfor-
mance dropped dramatically when the length of sequences reached to 300 base pairs. 
Further investigation is still needed in order to gain a better understanding. The exact 
length of the consensus sequence is difficult to determine because it largely depends 
on the similarity of sequences and the evolutionary model. Our observations revealed 
that if the consensus sequence is too short, GA frequently failed to converge. On the 
other hand, if it is too long, the progress becomes extremely slow. In addition, we 
have confirmed that the SP scoring function was never a good measurement for MSA. 
If the gap is not heavily penalized, the same score can be easily achieved with more 
matches but excessive amounts of gaps. The relative difference in score between the 
correct and incorrect alignments decreases as the number of sequences increases. 
Clearly this is very counterintuitive and not realistic. The relative difference should 
increase when more sequences are introduced into the alignment. 

Table 1. This table summarizes the numbers of generations needed to find the optimal align-
ments, at least as good as Clustal W, with various amounts of sequences 

Number of Sequences / Generations  
Trial 10 12 14 16 18 20 

1 29,044 36,286 32,225 25,304 35,893 42,805 
2 20,835 31,012 22,244 35,447 27,701 46,888 
3 26,080 39,906 26,141 32,720 43,989 44,452 
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Fig. 8. The figure shows the GA performance on a set of 18 sequences. The GA typically found 
a good alignment within 50,000 generations. If the GA is allowed to continue evolving, align-
ments with even higher scores are very likely to be found. The horizontal line indicates the 
score found by Clustal W, which is about 35,294 

6 Future Works 

The consensus sequence with GA showed very promising performance and results. 
For future work, we would like to extend this approach to align protein sequences and 
implement statistical scoring techniques. In addition, we plan to incorporate the 
weighting scheme and analyze the impact on the GA performance. We are currently 
investigating an approach that incorporates several statistical and simulation techni-
ques to try to quantify the significance of alignment scores. 
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